[image: Cover]

 BYTE Listings Jan Mar 1987

 	
 BYTE Listings Jan Mar 1987

 	
 Six great reasons to join EIX today

 	
 TABLE OF CONTENTS

 	
 Gl<TE

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January

 	
 January •

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 March

 	
 /* ... */

 	
 i

 	
 March

 	
 March

 	
 March

 	
 BIX

 	
 DISKS AND DOWNLOADS

 	
 Jitrbo C

 Pages

 	
 0

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 6

 	
 7

 	
 8

 	
 9

 	
 10

 	
 11

 	
 12

 	
 13

 	
 14

 	
 15

 	
 16

 	
 17

 	
 18

 	
 19

 	
 20

 	
 21

 	
 22

 	
 23

 	
 24

 	
 25

 	
 26

 	
 27

 	
 28

 	
 29

 	
 30

 	
 31

 	
 (*
 LINKLIST.PAS *)

 	
 ♦ This program maintains an ordered linked list of strings. It Is *)

 	
 ♦ designed for an Apple lie or an Apple 11+ with on 80-column card. ♦)

 	
 If you're using Pascal with 40 columns, all that has to be changed ♦) Is the number 40 In the GOTOXY calls. A printer Is also assumed. ♦)

 	
 If you have none online, then one procedure call must be removed,

 	
 and It Is marked as such In the program. x,)

 	
 *)

 	
 The program commands are as follows: #)

 	
 A^dd - adds string to list

 	
 Djelete - deletes string from list ♦)

 	
 Bilank - destroys list Pjrint - dumps list to printer E)nd - terminates program

 	
 Please note that on an Apple lie the Caps Lock button must be ♦)

 	
 y
 depressed for the program to accept these commands. ♦)

 	
 PROGRAM MANAGER;

 	
 j WARNING: shuts off range checking ((♦$R-*)

 	
 COMCHARS-SET OF CHAR;

 	
 ST1-STRING[15];

 	
 ST2-STRING[6];

 	
 32

 	
 33

 	
 34

 	
 35

 	
 36

 	
 37

 	
 38

 	
 39

 	
 40

 	
 41

 	
 42

 	
 43

 	
 44

 	
 45

 	
 46

 	
 47

 	
 48

 	
 49

 	
 50

 	
 51

 	
 52

 	
 53

 	
 54

 	
 55

 	
 56

 	
 57

 	
 58

 	
 59

 	
 60

 	
 61

 	
 62

 	
 63

 	
 64

 	
 65

 	
 66

 	
 67

 	
 68

 	
 69

 	
 70

 	
 71

 	
 72

 	
 73

 	
 74

 	
 75

 	
 76

 	
 77

 	
 78

 	
 79

 	
 80

 	
 81

 	
 82

 	
 83

 	
 84

 	
 85

 	
 86

 	
 87

 	
 88

 	
 89

 	
 90

 	
 91

 	
 92

 	
 93

 	
 94

 	
 95

 	
 96

 	
 97

 	
 98

 	
 99

 	
 100

 	
 101

 	
 102

 	
 103

 	
 104

 	
 105

 	
 106

 	
 ^Routine to do a table look-up using chained hashing

 	
 •TB ■ table of names to be entered/looked up.

 	
 *CH ■ table of chain pointers

 	
 *IX « index to entry of TB where the name was entered or found *0V « pointer to the last entry used in the overflow table

 	
 *FD a flag reporting result of search: 0anot found. 1*found ’K$ - holds the current KEY being searched for |MT a maximum total table sl
2
e (primary and secondary)

 	
 FD a
0
 * Initiali
2
e result of search to "not found"

 	
 GOSUB 1000 'go hash the key In K$; the result is returned In IX

 	
 ’examine first entry with correct hash value »

 	
 IF TBfIXl - "" THEN TB(IX) - K$: RETURN ’It's empty IF TB(IX) - K$ THEN FD -
1
: RETURN ‘found it - soy

 	
 I the first entry hod some name other than KEY In It - step down the chain

 	
 IF CH(IX) <>
0
 THEN IX •• CH(IX): GOTO 260 'step down the chain

 	
 104 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 	
 107

 	
 108

 	
 109

 	
 110

 	
 111

 	
 112

 	
 113

 	
 114

 	
 115

 	
 116

 	
 117

 	
 118

 	
 119

 	
 120

 	
 121

 	
 122

 	
 123

 	
 124

 	
 125

 	
 126

 	
 127

 	
 128

 	
 129

 	
 130

 	
 131

 	
 132

 	
 133

 	
 134

 	
 135

 	
 136

 	
 137

 	
 138

 	
 /*

 	
 « edge.c

 	
 ♦

 	
 ♦ This progrom will read In an Image file, apply a simple edge detection

 	
 ♦ algorithm to It and then write out the resulting file. It demonstrates

 	
 ♦ the use of color on the output file to Indicate edges.

 	
 ♦

 	
 * Usage edge Input.Image output.Image threshold

 	
 ♦

 	
 ♦ At all pixels where there Is a difference equal to or greater than

 	
 ♦ "threshold" that pixel will be set to red. Other pixels left Intact.

 	
 ♦

 	
 ♦ This program Is based on the Sobel edge detection algorithm. It uses the

 	
 ♦ fact that objects In an Image are usually delineated by sharp changes In

 	
 ♦
 Intensity. The Image Is processed by picking 8 adjacent pixels and treating

 	
 ♦ them as a 3 X 3 array. The array can be represented as follows ;

 	
 ♦

 	
 ♦

 	
 *

 	
 *

 	
 ♦

 	
 ♦ And there are four unique stralghtllne paths through this array which pass

 	
 ♦ through the center pixel. They can be represented as :

 	
 ♦

 	
 ♦ g -> e -> c

 	
 ♦ d -> e -> f

 	
 ♦ a -> e -> I

 	
 ♦ b -> e -> h

 	
 Xc

 	
 ♦ The algorithm treats the three pixels as points on a line described by the

 	
 ♦ function ; Intensity «* M ♦ x + C. The parameter of Interest Is the slope

 	
 ♦ of the function M. The sharper the transition In Intensity, the larger the

 	
 ♦ value of the slope. This Is compared to the threshold and If It exceeds It

 	
 ♦ the pixel e Is considered to Me on an edge and Is marked as such.

 	
 ♦

 	
 */

 	
 ^Include <exec/types.h>

 	
 ^Include <exec/memory.h>

 	
 #lnclude <stdlo.h>

 	
 #lnclude <fcntI.h>

 	
 /*
 This array describes the relative offsets of adjacent pixels that make up * the edge of Interest.

 	
 */

 	
 static Int edges[] « |

 	
 136 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 	
 139

 	
 140

 	
 141

 	
 142

 	
 143

 	
 144

 	
 145

 	
 146

 	
 147

 	
 148

 	
 149

 	
 150

 	
 151

 	
 152

 	
 153

 	
 154

 	
 155

 	
 156

 	
 157

 	
 158

 	
 159

 	
 160

 	
 161

 	
 162

 	
 163

 	
 164

 	
 165

 	
 166

 	
 167

 	
 168

 	
 169

 	
 170

 	
 171

 	
 172

 	
 173

 	
 174

 	
 175

 	
 176

 	
 177

 	
 178

 	
 179

 	
 180

 	
 181

 	
 182

 	
 183

 	
 184

 	
 185

 	
 186

 	
 187

 	
 188

 	
 189

 	
 190

 	
 191

 	
 192

 	
 193

 	
 194

 	
 195

 	
 196

 	
 197

 	
 198

 	
 199

 	
 200

 	
 201

 	
 202

 	
 203

 	
 204

 	
 205

 	
 206

 	
 207

 	
 208

 	
 209

 	
 210

 	
 211

 BYTE Listings Jan Mar 1987

 Byte

 This book was produced in EPUB format by the Internet Archive.
 The book pages were scanned and converted to EPUB format automatically. This process relies on optical character recognition, and is somewhat susceptible to errors. The book may not offer the correct reading sequence, and there may be weird characters, non-words, and incorrect guesses at structure. Some page numbers and headers or footers may remain from the scanned page. The process which identifies images might have found stray marks on the page which are not actually images from the book. The hidden page numbering which may be available to your ereader corresponds to the numbered pages in the print edition, but is not an exact match; page numbers will increment at the same rate as the corresponding print edition, but we may have started numbering before the print book's visible page numbers. The Internet Archive is working to improve the scanning process and resulting books, but in the meantime, we hope that this book will be useful to you.
 The Internet Archive was founded in 1996 to build an Internet library and to promote universal access to all knowledge. The Archive's purposes include offering permanent access for researchers, historians, scholars, people with disabilities, and the general public to historical collections that exist in digital format. The Internet Archive includes texts, audio, moving images, and software as well as archived web pages, and provides specialized services for information access for the blind and other persons with disabilities.
Created with abbyy2epub (v.1.7.2)

 Six great reasons to join

EIX
today
•
Over
 140
microcomputer-related conferences:
loin only those subjects that interest you and change selections at any time. Thke part when it's convenient for you. Share information, opinions and ideas in focused discussions with other BIX users who share your interests. Easy commands and conference digests help you quickly locate important information.
•
Montfily conference specials:
BIX specials connect you with invited experts in leading-edge topics—CD-ROM. MiDl. OS-9 and more. They're all part of your BIX membership.
•
fAicrobytes daily:
Get up-to-the-minute industry news and new product information by joining Microbytes Daily and What's New Hardware and Software.
•
Public domain software:
Yours for the downloading, including programs from BYTE articles and a growing library of PD listings.
•
Electronic mail:
Exchange private messages with BYTE editors and authors and other BIX users.

 [image: Picture #1]

 BIX User's
Manual and Subscriber Agreement as Soon as
 We've
Processed Your Registration. lOlN THE EXCITING WORLD OF BIX TODAY!
•
Vendor support:
A growing number of microcomputer manufacturers use BIX to answer your questions about their products and how to use them for peak performance.
What BIX Costs. .How You Pay
JOIN BIX Right Now:
Set your computer's telecommunications program for full duplex. 8-bit characters, even parity, 1 stop bit OR 7-bit characters, even parity. 1 stop using 300 or 1200 baud.
Ca!!
\-c-r loca!
Tymnet
number and respCHid as follows:
ONE-TIME REGISTR-ATION FEE S25
Hourly Charges: (Your Time of Access)
Off-Peak
6PM-7AM
Weekdays Pius ^^^kends &
 Ht^idays
Peak
7AM-6PM
Weekdays
Tymnet Prompt

 [image: Picture #2]

 You Enter
ry-er-et; <CR> -g- <CR> cxx
 <CR> <CR>
BIX S9 $12
Tymnet* $2 $6
TOTAL $ll/hr. S18/hr.**
•
Continental
 US. BIX
is aaessiUe via Tiimnet from throughout the
 US
at charges much less than regular long distance. Call the
 BIX
helpline number listed Mow for the tymnet number near you or tymnet at
 1-800-336-0149
• •
User is billed for time on system
 (i>.. 16 Hr
Off-Peak wHymnet
 - S5.50
charge)
BIX
and tymnet charges billed by Visa or Mastercard only.
BIX
Helpline
(8:30 AM-11:30 PM Eastern Weekdays)
U.S. (except NH)-l-800-227-BYTE Elsewhere (603) 924-7681
■After you cr-L"e jO- rrrrecrately taken to
the BLX
rear-
 ccrrererce arc
zsc
 sart jsrg the system right away
Foreign access:
To access = ^-tc-
rysizr
 cocrtres you must have
an accocr: •
” /xr cca
■fieprcne
&

Telegraph IPTD ccr-rar> rrrrr yrvr 3:0600157878.
Then enter aa <3>
snc
 <3 > s me prompts. Call or
vme
 js
rr
 rmac:
r
g
c
r—ation.
EIX
Ooc
Lane

 TABLE OF CONTENTS

 January.5

 February.109

 March.123

 Best of BIX.178

 WELCOME TO BYTE’S QUARTERLY LISTINGS SUPPLEMENT

 The BYTE Listings Supplement is produced quarterly as a means of providing interested readers with a printed, source code version of those programs referenced in BYTE articles. It provides a for more extensive look into the techniques of coding and the potentialities of microcomputers than we have space for in each month’s BYTE.

 Programs contained in this Supplement are referenced the month the article appeared, the page on which their supporting article begins, and the name of the author who wrote the article.

 For those who prefer programs already in electronic format, we have a companion service called Listings on Disk. If you have a modem, listings may be downloaded from the BYTEnet bulletin board and, if you are a member of BIX, the “Listings” area also contains programs referenced in BYTE.

 Beginning with this issue of the Supplement, we are also providing a “trailer” section containing material we feel may be of additional interest to BYTE readers. This time, we’re including a Best of BIX section chronicling events, fects and opinions surrounding the introduction of Intel’s 80386 microprocessor. With succeeding issues we hope to use this section for a variety of informative purposes.

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH.
1987

I

 Gl<TE
SENIOR VICE PRESIDENT/PUBLISHER Harry L. Brown EDITOR IN CHIEF Philip Lemmons

 [image: Picture #3]

 MANAGING EDITOR, BYTE Frederic S. Langa
ASSISTANT MANAGING EDITOR
Glenn Hartwig
CONSULTING EDITORS
Steve Ciarcia
Jerry Pournelle
Ezra Shapiro
Bruce Webster
SENIOR TECHNICAL EDITORS
G. Michael Vbse. Themes
Gregg Williams, Features
TECHNICAL EDITORS
Dennis Allen
Cathryn Baskin, Reviews
Richard Grehan
Ken Sheldon
George A. Stewart
Jane Morrill Tazelaar
Tom Thompson
Charles D. Weston
Eva White
Stanley Wszola
ASSOCIATE TECHNICAL EDITORS Curtis Franklin Jr., Best of BIX Margaret Cook Gurney. Book Reviews
COPY EDITORS Bud Sadler, Chief Jeff Edmonds Nancy Hayes Cathy Kingery Margaret A. Richard Lauren Stickler Warren Williamson Judy Winkler
ASSISTANTS
Peggy Dunham, Office Manager
Shawn Allen
L. Ryan McCombs
Jennifer Price
June N. Sheldon
NEWS AND TECHNOLOGY
Gene Smarte, Bureau Chief. Costa Mesa
Jonathan Erickson, Senior Technical Editor.
San Francisco
Rich Malloy, Senior Technical Editor. New York
Cindy Kiddoo, Editorial Assistant. San Francisco
ASSOCIATE NEWS EDITORS
Dennis Barker, Microbytes
Anne Fischer Lent, What's New
Stan Miastkowski, What's New
Martha Hicks
CONTRIBUTING EDITORS Jonathan Amsterdam, programming projects Mark Dahmke, video, operating systems Mark Haas, at large
Rik Jadrnicek, CAD. graphics, spreadsheets Robert T. Kurosaka, mathematical recreations Phil Lopiccolo, computers In medicine Alastair J. W Mayer, software Alan R. Miller, languages and engineering Dick Pountain, U.K.
Roger Powell, computers and music Phillip Robinson, semiconductors
ART
Nancy Rice. Art Director
Joseph A. Gallagher, Assistant Art Director
Jan Muller. Art Assistant
Alan Easton, Drafting
PRODUCTION
David R. Anderson, Production Director Denise Chartrand Michael J. Lonsky Virginia Reardon
TYPOGRAPHY
Sherry McCarthy, Chief Typographer Donna Sweeney Selinda Chiquoine
EXECUTIVE EDITOR, BIX George Bond
SENIOR EDITOR David Betz ASSOCIATE EDITORS Tony Lockwood
Donna Osgood. San Francisco MICROBYTES DAILY
Dennis Barker. Coordinator. Peterborough
Gene Smarte. Bureau Chief. Costa Mesa
Stan Miastkowski, Peterborough
Rick Cook, Phoenix
Jonathan Erickson. San Francisco
Martha Hicks. Peterborough
Cindy Kiddoo, San Francisco
Anne Fischer Lent, Peterborough
Rich Malloy, New York
Stan Miastkowski, Peterborough
Lynne Nadeau, Peterborough
Jeff Merron, Peterborough
Wayne Rash, Washington. DC
William Webb, Peterborough
Lamont Wood, San Antonio
GROUP MODERATORS
David Allen, Applications
Frank Boosman, Artificial Intelligence
Leroy Casterline, Other
Marc Greenfield, Programming Languages
Jim Howard. Graphics
Gary Kendall. Operating Systems
Steve Krenek. Computers
Brock Meeks. Telecommunications
Barry Nance. New Technology
Donald Osgood, Computers
Sue Rosenberg. Other
Jon Swanson, Chips
BUSINESS AND MARKETING
Doug Webster, Director (603*924*9027)
Patricia Bausum, Secretary
Denise A. Greene, Customer Service
Brian Warnock, Customer Service
Tammy Burgess, Customer Credit and Billing
TECHNOLOGY
Clayton Lisle, Director. Business Systems Technology. MHIS
Bill Garrison, Business Systems Analyst Jack Reilly, Business Systems Analyst Linda W)lff, Senior Business Systems Analyst
Officers of McGrw-Hill Information Systems Company: President: Richard B. Miller. Executis-e Vice Presidents: Frederick P. Jannott. Constniction Information Group; Russell I
■
n 1
1
C. White, Computers and Communications Information Group; J. Thomas I^an. Marketing and International. Senior Vice Presidents: Francis A. Shinal. Controller; Robert C Violetic, Manu&cturing and Technology. Senior Vice Presidents and Publishers; Laurence Altman. Hectronics; Harry L. Brown. BYTE; David J. McGrath. Construction Publications. Croup Vice President: Peter B. McCuen, Communications Information. Vice President: Fred 0. Jensen, Planning and Deseloprnent.
Officers of McGraw-Hill. Inc.: Harold W. McGraw, Jr.. Chairman; Joseph L. Dionne. President and Chief Execuuve Officer; Robert N. Undes. ExecuUve Vice President and Secretary; Writer D. Serwatka, Executive Vice President and Chief Financial Officer; Shel F. Asen. Senior Vice President. Manufecturing; Robert J. Bahash. Senior Vice President. Finance and Manufacturing; Ralph R. Schulz. Senior Vice President. Editorial; George R. Elsinger. Vice President. Circulation; Ralj* J. Webb. Vice President and Treasurer.
BYTE.BVTE
. and The Small Systems Journal are registered trademarks of McGraw-Hill Inc.
FJ)ITORIAL A.NT) BUSINESS OFFICE: One Phoenix Mill Lane, Peterborough. New Hampshire 03458. (603) 924-9281.
West
 Coast Offices: 425 Battery St.. San Francisco, CA 94111. (415) 954-9718; 3001 Red Hill Ave., Building -I. Suite 222. Costa Mesa, CA 92626, (714) 557-6292. New \fork Editorial Office: 1221 Avenue of the Americas. New York. NY 10020. (212) 512-3175.
BYTEnet: (617) 861-9764 (set modem at 8-1-N or 7-I-E; 300 or 1200 baud).
BYTE (ISSN 03«>-5280) i> puWithed nxwthly with one extra issue per)e«r by McGraw-Hill Inc. Founder: James H. .McGriw (1860-I94S). Execumv. editorial, circulatioo. and advertising offices: One Phoenix Mill Lane. Peterborough, NH 03458. phooc (603) 924-9281. Office hours: Monday through Thursday 8:30 AM - 4:30 PM. Friday 8:30 AM - I.<» PM. Eastern Tunc. Address subscriplions to BYTE SiAacripbons, PO Box 59a Martinsville. NJ 08834 Psstmaster: send address changes. USPS Form 3579. undeliverable copies, and fulfillment questions to BYTE Subscriptions. PX> Box 596. .Martinsville. NJ 08836
l
 Second-class postage paid at Peterborough. NH 03458 and additional mailing offices. Pbstafe paid at Winnipeg. Manitoba. Registration number 9321. Subteriptioos are $22 for one year. $40 for two yean, and $58 for three yean in the U.S. and its possessions. In Canada and Mexico, $25 for one year. $45 for two yean. $65 for three years. $69 for one year air delivery to Europe. 3IJOOO yen for one year air delivery to Japan. 15400 yen for one year surOce delivery to Japan, $37 surfKe delivery elsewhere. Air delivery to selected areas at additional rates upon request. Single copy price u $3.50 in the U.S. and its possessions. $4.25 in Canada and Mexico. $4.50 in Europe, and $5 elsewhere. Foreign subscriptions and tales should be remitted in U.S. funds drawn on a U.S. bank. Please allow six to eight weeks for delivery of fint issue Printed in the United States of America.
Address editorial correspondence to: Editor. BYTE. One Phoenix Mill Lane. Peterborough. NH 03458. Unacceptable manutcripcs will be returned if accompanied by sufficient postage. Not responsible for lost manuscripts or photos. Opinions expressed by the authors are not necessarily those of BYTE.
Copyright ® 1987 by McGraw-Hill Inc. All ri^ reserved. Trademark tcgisteied in the United States Patent and Trademark
Office. Vilwre
necessary,
permission is
granted
by the copyright owner for libraries and otheo registered with the Copyright
Clearance Center (CCC) to photocopy any article herein for the flat foe of $1.50 per copy of the article or any part thereof. Correspondence and paymeM should be sent directly to the CCC, 29 Congress St.. Salem. MA 01970 Specify ISSN 0360-5280'83. $1.50 Copying done for other than personal or internal reference use without the permission of McGraw-Hill Inc. is prohibited. Requests for special permission or bulk orders should be addressed »the __ publisher. BYTE is available in mkroform from University Microfilms Inienutional. 300 North Zeeb Rd..
Dept.
PR.
Ann Atbor. MI 48106 or 18 Bedford
Row.
Dept.
PR.
London
WCIR
4EJ. England.
Suhscriptioo questions or problems should
be addressed to: BYTE Subsenber Service. RQ Box 328. Hancock,
NH 03449.
2 BYTE USTINGS SUPPLE.MENT • lANUARY-.MARCH. 1987
INDEX
January March
FILENAME FOR.23
LINKLIST PAS.15
LIST 1 103
LIST 2 103
LIST 3 103
LIST 4 104
LIST 5 104
LIST
6
 105
LIST 7 106
LISTING .
59
LISTINGS DOC.
20
MODE ASM.
"42
MODULA LST.
43
PALI BAS.""
5
PAL2 BAS.
9
PALASM FOR. 24
PALTABLE DAT.
14
PARTS LIS.
"50
PROFILER ASM.61
README PAL.23
RELX
1
 BAS. 83
RELX2 BAS. 85
RELXH TXT.80
RGNMAKER ASM. 65
SAVERGN ASM.
91
SIMLT FOR.
35
TESTAS
1
 PAL.
39
TESTAS
2
 PAL.!'40
TRAVERSE ASM. 98
TSTHOLD1 PAL. 40
TSTHOLD2 PAL. 41
TSTH0LD3 PAL.
[42
ZAPAL C .52
	February
	

	IFP TXT..
	

	LISTING
1
 .
	

	LISTING2 .
	

	LISTING3 .
	

	LISTING4 .
	

	LISTINGS .
	

	POLY BAS.
	

	BASIC LST.
	

BI XMODEM C .128
EDGE C .136
IPLIST C . 144
IMAGE 10 C .133
LISPTEST DOC. 140
LIST1 TXT.123
LIST2 TXT.123
LIST3 TXT.126
LIST4 TXT.126
LISTS TXT.126
LIST
6
 TXT.127
LIST7 TXT.128
MAKEFILE .
146
RANDOM LST.139
README . 146
SIMAREA C . 147
SIMGEO C . 175
SIMINTER C . 150
SIMPOINT C . 152
SIMPP DOC.154
SIMPP H .159
SIMPRIM C . 160
SIMSUBS C . 163
SIMTEST C .166
SIMUTIL C . 172
Best of BIX
CURRENT OS
OPTIONS.178
386 VM. 178
RUMORS ON
INTEL 80486.179
386 SO FAR.
179
VIRTUAL
8086 ENVIRONMENT.180
WHAT CPU IS THIS?.181
LOCK PREFIX.182
386 CAN’T VIRTUALIZE
286 APRS?.182
I/O PROCESSOR?.182
VM/386 WHAT IS IT?.184
MOST-HYPED CHIP.186
80386 LIFE CYCLE.186
LARGEST ALLOWED
INSTRUCTIONS.187
WHATEVER ARE
YOU DOING?.187
DESPERATELY SEEKING UNIX....188
MULTITASKING SPECIFICS.188
WHICH OS WOULD YOU CHOOSE...188 MS-DOS COMPATIBILITY
IN 386 MODE.188
COMPILERS FOR 386.190
COMPILERS?.190
OP SYSTEMS FOR 386.191
SEGMENTATION.192
WHERE ARE THE
32-BIT EXTENSIONS?.194
MULTITASKING MS-DOS.194
386 VS. 286.194
TASKS.195
387-WEITEC???.196
EGA IN MULTITASKING.196
NOW I CAN REMEMBER.197
VIRTUALIZING EGA/CGA VS.
MULTITASKING GRAPHICS.198
EGA AND 386.198
PAGED VIRTUAL?.200
80386 OPERATING
SYSTEMS.
200
P. NORTON AND
82786/80386.201
IN THE BEGINNING.201
WAIT OR PLUNGE?.202
KEYBOARD PROBLEMS WITH
COMPAQ 386.202
PROGRESSIVE ST/386
BENCHMARKS.202
SPEAKING OF RF.203
80386 ACCELERATOR
BOARDS.203
COMPAQ ROLLS OUT 386.203
COMPAQ CHIEF TALKS.203
PRODUCT PREVIEW.204
FLOATING-POINT
PERFORMANCE.206
C386.206
ADDING MEMORY.206
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 J

 [image: Picture #4]

 PALI.BAS
Contributed by: Robert A. Freedmon
"Getting Storted with PALs," by Robert A. Freedman. Januory, poge 223.
10 REM DEFINE VARIABLES 20 CLEAR
30 DEFINT C.F.H.N.O.T.W.X.Y.Z.L 40 DIM F(39.79).N2(24)
50 DEFSTR A.D.P
60 DIM A(15).P(25).N(12).N1(12)
70 X$-CHR$(32):A-STRING$(50.“ "):AT-A+" “
80 C«0:X-0:Y-0:Z-0:S$»"“
90 REM ♦••**#****,****^***
100 REM **♦ INFORMATION ABOUT PALASM SPECEFICATION «««
110 REM
115 PRINT"(c) Copyright 1983 Monolithic Memories Inc. All Rights Reserved"
116 PRINT
120 PRINT TAB(13)"PALASM-20/24 in BosIc":PRINT 130 PRINT TABMlV'Revision level
1
.
2
“
140 PRINT TABMI)"07/15/81
0
. Jones"
150 PRINT TAB(11)‘'06/22/83 U. Mueller
k
 C.B. Lee"
160 PRINT
170 PRINT"Note: When using the 20X- Pols in the series 24"
180 PRINT"family, the XOR operator should stort o new"
190 PRINT"!ine. Thus: /Q
1
 :■ A*B + C*D :+: E*F + G*H"
200 PRINT"Is on error":PRINT 210 PRINT"It should read:"
220 PRINT" /Q
1
 A*B + C*0 or /Q
1
 •- A*B"
230 PRINT" ;+: E*F + G*H + C*D"
240 PRINT" .+. e*F"
250 PRINT"Tho second format is recommended + G*H"
260 PRINT"for ease of reading and commenting."
270 PRINT"Note olso a space is required before and after"
280 PRINT"the ’+’ In the
first
 formot."
285 PRINT
290 PRINT"Press a key to continue_"
300 DUMMY$-INKEY$;IF DUMMY$-"" THEN 300
310 FOR 1-1 TO 23:PRINT:NEXT
320 PRINT"Whot Is your Input
file
 nome ?";
330 LINE INPUT F$:IF F$-"" THEN 120;REM • GET FILENAME *
340 X-1:0PEN "I".1,F$:REM * X-NUMBER OF LINES READ IN *
350 FOR 1-1 TO 10:PRINT:NEXT
360 PRINT" ASSEMBLING.. .PLEASE WAIT IN"
370 PRINT:PRINT
380 REM
390 REM •** VERIFY PART NUMBER AND GET TYPE «««
400 REM e***,******* 410 LINE INPUT #1.A;TY-0 415 IF A-"" THEN 410 420 X-INSTR(A."PAL")
430 0T$-MID$(A,X+5.1):P-MID$(A.X+6,2):NO-VAL(P)
440 PN-MID$iA,X,8):IF RIGHT$(PN.1)-" " THEN PN-LEFT$(PN,7)
450 P-LEFT$(PN,3):IF P<>"PAL" THEN GOTO 590 ELSE P-MID$(PN.4.5l 460 OPEN "I",2,"PALTABLE.OAT" ^
'
465 INPUT #2.TYPE$
470 IF TYPE$<>P THEN LINE INPUT #2,DUMMY!:GOTO 465 475 INPUT #2,TY,XM,YM,S,FC0DE 485 FOR 1-1 TO S 495 INPUT #2,N2(I)
505 NEXT I
515 FOR 1-0 TO S-12
525 INPUT #2.N(I),N1(I)
535 NEXT I
540 FOR 1-1 TO INT((S/2)-1)
545 INPUT #2,IX(I)
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 5
550 NEXT I 555 CLOSE 2
590 IF TY-0 THEN GOSUB 2020:PRINT“1NVALID PART NUMBER":END 600 PRINT-PART NUMBER ... OK 111"
605 GOSUB 3000
610 REM
m******<i‘*0‘<i‘*************’>‘****’>'***********’*******************
620 REM ♦♦♦ VERIFY PIN LIST ***
630 REM
itt*itt*in*m*4t*****^*****n^mi^^iifnim*****^********^*^****************
640 FOR 1-1 TO 4:LINE INPUT #1,A:NEXT I 650 Y-1
660 A-A+" ":C-LEN(A):FOR X-1 TO C
670 P-MID$(A.X.1):IF P<>" " THEN P(Y)-P(Y)+P
680 IF P-" “ AND P(Y)<>"" THEN Y-Y+1
690 NEXT:IF Y-S+2 THEN 710 ELSE IF Y<S+2 THEN LINE INPUT #1.A:G0T0 660 700 GOSUB 2020:PRINT"INVALID PIN LIST":END 710 W-(S+1)/2:IF P(»()-"GND" THEN 730
720 PRINT"ERROR CORRECTED... PIN";W;" IS NOW ‘GND*":P(W)-"GNO"
730 W-S+1;IF P(W)-"VCC" THEN 750
740 PRINT-ERROR CORRECTED... PIN":W;" IS NOW 'VCC’":P(W)-"VCC"
750 PRINT"PIN LIST OK 111 "
780 REM
m**
790 REM ••• FIND OUTPUT IN EQUATION ***
800 REM
m^m**
810 OU-0:IF TY>4 AND TY<9 THEN NO-8 820 IF TY-16 THEN NO-8 ELSE IF TY-15 THEN NO-10 830 LINE INPUT #1.A:IF E0F(1) THEN CLOSE:GOTO 2380 840 IF LEFT$(A.1)-":" OR INSTR(A,"-")-0 THEN 830 850 ZZ-INSTR(A.":"):IF ZZ<>0 THEN A-LEFT$(A.ZZ-1)
860 IF INSTRfA," ")-0 THEN 880
870 ZZ-INSTR(A." "):A-LEFT$(A,ZZ-1)+RIGHT$(A.LEN(A)-ZZ):G0T0 860 880 AA-A:FC-0:FS-0:FR-0:AT-"":OL-")/ "
890 CE-INSTrU."-"):IF CE-0 THEN 830 900 0U-0U+1:IF OU>NO THEN 1650 910 AL-LEFT$(A.CE-1):CT-LEN(A):CN-CE 920 CN-CN-1:IF CN-0 THEN GOTO 950
930 P-MID$(A.CN.1):IF P-" " THEN 920 ELSE IF P-":" THEN FR-1:G0T0 920
940 P-MID$(A.CN,1):IF INSTR(DL,P)-0 THEN AT-P+AT:CN-CN-1:IF CN<>0 THEN 940
950 IF INSTR(AT." ")<>0 THEN AT-LEFT$(AT.LEN(AT)-1):G0T0 950
960 FOR Z-12 TO S:IF AT-P(Z) OR P(2)-('7"+AT) THEN GOSUB 1910:GOTO 990
970 IF AT-0'/“+P(Z)) THEN GOSUB 1910:GOTO 990 ELSE NEXT
980 GOSUB 2020:PRINT"OUTPUT UNDEFINED BY PIN LIST":GOTO 1680
990 IF Y-0 THEN GOSUB 2020:PRINT"INVALID OUTPUT PIN":GOTO 1680
1000 IF Y>100 THEN FR-1:Y-Y-100 ELSE IF Y<0 THEN FC-1:Y—Y ELSE FS=1
1010 Y-Y-1:PRINT"ASSEMBLING OUTPUT: ";P(Z);" :PL -";Y;"
1030 Y1-Y+NP:G0SUB 1720
1040 IF (FS-1 OR FR-1) AND INSTR(AL.")")<>0 THEN 1070
1050 IF FC-1 AND INSTR(AL.")")-0 THEN Y-Y+1:CN-CE+1:GOSUB 1720:GOTO 1350
1060 IF FC-1 THEN 1120 ELSE CN-CE+1:G0T0 1350
1070 GOSUB 2020:PRINT-EQUATION INVALID FOR THIS OUTPUT TYPE
1080 PRINT"—>-;A;" PIN -";ZO:ENO
1090 REM
**
1100 REM **• THREE-STATE ENABLE ONLY ***
1110 REM
**
1120 IF INSTR(AL."VCC")<>0 THEN CN-CE+1:Y-Y+1:GOSUB 1720:GOTO 1350 1130 CN-INSTR(AL.-("):CT-INSTR(AL.“)"):IF CN-0 OR CT-0 THEN 1070 1140 A-AL:CN-CN+1:CT-CT-1 1150 IF INSTR(A."+")-0 THEN 1170
1160 GOSUB 2020:PRINT-INVALID CONDITIONAL STATEMENT":PRINT"—>":A:END 1170 DL-"(:)+*":AT-""
1180 IF CN>CT THEN GOTO 1220
1190 P-MID$(A.CN.1):IF P-" " THEN CN-CN+1:G0T0 1180
1200 IF INSTR(DL,P)-0 THEN AT-AT+P:IF CNoCT THEN CN»CN+1:G0T0 1180
1210 GOSUB 1560:GOTO 1170
1220 Y-Y+1:A-AA:CN-CE+1:CT-LEN(A)
1230 GOSUB 1720 1240 GOTO 1350
1250 REM
^^^^4^*4^^^****^^*********************^******************
1260 REM *** INPUT PROCESSING FOR SIMPLE OUTPUTS
1270 REM
**
1280 LINE INPUT #1.A:IF E0F(1) THEN CLOSE:GOTO 2380 1290 IF INSTR(A."DESCRIPTION")<>0 THEN 2380 1300 IF INSTR(A."FUNCTION TABLE")<>0 THEN 2380 1310 ZZ-INSTR(A,";"):IF ZZ<>0 THEN A-LEFT$(A,ZZ-1)
1320 IF INSTR(A." ")-0 THEN 1340
1330 ZZ-INSTR(A." "):A-LEFT$(A,ZZ-1)+RIGHT$(A,LEN(A)-ZZ):GOTO 1320 1340 CT-LEN(A):CN-1:IF INSTR(A."-")<>0 THEN 880 1350 AT-"":P-MID$(A.CN,1):IF P<>"+- THEN 1370
6 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987
1360 GOSUB 1560:Y«Y+1:GOSUB 1720:GOTO 1350
1370 IF P<>":" THEN 1390 ELSE IF MID$(A,CN,3)<>“" THEN 1390
1380 GOSUB 1560:CN«CN+2:Y»2*INT((Y+2)/2):GOSUB 1720:GOTO 1350
1390 IF P-"*" THEN GOSUB 1560:GOTO 1350
1400 IF TY-7 AND (P-"(“ OR P-")") THEN 2040
1410 IF P-"(" OR P-“)" OR (P-":" AND TY<>15) THEN 1070
1420 CO-INSTR(CN,A."+")
1430 CA-INSTR(CN.A,“*")
1440 IF CO>0 AND CA>0 AND CA>CO THEN CD=CO:GOTO 1480 1450 IF CO>0 AND CA-0 THEN CD-CO:GOTO 1480 1460 CD-CA
1470 IF CD-0 THEN CD-CT+1
1480 AT-MID$(A,CN.CD-CN):GOSUB 1560:CN-CD:IF CN-CO THEN Y=Y+1:GOSUB 1720 1490 CN-CD+1:IF CD>CT THEN 1280 1500 GOTO 1350
1510 GOSUB 2020:PRINT"EXCESSIVE NUMBER OF TERMS FOR THIS OUTPUT"
1520 PRINT-MAXIMUM NUMBER OF TERMS IS":NP;"FOR OUTPUT PIN":ZO:END 1530 REM
*****m»**************m***m****W‘*m**»t*m*mD‘*******tt^*****it,iii*
1540 REM **♦ INPUT MATCH AND SET FUSE
1550 REM ****♦♦♦*♦♦♦♦♦**********♦♦♦♦••♦****»♦♦♦*♦**♦♦****♦♦♦♦♦****♦
1560 IF AT-"" THEN CN-CN+1:RETURN 1570 FOR Z-1 TO S+1
1580 IF AT-P(Z) THEN GOSUB 1670:X-X-1:GOTO 1640 1590 IF AT-"/"+P(Z) THEN GOSUB 1670:GOTO 1640
1600 IF ASC(P(Z))-47 AND AT-MID$(P(Z),2) THEN GOSUB 1670:GOTO 1640 1610 NEXT
1620 IF LEFT$(AT.5)-"CARRY" THEN 1280
1630 GOSUB 2020;PRINT"INPUT UNDEFINED BY PIN LIST":GOTO 1680 1640 F(X.Y)-0:NB=NB-1:CN-CN+1rRETURN
1650 GOSUB 2020:PRINT"EXCESSIVE NUMBER OF EQUATIONS GIVEN."
1660 PRINT"ONLY THE FIRST":NO;" WILL BE ASSEMBLED.GOTO 2380
1670 X-N2(Z):IF X<>0 THEN RETURN ELSE GOSUB 2020:PRINT"INVALID INPUT PIN"
1680 PRINT"—>":A:" >";AT:"<":END
1690 REM
****m******i^m**m^^m*^^**************DL***i^nlllllt^m^^***^tt^n^l^,t:*^^^l^^l^:l^i 1700 REM •** INITZL PROD LINE WITH BLOWN FUSES
1710 REM
1720 IF Y>Y1 THEN 1510
1730 FOR 1-0 TO XM:IF F(I.Y)-0 THEN F(I.Y)-1:NB-NB+1 1740 NEXTrRETURN
1910 Y-N(Z-12):NP-N1(Z-12):RETURN 2020 PRINT"*** ERROR ***“:RETURN
2030 REM ***************************************«i|i*«»i«*iic*ii<«iii«iii#)ti««iii 2040 REM *** FOR 16A4 AND 16X4 PALS ONLY ***
2050 REM ***********************************«4<iic«iii*iiiiitii(iic4ii|c«>ic«iii*«iiisiiiic«iii 2060 IF P-":"THEN A1-MID$(A,CN,3)ELSE GOTO 2100
2070 IF A1-":+:"THEN Y-4*(INT((Y+4)/4)):GOSUB 1720:CN-CN+3:GOTO 1390 2080 IF A1-":*:"THEN GOSUB 2020:PRINT"’:*:' IS USED INSIDE PARENTHESES ONLY":END
2090 GOSUB 2020:PRINT">":P:"< IS INVALID AS USED IN:":PRINT"—>":A:END 2100 N8-CN:N9-INSTR(CN.A.")"):IF N9-0 THEN 2090 2110 A1-MID$(A.N8+1.N9-N8-1)
2120 N-VAL(RIGHT$(A1.1)):IF N<0 OR N>3 THEN 2130 ELSE 2140
2130 GOSUB 2020:PRINT"INVALID EXPRESSION ’":A1:.:END
2140 X-N*4-i-8
2150 N0-LEN(A1)-1:IF N0>6 THEN 2130
2160 ON N0 GOTO 2170,2190,2210,2220.2240,2290
2170 C-2:G0SUB 2340:IF MID$(A1,1,1)-"A"THEN C-3 ELSE C-0
2180 GOSUB 2340:GOTO 2330
2190 C-1:G0SUB 2340:IF MID$(A1.2.1)-"A"THEN C-0 ELSE C-3 2200 GOSUB 2340:GOTO 2330 2210 AT-A1:G0T0 1630
2220 C-2:G0SUB 2340:IF INSTR(A1,"+")<>0 THEN 2330 2230 C-0:GOSUB 2340:C-3:GOSUB 2340:GOTO 2330 2240 IF INSTRfAl,"+B")<>0 THEN C-0:GOSUB 2340:OOTO 2330 2250 IF INSTR(A1,"+/'')<>0 THEN C-3:G0SUB 2340:GOTO 2330 2260 C-1:GOSUB 2340:C-2:GOSUB 2340
2270 IF INSTR(A1,"*B")<>0 THEN C-0:GOSUB 2340:GOTO 2330 2280 C-3:GOSUB 2340:GOTO 2330
2290 IF INSTRfAl,"+/")<>0 THEN C-1:G0SUB 2340:GOTO 2330
2300 IF INSTR(A1,"+:")<>0 THEN C-1:G0SUB 2340:C-2:GOSUB 2340:GOTO 2330
2310 C-0:GOSUB 2340:C-3:GOSUB 2340
2320 IF INSTR(A1,"*/")<>0 THEN C-1:G0SUB 2340:GOTO 2330
2330 CN-N9+1:G0T0 1350
2340 F(X+C.Y)-0:NB-NB-1rRETURN
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 7
January
2350 REM >(>4< ♦♦lit ♦♦He
2360 REM ♦♦♦ SAVE VARIABLES
k
 CHAIN NEXT PRG. ««>«i
2370 REM ♦♦♦♦♦>((«4(««4ci«ciKiK««««4t4i4i«i|i4i4t«i|c«4t4i4(«4c4ii|c4(4i*4ci|i4(4i4ii|c4ii|c«i^i|ci«ii«i4i 2380 CLOSE 2382 FOR 1-12 TO S
2384 IF N(I-12)<0 THEN N(1-12)—N(1-12)
2386 IF N(I-12)>100 THEN N(I-12)-N(I-12)-100
2387 IF N(I-12)-0 THEN 2389
2388 N(I-12)-(N(I-12)-1)+N1(I-12)-1
2389 NEXT I
2390 OPEN "O”,1,"PALTEMP.DAT"
2400 WRITE #1.TY.FCODE,TYPES 2410 WRITE #1.NB.S,XM,YM,F$
2420 WRITE #1.0T$
2430 FOR J-0 TO YM 2440 A-*'”
2450 FOR 1-0 TO XM STEP 2
2460 A-A+RIGHT$(STR$(F(I.J)),1)+RIGHT$(STR$(F(I+1.J)).1)
2470 NEXT I
2480 PRINT #1.A
2490 PRINT J;" ••;CHR$(13);
2500 NEXT J
2510 FOR 1-0 TO S-12
2520 WRITE #1.N(I).N1(I)
2530 NEXT I
2532 FOR 1-1 TO S+1
2534 WRITE #1.P(I)
2536 NEXT I 2540 CLOSE 2550 RUN •'PAL2''
2560 END
3000 C-0;FOR LI-1 TO INT((S/2)-1)
3010 RESTORE
3020 FOR L2-1 TO IX(L1)-1
3030 READ IN.IN.IN.IN.IN.IN,IN.IN
3040 NEXT L2
3050 FOR L2-1 TO 8
3060 READ IN
3070 ON IN GOSUB 3150,3200.3250.3300.3350.3400.3450
3075 C-C+1
3080 NEXT L2
3090 NEXT LI
3100 RETURN
3150 RETURN
3200 FOR 1-0 TO XM
3210 F(I.C)-3
3220 NEXT I
3230 RETURN
3250 FOR 1-0 TO XM
3260 F(I.C)-2
3270 NEXT I
3280 RETURN
3300 FOR 1-6 TO XM-5 STEP 4 3310 F(I,C)-3:F(I+1,C)-3 3320 NEXT I 3330 RETURN
3350 FOR 1-10 TO XM-9 STEP 4 3360 F(I.C)-3:F(I+1,C)-3 3370 NEXT I 3380 RETURN
3400 FOR 1-14 TO XM-13 STEP 4 3410 F(I,C)-3:F(I+1.C)-3 3420 NEXT I 3430 RETURN
3450 FOR 1-18 TO XM-17 STEP 4 3460 F(I,C)-3:F(I+1.C)-3 3470 NEXT I 3480 RETURN
5000 DATA 1,1.1,1.1,1,1,1 5010 DATA 2.2.2.2.2.2.2.2 5020 DATA 3.3.3.3,3,3,3.3 5030 DATA 4,4,3.3.3,3.3,3 5040 DATA 5.5.3.3.3,3,3.3 5050 DATA 5.5,5.5,3.3.3,3 5060 DATA 6.6.6.6,3.3,3.3 5070 DATA 6.6,3.3.3,3.3.3 5080 DATA 7,7.7,7,7,7,3.3
8 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
5090 DATA 7,7,7,7,3,3.3,3 5100 DATA 1,1,1,1,3,3,3,3
January
PAL2.BAS
Contributed by: Robert A. Freedman
"Getting Started with PALs," by Robert A. Freedman. January, page 223.
10 REM DEFINE VARIABLES 20 DEFINT C,F,H.N,0,T,W,X,Y,Z,L 30 DEFSTR A,D,P
40 DIM F(39,79),A(31),P(24),N(12),N1(12)
50 C«0:X-0:Y»0:Z-0:S$«""
60 OPEN "I'M, "PALTEMP.DAT"
70 INPUT #1,TY,FC0DE,TYPE$
80 INPUT #1,NB,S,XM,YM,F$,0T$
90 FOR J»0 TO YM
100 INPUT #1,A
110 PRINT J;" •';CHR$(13);
120 FOR 1-0 TO XM
130 F(I,J)-VAL(MID$(A,1+1,1))
140 NEXT I
150 NEXT J
160 FOR 1-0 TO S-12
170 INPUT #1.N(I),N1(I)
180 NEXT I
190 FOR 1-1 TO S+1
200 INPUT #1,P(I)
210 NEXT I 220 CLOSE 230 GOTO 760 240 REM
250 REM ♦♦♦ HEX FUNCTION «««
260 REM
********^^^*^^^****^*****m*m***Acilli*T¥T¥^il^*4t*i¥**Hii¥4iAt*****^Ht^ittitt
270 GOSUB 3120
280 IF TY>7 THEN 330
290 A(0)-"0":A(11":A(2)-"2":A(3)«"3":A(4)-"4":A(5)-"5":A(6)-"6"
300 a(7)-"7":A(
8
)-"
8
":A(9)-"9":A(10)-"A":A(11)«"B":A(12)-"C":A(13)-"D"
310 A(14)-"E":A(15)-"F"
320 GOTO 390
330 A(0)»"00":A(1)-"01":A(2)-"02":A(3)-"03":A(4)-"04":A(5)»"05"
340 AC6)-"06":A(7)-"07":A(8)-"08":A(9)-"09":A(10)="0A":A(11)-"0B"
350 A(12)-"0C":A(13)-"0D":A(14)-"0E":A(15)»"0F":A(16)-"10":A(17)-"11"
360 AM8)-"12'*:A(19)-"13":A(20 J-"14":A(21)-'‘15" :A(22)«"16" :A(23)-"17"
370 A(24)-'*18":A(25)-"19":A(26)-"1A":A(27)-"1B":A(28)-"1C";A(29)-"1D"
380 A(30)-"1E";A(31)-"1F"
390 FOR Y-0 TO (S+S+1)
400 A-""
410 IF Y-8 THEN Y-(S+S)-6 420 FOR X-0 TO XM
430 IF S-23 AND X-20 THEN GOSUB 520:A-""
AND 1)+(2+(F(X,Y+8) AND 1))+(4*(F(X,Y+16) AND 1))+(8+(F(X,Y+24)
450 IF S-19 THEN 470
460 H-H+(16*(F(X,Y+32) AND 1))
470 a-A+A(H)+" "
480 NEXT X
490 GOSUB 520
500 NEXT Y
510 GOTO 1720
520 IF X$-"" THEN 540
530 PRINT #1,A
540 PRINT A
550 RETURN
570 REM ♦♦♦ BHLF AND BPNF FUNCTIONS «««
580 REM
590 GOSUB 3120
600 FOR Y-0 TO (S+S+1)
610 A-""
620 IF Y
-8
 THEN Y-(S+S
)-6 630 FOR X-0 TO XM
634 IF S-19 AND (X
-8
 OR X-16 OR X-24) THEN GOSUB 520:A-""
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 9
636 IF S-23 AND (X-10 OR X-20 OR X-30) THEN GOSUB 520:A-‘"‘
640 IF (F(X.Y) AND 1)-1 THEN H$-D1 ELSE H$-D0
650 IF (F(X,Y+8) AND 1)-1 THEN H$-D1+H$ ELSE H$-D0+H$
660 IF (F(X,Y+16) AND 1)-1 THEN H$-D1+H$ ELSE H$-D0+H$
670 IF (F(X,Y+24) AND 1)-1 THEN H$-D1+H$ ELSE H$-D0+H$
680 IF S-19 THEN 700
690 IF (F(X.Y+32) AND 1)-1 THEN H$-D1+H$ ELSE H$-D0+H$
700 A-A+"b"+H$+"f ”
710 NEXT X 720 GOSUB 520 730 NEXT Y 740 GOTO 1720
750 GOSUB 3010:PRINT"INVALID FILENAME":END 760 REM
770 REM ♦♦♦ OPTION SELECT 780 REM
790 CLOSE:PRINT"(C) Copyright 1983 Monolithic Memories Inc. All rights Reserved"
795 PRINT:PRINT:PRINT:PRINT:PRINT
800 PRINT"Enter option at this time:":PRINT
810 PRINT"X - Xplot"
820 PRINT"B - Brief Xplot"
830 PRINT"H - Hex (Ascii Hex progrommer format)"
840 PRINT"N - BPNF (Ascii programmer format)"
850 PRINT"L - BHLF (Ascii programmer format)"
860 PRINT"P - Program pal (SD20/24 Format)"
870 PRINT"0 - Pinout"
880 PRINT"J - Jedec format"
890 PRINT"E - Echo (Reprints pal design spec.)"
900 PRINT"R - Restart Pal-assembler"
910 PRINT"Q - Quit (End program)"
920 PRINT:PRINT:PRINT:PRINT:PRINT"OPTION (without Return)
930 S$=INKEY$:IF S$-"" THEN 930 935 PRINT S$
940 IF S$-"X'‘ OR S$=‘'x"THEN GOSUB 1360:GOTO 790
950 IF S$»"B" OR S$«"b"THEN GOSUB 1360:GOTO 790
960 IF S$»"H" OR S$="h"THEN GOSUB 270:GOTO 790
970 IF S$=‘’N'‘ OR S$="n"THEN D0-"N'‘:D1«"P'‘:GOSUB 590:GOTO 790
980 IF S$«‘'L" OR S$»"I‘'THEN D0
»"L'':GOSUB
 590:GOTO 790
990 IF S$»"P" OR S$«''p"THEN GOSUB 1090;GOTO 790
1000 IF S$="E" OR S$='‘e” THEN GOSUB 3250:GOTO 790
1010 IF S$=''J'‘ OR S$="j" THEN GOSUB 1820:GOTO 790
1030 IF S$-'‘0" OR S$«"o'' THEN GOSUB 3340:GOTO 790
1040 IF S$-‘'R" OR S$=“r"THEN RUN '‘PALI"
1050 IF S$-"Q'‘ OR S$-"q"THEN PRINT:END ELSE 930 1060 REM
1070 REM ♦♦♦ DATA TO PROGRAMMER IN SD20/24 FORMAT ♦♦♦
1080 REM
1090
1100
1110
1120
1130
1140
1150
1160
1180
1190
1200
1210
1220
1230
1235
1236 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340
PRINT:PRINT
PRINT:PRINT:INPUT” Is programmer *ON* ond ’RESET* (Y/N) ‘^DUS
IF LEFT$(DU$.1)-”N'' THEN PRINT:PRINT" Then turn it ON ill”-.GOTO 1100
IF DU$»‘"’ THEN RETURN
IF LEFT$(DU$,1)<>"Y”THEN 1090
PRINT:FOR I«1 TO 9:PRINT:NEXT
PRINT" WAIT - LOADING ..."
LPRINT "L":FOR 1=1 TO 250:NEXT I:LPRINT CHR$(13)
OPEN "rM.F$
LINE INPUT #1,A LPRINT A PRINT A
IF EOF(1) THEN CLOSE:GOTO 1235 GOTO 1190 LPRINT CHR$(26)
FOR 1-1 TO 200:NEXT I
LPRINT "A":FOR 1-1 TO 250:NEXT I:LPRINT CHR$(13)
PRINT:PRINT:PRINT
Programmer Is busy - Don’t"
Touch anything 1!!”
PRINT"On yellow light : PRINT"
PRINT
PRINT"On green light : PRINT"
PRINT"On red light : PRINT"
FOR 1-1 TO 10:PRINT:NEXT GOTO 1730
Insert your Pal and press" <PROG> on the programmer”:PRINT Assembling error - Your Pal" Design Spec is wrong."
10 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
1360 REM ♦♦♦♦*♦*♦***♦***♦»♦*♦♦*♦»***♦*♦♦♦*♦*♦*****♦♦♦♦♦****♦*♦#♦*♦* 1370 REM *** X-PLOT FUNCTION ««« 1380 REM •**•***♦♦*••*>»••**♦•**♦*♦♦♦♦****♦**♦♦****♦*♦♦*♦*******#***
1390 A1»" 11 1111 1111 2222 2222 2233"
1400 A2-" 0123 4567 8901 2345 6789 0123 4567 8901"
1410 A3="X - FUSE INTACT (L.N.0) - - FUSE BLOWN (H.P.1)"
1415 A4-"o - PHANTOM FUSE (L.N,0) 0 - PHANTOM FUSE (H.P.IV'
1420 IF TY<8 THEN 1450 1430 A1-A1+" 3333 3333"
1440 A2-A2+" 2345 6789"
1450 GOSUB 3120 1460 C-0
1470 A(0)="X":A(1;A(2)-"o":A(3)-"0"
1480 IF X$-"" THEN 1500
1490 PRINT #1." ":PRINT #1,A1:PRINT #1.A2
1500 PRINTtPRINT A1:PRINT A2
1510 IF (S-19 AND 063) OR (S=23 AND 079) THEN 1660 1520 IF S$-"X" THEN 1540
1530 IF (F(0.C)»0 AND F(1.C)-0) OR F(0.C)>1 THEN C=C+1:G0T0 1510 1540 GOSUB 1760
1550 IF C/8<>INT(C/8) THEN 1590 1560 IF X$-"" THEN 1580 1570 PRINT #1," "
1580 PRINT
1590 IF X$-"" THEN 1620 1600 PRINT #1. USING "##":C:
1610 PRINT #1. A
1620 PRINT USING "##":C;
1630 PRINT A
1640 C-C+1
1650 GOTO 1510
1660 IF X$-“" THEN 1700
1670 PRINT #1."":PRINT #1.A3
1672 IF S$-"X" THEN PRINT #1,A4
1675 PRINT #1,""
1680 PRINT #1."NUMBER OF FUSES BLOWN -"jNB 1690 PRINT #1," "
1700 PRINT:PRINT A3
1702 IF S$-"X" THEN PRINT A4
1705 PRINT
1710 PRINT "NUMBER OF FUSES BLOWN «":NB 1720 PRINT
1730 PRINT "Press any key to continue..."
1740 DUMMY$-INKEY$:IF DUMMY$»"" THEN 1740 1750 RETURN 1760 A=" "
1770 IF S$-"B" THEN A(2)-" ":A(3)-" "
1780 FOR 1-0 TO XM STEP 4
1790 A-A+A(F(I,C))+A(F(I+1.C))+A(F(I+2.C))+A(F(I+3.C))+" "
1800 NEXT I 1810 RETURN
1820 REM
****if****m***********mm**m*mm*****m*m*********i^*i^int:it,it,iiL»iif 1830 REM **♦ JEDEC FORMAT
1850 PRINT:PRINT"Press 1 for DATA I/O"
1860 PRINT" 2 for File or"
1870 PRINT"<roturn> for none of both.";
1880 DU$-INKEY$:PRINT DU$;:IF DU$-"" THEN 1880 1885 IF DU$-CHR$(13) THEN X$-"":GOTO 2000 1890 IF DU$-"2" THEN GOSUB 3120:GOTO 2010 1900 IF DU$<>"1" THEN PRINT CHR$(8);:GOTO 1880 1905 PRINT:PRINT:PRINT:PRINT 1910 PRINT"Power on Dato I/O."
1920 PRINT:PRINT"For Informotlon about how to setup the Doto I/O" 1930 PRINT"to Recelve-mode, look In the PALASM manual under"
1940 PRINT"Appendlx B.":PRINT
1950 PRINT"Press <return> when ready..."
1960 PRINT:PRINT"After this press <RETURN> on the computer."
1970 S$-INKEY$:IF S$-"" THEN 1970 1980 PRINT:PRINT"Pleo8e Walt 111"
1990 PRINT:PRINT"You are now down-loading data to the Doto I/O"
2000 GOSUB 3160
2010 SCHK-0:A(0)-"0":A(1)-"1"
2020 IF FC00E>9 THEN 2050
2030 A-CHR$(2)+"*O220"+RIGHT$(STR$(FCODE),1)+"*F0*"
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 II
2040 GOTO 2060
2050 A-CHR$(2)+”*D22"+RIGHT$(STR$(FCODE).2)+"*F0*"
2060 GOSUB 3020
2070 LINENR-0
2080 J-S-12
2090 IF J<0 THEN 2810
2100 C-N(J)-N1(J)+1
2110 IF N(J)-0 THEN J-J-1:GOTO 2090
2120 IF F(0.C)-1 OR F(1.C)-1 THEN 2220
2130 IF TY-4 OR TY«5 OR TY-6 OR TY-7 OR TY-9 THEN LINENR-LINENR+32
2140 IF TY-11 OR TY-13 OR TY-14 OR TY-15 OR TY-16 THEN LINENR-LINENR+40
2150 IF TY-1 THEN LINENR-LINENR+20
2160 IF TY-2 OR TY-12 THEN LINENR-LINENR+24
2170 IF TY-3 OR TY-8 THEN LINENR-LINENR+28
2180 IF TY-10 THEN LINENR-LINENR+36
2190 C-C+1
2200 IF C-N(J)+1 THEN J-J-1:GOTO 2090 2210 GOTO 2120 2220 1-0
2230 IF TYol THEN 2300
2240 T-1;GOSUB 2750
2250 T-3:GOSUB 2780
2260 T-1:GOSUB 2750
2270 GOSUB 2980
2280 LINENR-LINENR+20
2290 GOTO 2190
2300 IF TY<>2 THEN 2370
2310 T-2:GOSUB 2750
2320 T-2:GOSUB 2780
2330 T-2:GOSUB 2750
2340 GOSUB 2980
2350 LINENR-LINENR+24
2360 GOTO 2190
2370 IF TY<>3 THEN 2440
2380 T-3:GOSUB 2750
2390 T-1:GOSUB 2780
2400 T-3:GOSUB 2750
2410 GOSUB 2980
2420 LINENR-LINENR+28
2430 GOTO 2190
2440 IF TY<>8 THEN 2490
2450 T-2:GOSUB 2750
2460 T-3:GOSUB 2780
2470 T-2:GOSUB 2750
2480 GOTO 2410
2490 IF TY<>9 THEN 2560
2500 T-3:GOSUB 2750
2510 T-2:GOSUB 2780
2520 T-3:GOSUB 2750
2530 GOSUB 2980
2540 LINENR-LINENR+32
2550 GOTO 2190
2560 IF TYO10 THEN 2620
2570 T-4:GOSUB 2750
2580 T-1-.GOSUB 2780
2590 T-4:GOSUB 2750
2595 GOSUB 2980
2600 LINENR-LINENR+36
2610 GOTO 2190
2620 IF TYol2 THEN 2670
2630 T-1;GOSUB 2750
2640 T-4:GOSUB 2780
2650 T-1:GOSUB 2750
2660 GOTO 2340
2670 GOSUB 2710
2680 GOSUB 2980
2690 LINENR-LINENR+XM+1
2700 GOTO 2190
2710 FOR 1-0 TO XM STEP 4
2720 A-A+A(F(I,C))+A(F(I+1,C))+A(F(I+2.C))+A(F(I+3.C))+'* "
2730 NEXT I 2740 RETURN
2750 A-A+A(F(I,C))+A(F(I+1,C))+A(F(I+2.C))+A(F(I+3.C))+" •'
2760 I-I+4:T-T-1
2770 IF T<1 THEN RETURN ELSE 2750
2780 A-A+A(F(I,C))+A(F(I+1,C))+A(F(I+4.C))+A(F(I+5,C))+» "
12 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
2990
3000
3010
‘'+A+''*'':GOTO 3020 •'+A+''*'':GOTO 3020 ”+A+">»t":GOTO 3020
2790 I-I+8:T»T-1
2800 IF T<1 THEN RETURN ELSE 2780 2810 SCHK-SCHK+3
2820 IF SCHK>65535! THEN SCHK-SCHK-$5535!
2830 IF DU$«>"1" THEN LPRINT CHR$(3)+HEX$(SCHK)
2840 IF X$-"" THEN 2860 2850 PRINT #1.CHR$(3)+HEX$(SCHK)
2860 PRINT CHR$(3)+HEX$(SCHK)
2870 IF DU$<>"r' THEN 1720 2875 PRINT:PRINT:PRINT:PRINT
2880 PRINT"Now the Data I/O should display a 4 digit number "
2890 PRINT''If not refer to the Error messages in Appendix B in"
2900 PRINT“the PALASM manual.":PRINT
ppenaixoin
ll\l
 the socket below"
2920 PRINT''the
red
 I I ght. " ;PRINT
OOA« Appendix B in the PALASM manuol for information"
2940 PRINT on the programming sequence on the Data I/O"
2970 GOTO 1720
2980 IF
LINENR<10 THEN A-"L000"+RIGHT$(STR$(LINENR).1
)+"
IF
LINENR<100 THEN A»"L00"+RIGHT$(STR$(LINENR),2)+"
IF LINENR<1000 THEN A-"L0"+RIGHT$(STR$(LINENR).3)+" ■•+a+"
IF LINENR>999 THEN A="L"+RIGHT$(STR$(LINENR).4)+" "+A+"*"
3020 A»A+CHR$(13)+CHR$(10)
^ ^
3030 IF DU$-"1" THEN LPRINT A;
3040 IF X$-"" THEN 3060 3050 PRINT #1.A:
3060 PRINT A;
3070 FOR 1=1 TO LEN(A)
3080 SCHK=SCHK+ASC(MID$(A.I.1))
3090 NEXT I 3100 A-""
3110 RETURN
3120 PRINT:PRINT"Enter filename for output (Return for none
)
 "
3130 LINE INPUT X$ k
 v,
or none
;
3140 IF X$-"" THEN 3160 3150 OPEN "0",1,X$
3160 OPEN "I",2,F$
3162 IF X$="" THEN 3165
3163 PRINT #1,"(c) Copyright 1983 Monolithic Memories Inc. All Rights Reserved."
3165 PRINT“(c) Copyright 1983 Monolithic Memories Inc. All Rights Reserved
3170 FOR 1=1 TO 4
3180 LINE INPUT #2.A
3190 IF X$="“ THEN 3210
3200 PRINT #1,A
3210 PRINT A
3220 NEXT I
3230 CLOSE 2
3240 RETURN
3250 REM ************e****************e*****»*e************..„.
3260 REM *** ECHO
3270 REM
****’************************mm*******mm*****m***:^*^**
3280 OPEN "I",1.F$
3282 1=0
3284 LINE INPUT #1.A 3286 PRINT A 3288 I-I+1
3290 IF E0F(1) THEN 1720 3292 IF I<22 THEN 3284 3294 GOSUB 1730 3296 GOTO 3282
3340 REM
*************************m*m*m******m******mm*m*m#*
3350 REM PINOUT ***
3360 REM ♦•♦♦***•***♦*♦**•♦*♦♦*♦*♦****♦♦**♦**♦♦4,**********,*
3370 GOSUB 3120 3380 IF X$-"" THEN 3420 3390 PRINT #1,""
3400 PRINT #1.TAB(20 3410 PRINT #1.TAB(20 3420 PRINT 3430 PRINT TAB(20):"
3440 PRINT TAB(20):"
3450 FOR 1-1 TO (S+1)/2 3460 A-"“
3470 GOSUB 3810
i;:
He
4
,
4
(
414
, 4<4i4i4c4i4i4>4i4i4c4i4i4c4i *'
♦ 4C414I 4i»'
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH IQ87 n
January
3480 A-SPACE$(13-LEN(P(I)))+P(I)+" •"
3490 IF I>9 THEN 3520
3500 A-A+" "+RIGHT$(STR$(I).1)+"*"
3510 GOTO 3530
3520 A-A+RIGHT$(STR$(I).2)+"*"
3530 IF I>1 THEN 3560
3540 A-A+SPACE$(12)+”P A L“+SPACE$(12)
3550 GOTO 3570 3560 A-A+SPACE$(29)
3570 A-A+‘'*"+RIGHT$(STR$(((S+2)-I)).2)+"* “+P((S+2)-I)
3580 IF X$-"" THEN 3600
3590 PRINT #1,A
3600 PRINT A
3610 GOSUB 3810
3620 IF I>1 THEN GOSUB 3760:GOTO 3710
3630 A-SPACE$(19)+"•"+SPACE$(16-(LEN(TYPE$)+1))
3640 FOR J-1 TO LEN(TYPE$)
3650 A-A+MID$(TYPE$.J,1)+" "
3660 NEXT
3670 A-A+SPACE$(49-LEN(A))+"*"
3680 IF X$-"" THEN 3700 3690 PRINT #1.A 3700 PRINT A 3710 NEXT I
3720 IF X$-"" THEN 3740
3730 PRINT ,TAB(20);"*♦♦*♦♦♦♦*♦*♦*♦♦**♦♦*♦**♦*♦♦♦*♦"
3740 PRINT TAB(20);
3750 GOTO 1720
3760 REM ♦.♦
3770 IF X$-"" THEN 3790 3780 PRINT #1.TAB(20);''*
3790 PRINT TAB(20);"*
3800 RETURN
3810 REM ♦♦♦♦.
3820 IF X$»"" THEN 3840 3830 PRINT #1 ,TAB(17);‘'****
3840 PRINT TAB(17) ;'•**** ♦***”
3850 RETURN
PALTABLE.DAT
Contributed by: Robert A. Freedman
"Getting Started with PALs," by Robert A. Freedman. January, page 223.
1018,1,31.63,19.13.3.1.5,9,13,17,21,25.29,0.31,0.0,0.0.0.0.0.0.57,2,49.2.41.2.
10H8!l!3l!63!l9!i8!3!l!5!9!l3!i7!2i?25.29.0,31,0.0,0,0.e.0.0.0.57,2.49.2.41.2.
33.2,25.2.17,2.9.2,1.2,4,4.4.4.4,4,4.4
12H6,2.31.63.19,19,3,1.5.9.13,17.21,25,29,0,31,27,0,0,0,0,0.0.7,0,0,49.4.41.2, 33.2.25,2.17,2.9.4.0.0.2.6.5,5.5.5,6,2
12L6.2.31.63,19.14.3.1.5.9.13.17.21,25.29,0,31,27,0.0.0.0.0,0,7.0,0,49.4.41.2. 33.2.25.2.17,2.9.4.0.0,2,6.5.5,5.5,6,2
14H4.3,31.63.19.20.3.1.5,9.13.17.21.25.29.0,31,27,23.0.0.0.0.11.7.0.0,0.0.41,4 .33.4.25.4.17.4,0.0.0.0.2.2.7.7.7,7.2,2
14L4.3.31.63.19.15.3.1.5.9.13,17.21.25,29.0,31.27.23.0.0.0,0,11,7.0.0.0.0.41.4 .33.4.25.4.17,4.0.0.0,0,2.2,7.7.7,7,2.2
16H2,4.31.63.19.22.3.1.5.9.13.17,21.25.29.0,31,27.23.19.0.0.15.11.7.0.0.0.0,0, 0.33,8,25.8.0.0.0.0.0.0.2.2.2.1.1.2.2.2
1612.4,31,63.19.16.3,1.5,9,13.17.21.25.29.0,31.27.23.19.0.0.15.11.7.0,0.0.0,0.
0.33.8.25.8.0.0.0.0.0.0.2.2.2.1,1.2.2,2
1601.4.31.63,19,21.3,1.5,9,13,17.21,25.29.0.31.27,23,19,0.0.15.11.7,0.0,0.0,0,
0,25,16.25.16,0,0.0,0.0.0,2,2.2.1.1,3,3,3
1618,5,31.63.19.17.3.1.5.9.13.17.21.25.29,0,31.0.27.23,19,15.11.7,0.-57.8.
49
.
8
. -41.8,-33.8.-25.8.-17.8,-9,8,-1.8.1.1.1.1.1.1.1.1
16R4.6,31.63.19.24.0.1,5.9.13.17.21.25.29.0.0.31.27.23.19.15.11.7.3.-57.8.
49.8.141.8.133.8.125.8.117.8. -9,8.-1.8.1,1.1.1.1.1.1.1 16R6,6.31.63,19.24.0.1.5.9.13.17,21.25.29.0.0.31.27.23,19.15.11.7,3.
57.8.149.8.141.8.133.8.125.8.117.8.109.8. -1.8.1.1.1,1.1.1.1.1
16R8.6,31.63.19.24.0.1.5.9.13.17.21.25,29.0.0.31.27,23.19,15.11.7.3.157,8,149, 8,141.8.133.8.125.8.117.8.109.8.101.8,1,1,1.1.1.1.1.1
16A4.7,31.63.19,24.0.1.5,8,12.16,20,25.29.0.0,31,27.0,0,0,0,7.3,-57,8,
49.8.141.8.133.8.125.8.117.8. -9.8.-1,8.1,1.1.1.1.1.1.1
16X4.7.31.63,19.24,0.1,5.8.12.16.20.25.29.0.0.31.27,0,0.0.0.7,3,-57,8.
49.8.141.8.133.8.125.8.117.8. -9,8,-1.8.1.1.1.1.1,1.1,1
14 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
,7.0,0,0,0,0,0,0,0,0,0,0,0,33,16,33,16,0.0,0,0,0]0* *0,0,2!2,2 2*1^1^3^3
i^«’?4^i’f!'i®i^^A’:^’*®*®-’3'’^-2i-25.29.33.37.0:39.0.0.0.0.e;0;0,0:0:0:0.0. 0,0,73,2,65,2,57,2,49,2,41,2,33,2,25,2,17,2,9,2,1,2,4,4,4,4,4,4,4,4 4 4 20110,13,39,79.23,6,3,1,5,9,13,17,21,25,29,33 3A0,39 0 35,31 27,23 19 15 11 7 .0.0.0.0.0.-73.4.-65.4.-57.4.-49.4.-41.4.-33.4.-25 4.:i7.4 -9 4.: •
1.4.11.11.11.11.11.11.11.11.11.11
•25,29.33.37.0,39,35,0.31,27,23,19,15.11,0 .7,0,0,0,0,0,-65,8,-57,8,-49,8,-41.8.-33.8.-25,8,-17,8.9,8.0.0,3.1.1.1.1,1,1,1,1,3
’•5.9.13.17,21.25.29.33.37,0.0.39,35,31.27.23.19 15 11
20X8,25,39,79.23,23,0.1,5,9,13,17,21,25,29,33,37,0,0,39.35,31.27.23,19,15,11,7
.3,0.0.00-73.4.165.4,157,4.149.4,141,4.133.4.125,4.117.4,109.4.
1.4.11.11.11.11.11.11.11.11.11.11
^.5.9.13.17,21,25,29,33,37,0,0,39,35,31,27,23,19,15,11,7 .3.0.0,0.0.-73.4.-65.4.-57,4.149.4,141,4,133,4.125.4.-17.4.-9,4.
1.4.11.11.11.11.11.11.11.11.11.11
'I®1'5.®'15.17.21,25,29,33,37,0,0,39,35,31,27,23,19,15,11,7 .3.0.0,0.0,0,0,165,8.157.8.149,8,141,8,133,8,125.8,117.8,109.8.0.0,3.1.1,1.1,1
17.21.25,29.33,37,0.0,39,35.31.27.23.19.15.11,7 ,3,0,0,0,0.0,0.-65.8,157.8,149,8.141,8,133,8,125,8,117.8,9,8,0,0,3.1,1,1.1,1,1,1,1,3
^!'^^^®
4
^®''^®•^^•^^•®•■'*®•®'
1
^•
17
.
21
.
25
.
29
,
33
.
37
.
0
.
0
.
39
,
35
.
31
.
27
.
23
.
19
.
15
,
11,7
.3.0,0,0,0,0,0,-65.8.-57.8.149.8,141,8.133.8.125,8,-17,8,
9.8,0,0,3,1,1,1,1,1,1,1,1,3
LINKLIST.PAS
Contributed by: Antonio Fernandes
Programming Insight; "Dynamic Memory Allocation," by Antonio Fernandes January, page 169.
Note 1
Note 2
Note 3
Note 4
Note 5
Note 6
Note 7
Note 8
Note 9
Note 10
Note 11
Note 12
Note 13
Note 14
Note 15
TYPE
Note 16
Note 17
Note 18
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 15
January
LISTPOINT-^NODE;
NODE-RECORD
NAME:ST1;
LINKiLISTPOINT;
END;
VAR
LIST
TARGET
COMMAND
PROPCOMS
HEAP
LISTPOINT
ST1;
CHAR;
COMCHARS;
'^INTEGER;
I Inked I let head (string to be manipuloted
\ Input operation to list { set of proper commands
\ holds heap marker (
f♦+++♦^ (♦ *) U
 PROCEDURES AND FUNCTIONS
(♦ ♦) (♦++++++++•♦•++++++++++++++++++++•»•+++++++++++++++++++++++++++++++++++♦)
S
HI)K 4(« 4ii|i]|i 4(« 4c)|i 4c« He«iH 4t« He « 4(4i 4c 4c)|c
41
4c 4i 4c i(c 4c 4t 4c 4c 4(4c4c]|c4c)|c >|c Xc)|(1
♦ ♦)
(*
 Previous
(♦ ♦)
♦♦♦♦♦♦♦♦)|c4i4(4(4(4c4i4(e4(4i>|(>t(4c)((4(4t
41
 ♦♦♦♦♦♦♦♦♦♦♦ ♦♦♦♦♦♦♦)
{ this procedure returns a pointer to the node before the target node or nil { FUNCTION PREVIOUS(LIST:LISTPOINT; TARGET;ST1):LISTPOINT;
VAR
CURRENT:LISTPOINT; j current position pointer }
BEGIN
{ CURRENT Is Initialized to beginning of list }
CURRENT:-LIST;
I move node pointer until target or end of
list

Is
 encountered (WHILE (CURRENT^.LINK'".NAME<TARGET) AND (CURRENT^.LINKoNIL)
DO BEGIN
CURRENT: -CURRENT'" .LINK END;
PREVIOUS:-CURRENT
END;
4C ♦)
I* Add
^4c4c4c4c4c4(4(9|(>f(*4(4(4(4(4t4(4(>lt)|(4(4(4ci|(4(4(4(4(4(4()|(*4(4(4(i|()|(4(4e4(4<4c4t4()t(>|(4()|(4()
I adds a node to the
list
 In between two nodes
\
PROCEDURE ADD(VAR PREV:LISTPOINT);
VAR
TEMP:LISTPOINT;
BEGIN
TEMP:»PREV^.LINK; NEW(PREV^.LINK);
PREV" .LINK'". NAME: -TARGET; PREV^.LINK".LINK:-TEMP
END;
(4c4c>K)|e>|c4()(i>K4t9|c«>K4(>|c4t4(4e>|c4(*>K9(()K4(*4(4(4(4c}|t>|c4(>K*>|c4(>|c9K>K4(>K3|c4(>K4(>K4(4()
(* *)
(♦ Insert ♦)
f ♦ ♦)
f4c4(4(>lc4c4t)|(4(4()|(4()|(>(()|(4(4(4(4(4(4(4t4(>l(4(>l(4()|t4i>|(4(4(4(4(4(4(4(4t4(4(4(4t4(4(4(4t4(4(4t)
} Insert new node In
list
\
PROCEDURE INSERT(LIST:LISTPOINT;TARGET:ST1);
16 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
psnwwoi
‘•(0Z'0>)AXOiOO
} SJIJOM |o joquinu ujn^®j 1IVAVH3W uoi;oun> u|-;||nq »i|; sssn |
NI038
:i>«3irM0HS 3dna330dd
{ XjOUIAUi Moqs {
^«4c4i4c4i)K)K4(«4e)|c4(4<4(4()K«4ci|c4i4(4i4(«4(4(4(4(4(4(4(4()(c4(«4(4i)K4i)K4c4c)K4(4(«4(«) (♦ ♦} (* UI9H MOMS ♦)
^ «4c4c«He](cKc««4(««jfiHe4c4c4(♦ ♦ 4c«♦ «JK«««««4c4cm:|ciKiK«4(♦ ♦ ♦ ♦ ♦ «««««)
(A3ad)iovaians
3533
f u»M» {aN3
((x)aH0)3J.iaM:((x)aH0)3iiaM :(,in
 punoi ^ou
»»djox,)N
13iiaM !(0l'0>)AXOiO8
} U*q» {NI03a
, N3Hi
(i30aVi<>3WVN-vXNITvA3ad)
HO
 (lIN-XNITvA3ad) JI
f
^s||
 u|
s|

^o6jo^
 eos >|
9
«qo |
:aN3
: (i33avi • isn) snoi A3ad-=A3ad
5JlNIOdiSn:A3ad
NI03a
avA
: (ns:i33avi: INIodisn:isn)313130 3ana30oad
{ ^S|| UlOj; »P0U 0 0;»|»p I r 4c 4c 4c 4c 4c 4c 4t 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4e 4c 4t 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c)
y
 *)
(♦ ©^0190 4«)
(* *)
(4c ♦ 4c 4c ♦ 4c 4c ♦ 4c 4c ♦ 4c ♦ 4c 4c ♦ 4c 4c ♦ 4c ♦ 4c 4c 4c ♦ 4c 4c 4c)
>IN n • ^>iNI T ^ A3dd-
-mil*
 vA3dd
•QU3 NI03a
!(iNiodisn5A3ad avA)iovaians 3ano3ooad
I sjdq^o OM^ u90M^eq u| opou o aAouioj {
r 4c 4c 4c 4c 4c 4c 4c 4c 4c 4« 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4t 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c 4c)
(* 4c)
(* ^ODj^qns 4c)
(♦ 4c)
(4c)
(A3ad)aav
3S13
., V
aN3
, ((i)aH0)3iiaM:((i)aH0)3iiaM :(.PD9J|D iSII U|)U9UI9|3,)N131iaM !(0l‘0fr)AXOiO3
NI33a
N3H1
, i33aVi-3WVN'vXNIT,A3ad dl
\ \S\\
 U1 XpD8J|0 S{ ^U8U18|8
99S 0\
 >{08110 {
j(130dVl‘iS n)snoiA3ad«:A3dd
JlNI0diSn:A3dd
iaN3
NI03G
dVA
AjBnuBp
January
j check to see If there ts a reasonable amount of memory left } IF MEMAVAIL>100 THEN
WRITE(’There are *,MEMAVAIL:5,* words of memory left’)
ELSE
BEGIN
WRITELN(’:NEARING END OF MEMORY 11’); WRITE(CHR(7));WRITE(CHR(7))
END
END;
* ♦ 1
♦ Print List
♦ ♦ 1
(* « « 4i xc« Kc ♦ « m « «I«c * Id Id « « 4c« « « 4i« * « « « Ht 4iiKi«c)K He 4i4e 4c e ♦ ♦ ♦ ♦)
{ send contents of list to device specified { PROCEDURE PRINT_LIST(LIST:LISTPOINT;DEVICE:ST1);
VAR
CURRENTrLISTPOINT;
OUT:TEXT; j variable representing output file
\
BEGIN
I set up device communication (
REWRITE(OUT.DEVICE);
PAGE(OUT);
CURRENT:-LIST;
I send information to device }
WRITELNfOUT,’Current elements in the list are:’); WRITELN(OUT,’-’);
WHILE CURRENT^.LINKoNIL DO BEGIN
WRITELN(OUT,CURRENT".LINK".NAME);
CURRENT:-CURRENT".LINK END;
SHOW.MEM
END; { print.list (
i
Xc) 4C 4.)
Get Name
*)
(*
 *5
(4c 4c 4c 4(4c 4c 4c 4c 4(4c 4c Id 4c ♦ ♦ ♦ ♦ :(c 4c 4c 4(4c 4c 4c 4c 4c ♦ 4c 4c Id « ♦ 4c 4c 4c 4(4c 4c 4c 4c 4c 4c 4(4c Id 4e Id 4c)
I get string to be manipulated (
PROCEDURE GET_NAME(VAR TARGET:ST1;PR0C:ST2);
BEGIN
GOTOXY(40.2);
WRITELN(’Which string do you wish to ’.PROC); GOTOXY(40,3);
WRITE(’-> ’);
READ(TARGET)
END;
(4c4c4c4c4c4c4c4c4c4c4c4c4(4c4c4(4c4c4c4c4c4c4c4c4c4(4c4(4c4c4c4(4c4c4c4(4c4(4c4(4(4(4(4c4(4(4(4()
I*
Kill
 List *1
^:im^i*^i^Hc*^t*ic*1cilnt:m*******>l‘************************)
} destroy contents of
list
 |
PROCEDURE KILL_LIST(LIST:LISTPOINT);
BEGIN '
RELEASE(HEAP):
18 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
I tie up only link remaining ofter heop is destroyed { LIST".LINK:-NIL:
January
END;
PAGE(OUTPUT):
WRITELN(*List Is now empty.*); SHOW^MEM
]|c]|c4c
jK
4e♦
 4c>|c]tc>K«****«««««««Xt*)K«He)
* ♦) Initialize xc)
(txcxcxcxcxcxcxcxcxcxcxcxcxcxexcxcxcxcxcxcxcxcxcxc*
I create first node
\ PROCEDURE INITIALIZE(VAR LIST:LISTPOINT); BEGIN
I create Iist head
\
NEW(LIST);
LIST^.LINK:-NIL;
I set heap pointer }
MARK(HEAP)
END;
(♦++^.+:,,
(♦ MAIN PROGRAM
I
U ^
BEGIN} main (
INITIALIZE(LIST);
} set of proper inputs }
PROPCOMS:-[*A*.'D*,*P*.*B*,’E*];
WHILE COMMANDO*E* DO BEGIN} while (
GOTOXY(40.0);
WRITE(*A(dd B(lank D(elete P(rint E(nd READ(COMMAND);
IF (COMMAND IN PROPCOMS)
THEN
CASE COMMAND OF •A*:BEGIN
GET_NAME(TARGET.*add*); INSERT(LIST.TARGET); PRINT_LIST(LI$T.‘CONSOLE;*)
END;
•D*iBEGIN
GET_NAME(TARGET,* d eIe t e *);
DELETE(LIST.TARGET);
PRINT_LIST(LIST.‘CONSOLE:*)
END;
} if you have no printer delete PRINT_LIST call with PRINTER: as a parameter j
‘P‘.-BEGIN
PRINT_LIST(LIST.‘PRINTER;‘); PRINT.LIST(LIST.‘CONSOLE:‘)
END;
•B‘;KILL_LIST(LIST) END} case {
END} while
\
END.} main }
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 19
January
LISTINGS.DOC
Contributed by: Paul A. Sand
"The Stride 440," by Paul A. Sand. January, page 295.
program fI 1ewrIte;
UCSD Pascal program to write a 64K data file In 512 chunks of 128 bytes each
	const
	CHUNK.SIZE - 128; N^CHUNKS - 512;
	{ size of chunks in { number of chunks to write
	bytes {

	type
	chunk_array ■ packed chunk_fi1e ■ file of
	array [1..CHUNK.SIZE] of char; chunk^array;
	

	var
	chunk : chunk^array; cf : chunk^flie; i : integer;
	{ one chunk {
j file variable for data file
\ j loop control variable {

begin { fI IewrIte
\
for I 1 to CHUNK_SIZE do
chunk[l] :■ chr(ord(*1*) 4 (I - 1) mod 8); rewrlte(cf, ’TEST*); for I 1 to N.CHUNKS do begin cf^ chunk; put(cf)
end;
close(cf, LOCK)
end.
Listing 1
UCSD Pascal 64Kbyte FI IeJTwr 111ng Benchmark program f f Ieread;
I UCSD Pascal program to read a 64K data file (I
In 512 chunks of 128 bytes each
\
const
type
var
CHUNK.SI2E -128; N.CHUNKS -512;
j size of chunks In bytes
\ } number of chunks to read
\
chunk^array * packed array [1..CHUNK_SIZE] of char; chunk_flle »
file
 of chunk_array;
chunk ; chunk_array; cf : chunk^flie;
I : Integer;
{ one chunk
\
I
file
 variable for data
file

\ \
 loop control variable }
beg in
\
 fiIeread }
reset(cf, *TEST*); chunk := cf^;
for i 2 to N_CHUNKS do begin get(cf); chunk :« cf^;
end;
close(cf)
end.
Listing 2
UCSD Pascal 64Kbyte Fi IeTTreading Benchmark program calculations;
\
 UCSD Pascal program to perform series of real
\ \
 multiplications and divisions }
const
MAX * 5000; { number of repetitions }
20 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
var
January
0
, b, c : real;
\
 used in calculations
\ i : integer; { loop control variable
\
begin
\
 calculations
\
Q
 :« 2.71828; b :» 3.14159; c :» 1.0;
for i := 1 to MAX do begin c :* c ♦ a;
c ;= c * b;
c := c / a;
c ;= c / b
end;
wr iteIn(*Error : c - 1.0)
end.
Listing 3
UCSD Pascal Calculation Benchmark program sieve;
I UCSD Pascal Sieve of Eratosthenes Benchmark
\
const
SIZE a 7000; j size of array for standard benchmark }
var
flags : array [0..SIZE] of Boolean; i, prime, k, count, iter: integer;
begin
end.
I sieve
\
writeln(*10 iterations*); for iter := 1 to 10 do begin count ;« 0; for i 0 to SIZE do
flags[i] :* TRUE; for i :a 0 to SIZE do
if flags[i] then begin
prime :» i + i +
3
; k ;■ i + prime; while k <■ SIZE do begin flags[k] := FALSE; k k + prime
end;
count := count + 1
end
end;
writeln(count, * primes*)
Listing 4
UCSD Pascal Sieve of Eratosthenes Benchmark MODULE filewrite;
FROM Files IMPORT
FILE, FileState, Create, Close, WriteBytes;
FROM SYSTEM IMPORT ADR;
CONST
CHUNKSIZE a 128; size of chunks In bytes *)
NCHUNKS a 512; (♦ number of chunks to write *)
TYPE
chunkarray a ARRAY [1..CHUNKSIZE] OF CHAR;
VAR
chunk : chunkarray; cf : FILE; i : CARDINAL;
Junk : CARDINAL;
fs : FileState;
name ; ARRAY [0..30] OF CHAR;
one chunk ♦)
(* chunk
file
 variable *) f* loop control variable ♦)
(♦ status from WriteBytes ♦) status from Create/Close ♦) file
 name ♦)
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 21
BEGIN
FOR I 1 TO CHUNKSIZE DO
chunk[l]
CHR(ORD(*r)
+ (I - 1)
MOD
8)
END;
name •'TEST.DATA”;
fs ;■ Create(cf, nome);
FOR I 1 TO NCHUNKS DO
junk WrlteBytes(cf. ADR(chunk). CHUNKSIZE)
END;
fs :■ Clo86(cf)
END fflewrite.
Listing 5
ModuloTTZ 64Kbyte File Writing Benchmark MODULE fiieread;
FROM Files IMPORT
FILE, FileStote, Open, Close, ReadBytes;
FROM SYSTEM IMPORT ADR;
CONST
CHUNKSIZE ■ 128;
(*
 size of chunks in bytes ♦)
NCHUNKS ■ 512; (♦ number of chunks to write ♦)
TYPE
chunkarray - ARRAY [1..CHUNKSIZE] OF CHAR;
VAR
chunk : chunkarray; cf : FILE;
1 : CARDINAL;
junk : CARDINAL;
fs : FileState;
name : ARRAY [0..30] OF CHAR;
(♦ one chunk ♦)
(♦ chunk
file
 variable * (* loop control variable ♦)
(♦ status from ReadBytes status from Open
k
 Close ♦)
(♦
file
 name ♦)
BEGIN
name '• TEST.DATA“;
fs ;« Open(cf, name);
FOR i 1 TO NCHUNKS DO
junk ReadBytes(cf, ADR(chunk), CHUNKSIZE)
END;
fs :» Close(cf);
END f i Ieread.
Listing 6
Modula7r2 64Kbyte
File
 Reading Benchmark MODULE calculations;
Modula)r2 program to perform a series of real «) (♦ multiplications and divisions ♦)
FROM ReallnOut IMPORT WriteReaI;
FROM InOut IMPORT
WriteString, WriteLn;
CONST
MAX • 5000;
(♦ number of iterations ♦)
VAR
a, b, c : REAL; used in calculations *)
i ; CARDINAL; (♦ loop control variable ♦)
BEGIN
a := 2.71828; b :» 3.14159; c := 1.0;
FOR i 1 TO MAX DO c :* c ♦ a;
c c * b;
c :» c / a;
c :« c / b
22 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987
END:
Wri
test
rlng('Error * *);
WriteReal(c - 1.0, 10);
Wr IteLn
END calculations.
Listing 7
Modula7r2 Real Calculations Benchmark MODULE sieve;
FROM InOut IMPORT
WriteLn, WriteString, WriteCard;
CONST
SIZE = 7000;
VAR
flags : ARRAY [0..SIZE] OF BOOLEAN; i, prime, k, count, iter : CARDINAL;
BEGIN
WriteString(* 10 iterations');
FOR iter :» 1 TO 10 DO count :» 0;
FOR i ;» 0 TO SIZE DO flags[i] :« TRUE
END;
FOR i 0 TO SIZE DO IF flags[i] THEN
prime :* i + i +3; k :» i + prime;
WHILE k <» SIZE DO
flags[k] FALSE; k ;■ k + prime
END;
INC(count)
END
END
END;
WriteCard(count, 1);
Wri
test
ring(' primes');
WriteLn END sieve.
Listing 8
ModuloTTZ Sieve of Eratosthenes Benchmark Program Benchmarks
README.PAL
Contributed by: Trevor G. Marshall
"PALs Simplify Complex Circuits," by Trevor G. Marshall. January, page 247.
The Fortran-77 source files for PALASM version 1.3 are PALASM.FOR, SIMLT.FOR, and FILENAME.FOR. The files TESTAS1.PAL, TESTAS2.PAL, TSTHOLD1.PAL, TSTH0LD2.PAL, AND TSTHOLD3.PAL are the listings printed in the article, "PALs Make Complex Circuits Simpler."
FILENAME.FOR
Contributed by; Trevor G. Marshall
"PALs Simplify Complex Circuits," by Trevor G. Marshall. January, page 247.
SUBROUTINE GFNAME(NAME,UNIT,EXT) LOGICAL NAME(11),EXT INTEGER UNIT
LOGICAL COLON,FNAME(14),DOT COLON - ':'
DOT - '.'
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 23
c
c
c
c
c
c
c
c
c
c
c
c
c
10
c
c
c
15
14
C
16
READ A USER DATA FILE NAME
NAME; RETURN PARAMETER OF FILE NAME
UNIT: RETURN PARAMETER OF UNIT
0 DEFAULT DRIVE
1 DRIVE A ETC
EXT: INPUT PARAMETER
TRUE : EXTENSION REQUIRED FALSE: EXTENSION NOT PERMITTED
UNIT - 0
IF(.NOT.EXT)WRITE(1.101)
IF(EXT) WRITE(1.100) READ(1.104)FNAME IF(FNAME(2).NE.COLON) GOTO 14 UNIT - FNAME(I) - 'A' + 1 DO 15 I- 1 . 12
FNAME(I)-FNAME(I+2)
CONTINUE
FIND AND REMOVE '.* IN FILE NAME DO 16 1-1,11
IF (FNAME(I).EQ.DOT) GO TO 17 CONTINUE
NO PERIOD! ILLEGAL FILE NAME? IF(.NOT. EXT) GO TO 20 WRITE(1.105)
GOTO 10
17 Ml » I + 3
DO 33 J - I.Ml 33 FNAME(J) - FNAME(J+1)
N-11
DO 18 J-1,3 M1-I+3 - J FNAME(N)-FNAME(M1)
18 N-N-1 IF(I.GE.9)G0T0 20 DO 19 J-I .8
19 FNAME(J)-' '
C
C FILE NAME IS O.K
C TRANSFER TO PARAMETER
C
20 DO 25 1-1,11
25 NAME(I) - FNAME(I)
RETURN
100 FORMATC ENTER FILENAME (WITH EXTENSION) -> ')
101 FORMATC ENTER FILENAME (WITHOUT EXTENSION -> ')
104 FORMAT04A1)
105 FORMATC illegal FILENAME! PLEASE REENTER’)
END
PALASM.FOR
Contributed by: Trevor G. Morsho!!
"PALs Simplify Complex Circuits," by Trevor G. Marshall. January, page 247.
C
C
C MAIN PROGRAM C
BYTE IPAL(4),REST(73),PATNUM(80),TITLE(80),COMP(80),
C ISYM(8,20),IBUF(8,20)
BYTE E,0,T,P,B,H,S,L,N,Q,U,F,C,R,A,
C bb,cc,dd,ee,ff,ii,nn,oo,pp,rr,ss,tt,uu,
C IPAGE,FNAMEO1).MYLINE(80),
c
inoai,iot,inoo,cr,lf,iop,clrs
LOGICAL LBLANK,LLEFT,LAND,LOR,LSLASH,LEQUAL,LRIGHT,LXOR,LXNOR,
24 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
C LFIX.LFIRST.LMATCH.LFUSES(32,64),LPHASE(20),LBUF(20),
C LPROD(80),LSAME,LACT,LOPERR,LINP,LPRD,LHEAD
COMMON LBLANK,LLEFT,LAND,LOR,LSLASH,LEQUAL,LRIGHT,LXOR,LXNOR COMMON /PGE/ IPAGE(80,100)
COMMON /FTEST/ IFUNCT,IDESC,lENO
DATA E/’E7,0/’0V,T/*TV.P/*P7.B/*B7,H/'H7,S/’SV,L/'LV, C N/'N7,Q/'Q7,U/’U7,F/’F7,C/*C7,R/*R7,A/'A7
DATA BB/*B7,CC/*C7,DD/*D7,EE/*E7,FF/*F7,II/’I7,NN/’N7, C 00/*07,PP/'P7,RR/’R7,SS/'S7,TT/*T7,UU/'U7
DATA CR/X * 0D 7,LF/X’0A 7,CLRS/X’0C 7
999 IFUNCT-0 IDESC-0 LSAME-.FALSE,
LACT-.FALSE.
LOPERR=.FALSE.
LINP=.FALSE.
LPRD=.FALSE.
LHEAD-.FALSE.
WRITE(1.3)CLRS
3 FORMATC ’.Al,* PAL ASSEMBLER VERSION 3.1 ’./////)
530 CALL GFNAME(FNAME.INUNIT..TRUE.)
CALL 0PEN(6,FNAME,INUNIT)
READ(6,10,END-500) IPAL,INOAI,lOT,INOO,REST,PATNUM,TITLE,COMP 10 F0RMAT(4A1
,A1
,A1,A1,73A1,/,80A1,/,80A1,/,80A1)
GOTO 510
500 WRITE(1,520)
ENDFILE 6
520 FORMATC FILE DOESN*'T EXIST, REENTER*,/)
GOTO 530
510 WRITE(1,511) IPAL,INOAI,IOT,INOO,REST,PATNUM,TITLE,COMP
511 FORMAT(* •4A1,A1,A1.A1,73A1,/,* •,80A1,/,
C * •,80A1,A* ’,80A1)
DO 15 J-1,100
READ(6,11,END-16) MYLINE 11 FORMAT(80A1)
WRITE(1,561)MYLINE 561 FORMATC ’.80A1)
DO 560 I - 1,80 IPAGE(I,J) - * ’
560 IF(.NOT.((MYLINE(I).EQ.CR).OR.(MYLINE(I).EQ.LF)))
C IPAGE(I,J) - MYLINE(I)
IF(IFUNCT.EQ.0 .AND.IPAGE(1,J).EQ.FF.AND.
C IPAGE(3,J).EQ.NN.AN0.IPAGE(5.J).EQ.TT.AND,
C IPAGE(7,J).EQ.OO.ANO.IPAGE(10,J) .EQ.TT) IFUNCT-J
IF(IDESC.EQ.0 .AND.IPAGE(1,J).EQ,DD.AND,
C IPAGE(3,J).EQ.SS.AND.IPAGE(5,J).EQ.RR.AND.
C IPAGE(7,J),EQ,PP,AND,IPAGE(10,J) .EQ.OO) IDESC-J
15 CONTINUE
16 IEND-J-1
CALL INITLZ(INOAI,lOT,INOO,ITYPE,LFUSES,IC,IL,IBLOW,LFIX) ILE-IL+1
IF(ITYPE.NE.0) GO TO 17
WRITE(1.18) IPAL,INOAI.lOT,INOO
18 F0RMAT(A’ pal part type '.4A1.A1.A1.A1.* is INCORRECT’)
STOP ERROR
17 DO 20 0-1.20
20 CALL GETSYM(LPHASE,ISYM,J,IC,IL.LFIX)
IF(.NOT.(LEQUAL.OR.LLEFT.OR.LAND.OR.LOR.OR.LRIGHT)) GO TO 24 WRITE(1.23)
23 FORMAT(/,* LESS THAN 20 PIN NAMES IN PIN LIST*)
STOP ERROR
24 ILE-IL
25 CALL GETSYM(LBUF.IBUF,1,IC,IL,LFIX)
28 IF(.NOT,LEQUAL) GO TO 25
COUNT-0
ILL-IL
CALL MATCH(IMATCH,IBUF,ISYM)
IF(IMATCH.EQ.0) GO TO 100 IPRD-IMATCH
LSAME - ((LPHASE(IMATCH)).AND.(LBUF(1)).OR.
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 25
c
c
c
c
c
30
50
C
C
69
C
C
56
58
C
(.NOT.LPHASE(IMATCH)).AND.(,NOT.LBUF(1)))
IF(IOT,EQ.H.AND.(.NOT.LSAME)) LACT-.TRUE.
IF((.NOT.(IOT.EQ.H.OR.IOT.EQ.C)),AND.(LSAME)) LACT-.TRUE.
IF(fITYPE.EQ.1.0R.ITYPE.EQ.5.0R.ITYPE.EQ.6).AND.I0T.NE.A.
AND.(IMATCH.lt.12.0R.IMATCH.GT.19)) LOPERR-.TRUE.
IF(ITYPE.EQ.2.AND.(IMATCH.lt.13.OR.IMATCH.GT.18))
LOPERR-.TRUE.
IF(ITYPE.EQ.3.AND.(IMATCH.lt.14.OR.IMATCH.GT.17))
LOPERR-.TRUE.
IF(ITYPE.EQ.4.AND.(IMATCH.lt.15.OR.IMATCH.GT.16))
LOPERR-. TRUE.
IF((LACT).OR.(LOPERR)) GO TO 100 I88PRO-(19-IMATCH)*8 + 1 IF(IOT.EQ.C) I88PRO-25 IC-0
CALL INCR(IC.IL.LFIX)
IF(.NOT.(LEQUAL.OR.LLEFT)) GO TO 30 LPR0D(I88PR0)-.TRUE.
IF(.NOT.LLEFT) CALL SLIP(LFUSES.I88PR0.INOAI.lOT,INOO,IBLOW) DO 70 I8PRO-1.16
COUNT - COUNT + 1
IPROD - I88PR0 + I8PR0 - 1
LPROD(IPROD)-.TRUE.
LFIRST-.TRUE.
ILL-IL
CALL GETSYM(LBUF,IBUF,1.IC.IL.LFIX)
IF((ITYPE.EQ.1.OR.ITYPE.EQ.2.AND.IPRD.GT.13
.AND.IPRD.lt.18).AND.COUNT.GT.2) LPRD-.TRUE.
IF((ITYPE.EQ.3.0R.ITYPE.EQ.2.AND.(IPR0.EQ.13.0R.
IPRD.EQ.18)).AND.C0UNT.GT.4) LPRD-.TRUE.
IF(I0T.NE.A.AND.I0T.NE.C.AND.C0UNT.GT.8) LPRD-.TRUE.
IF(.NOT.LPRD) GO TO 69
IF(IL.NE.IFUNCT.AND.IL.NE.IDESC) ILL-IL
IPROD - IPROD - 1
GO TO 118
IF(LFIX) GO TO 59
CALL MATCH(IMATCH.IBUF.ISYM)
IF(ITYPE.EQ.1.AND.IMATCH.GT.il) LINP-.TRUE.
IF(ITYPE.EQ.2.AND.(IMATCH.GT.12.AND.IMATCH.lt.19)) LINP-.TRUE.
IF(ITYPE.EQ.3.AND.(IMATCH.GT.13.AND.IMATCH.lt.18)) LINP-.TRUE.
ILL-IL
IF(LINP) GO TO 100 IF(IMATCH.EQ.0) GO TO 100 IF(IMATCH.EQ.10.OR.IMATCH.EQ.99) GO TO 64 IF(.NOT.LFIRST) GO TO 58 LFIRST-.FALSE.
DO 56 1=1,32
IBLOW » IBLOW + 1 LFUSES(I,IPROD)-.TRUE.
CALL IXLATE(11NPUT.IMATCH.LPHASE,LBUF,ITYPE)
IF(IINPUT.LE.0) GO TO 60
IBLOW = IBLOW - 1
LFUSES(IINPUT,IPROD)».FALSE.
CALL PLOT(LBUF,IBUF,LFUSES.IPROD.TITLE,.FALSE.,ITYPE. LPROD.IOP,IBLOW)
GO TO 60
59 CALL FIXSYM(LBUF.IBUF.IC.IL.LFIRST,LFUSES,IBLOW.
C IPROD.LFIX)
60 IF(LAND) GO TO 50
64 IF(.NOT.LRIGHT) GO TO 68
66 CALL INCR(IC,IL.LFIX)
IF(,NOT.LEQUAL) GO TO 66
68 IF(.NOT.(LOR.OR.LEQUAL)) GO TO 74
70 CONTINUE
74 ILL-IL
CALL GETSYM (LBUF. IBUF. 1.1C. IL. LFIX)
IF(LLEFT.OR.LEQUAL) GO TO 28
100 IF(ILL.EQ.IFUNCT.OR.ILL.EQ.IDESC) GO TO 102 ILERR-ILL+4
WRITE(1.101) (IBUF(I.1).I=1,8).ILERR,(IPAGE(I.ILL).I=1,79)
101 FORMATC ERROR SYMBOL = ’.8A1.’ IN LINE NUMBER ’,13.
C /.* ’.80A1)
IF((LACT).AND.(LSAME).AND.(.NOT.LOPERR))
26 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
C WRITE(1.103) IPAL.INOAI.IOT.INOO
103 FORMATC OUTPUT MUST BE INVERTED SINCE ’.4A1,A1,A1.A1,
C * IS AN ACTIVE LOW DEVICE’)
IF((LACT).AND.(.NOT.LSAME).AND.(.NOT.LOPERR))
C WRITE(1,109) IPAL.INOAI.IOT.INOO
109 FORMATC OUTPUT CANNOT BE INVERTED SINCE ’.4A1.A1.A1.A1.
C ’ IS AN ACTIVE HIGH DEVICE’)
IF((LOPERR).AND.IMATCH.NE.0)
C WRITE(1.105) IMATCH.IPAL.INOAI.IOT.INOO
105 FORMAT(’ THIS PIN NUMBER ’.12.’ IS AN INVALID OUTPUT PIN’.
C ’ FOR ’.4A1.A1.A1.A1)
IF(LINP) WRITE(1.115) IMATCH.IPAL.INOAI.lOT.INOO
115 FORMAT(’ THIS PIN NUMBER ’.12.’ IS AN INVALID INPUT PIN’.
C ’ FOR ’.4A1.A1.A1.A1)
118 ILERR-ILL+4 IF(LPRD) WRITE(1.119)
C (ISYM(I.IPRD).I=1.8).IPRD.ILERR.(IPAGE(I.ILL).I=1.79)
119 FORMATC OUTPUT PIN NAME = ’.8A1.’ OUTPUT PIN NUMBER - ’.12.
C ’ MINTERM IN LINE NUMBER ’.13./.’ ’.80A1)
IF(LPRO.AND.COUNT.lt.8)
C WRITE(1.116) IPROD.IPAL.INOAI.IOT.INOO
116 FORMAT(’ THIS PRODUCT LINE NUMBER ’.12.’ IS NOT VALID’.
C ’ FOR ’.4A1.A1.A1.A1)
IF(LPRD.AND.C0UNT.GT.8)
C WRITE(1.117) IPAL.INOAI.IOT.INOO
117 FORMAT(’ MAXIMUM OF 8 PRODUCTS LINES ARE VALID FOR ’.4A1.A1.A1.A1.
C ’ TOO MANY MINTERMS ARE SPECIFIED IN THIS EQUATION’)
STOP ERROR
102 IF(ITYPE.LE.4) CALL TWEEK(ITYPE.lOT.LFUSES)
ENDFILE 6 108 WRITE(1.106)
106 FORMAT(’ OPERATION CODES:’)
WRITE(1.107)
107 FORMATC/.’ E-ECHO O-PINOUT P-PLOT B-BRIEF ’.
C /.’ H-HEX L-BHLF N-BNPF Q-QUIT S-SIMULATE’)
WRITE(1.110)
110 FORMATC’ ENTER OPERATION CODE:’)
READCl.120)
120 FORMAT^I)
IFCIOP.EQ.E)
C
IFCIOP.EQ.O)
IFCIOP.EQ.P)
C
IFCIOP.EQ.B)
C
IFCIOP.EQ.H)
ifCiop.eq.l)
IFCIOP.EQ.N)
C IFCIOP.EQ.R)
IFCIOP.EQ.S)
C
IFCIOP.NE.Q)
STOP END C
c *<«**«>•■*
41
«||I «I|| *I|C« He«iH m m DC m Hi** m W WUc« W «iH «I|C *** Hull«iliiK lie«i|< iK 111«lie * lie«III«
c
SUBROUTINE INITLZ(INOAI.lOT.INOO.ITYPE.LFUSES.IC.IL,IBLOW.LFIX)
BYTE INOAI.lOT,INOO
LOGICAL LBLANK.LLEFT.LAND.LOR.LSLASH.LEQUAL.LRIGHT.LXOR.LXNOR.
C LFIX.LFUSES(32.64)
BYTE IPAGE.H.L.C.R.X.A.I0.I2.I4.I6.I8.INOAI.IOT.INOO COMMON LBLANK.LLEFT.LAND.LOR.LSLASH.LEQUAL.LRIGHT.LXOR.LXNOR COMMON /PGE/ IPAGE(80.100)
DATA H/*H7.L/‘L7.C/*C7.R/*RV.X/*X7.A/’A7 C I0/»07.I2/*27.I4/»47.I6/»67.I8/»87 DO 20 J-1.64 DO 20 1-1.32
20 LFUSES(I.J)-.FALSE.
IBLOW-0
IC-0
IL-1
ITYPE-0
IF(INOAI.EQ.10) ITYPE-1
lOP
CALL ECHO(IPAL.INOAI.lOT.INOO.REST.PATNUM.TITLE. COMP)
CALL PINOUTCIPAL.INOAI.lOT.INOO.TITLE)
CALL PLOTCLBUF.IBUF.LFUSES.IPROD.TITLE..TRUE..ITYPE. LPROD.IOP.IBLOW)
CALL PLOTCLBUF.IBUF.LFUSES.IPROD.TITLE..TRUE..ITYPE.
LPROD.IOP.IBLOW)
CALL HEXCLFUSES)
CALL BINRClFUSES.H.L)
CALL BINRCLFUSES.P.N)
GOTO 999
CALL TESTCLPHASE.LBUF.TITLE.IC.IL.ILE.ISYM.IBUF. ITYPE.INOO.LFIX)
GO TO 108
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 27
IF(IN0AI.EQ.I2) ITYPE-2 IF(IN0AI.EQ.I4) ITYPE-3 IF((IN0AI.EQ.I6)) ITYPE-4 IFf aN0AI.EQ.I6).AND.(IN00.EQ.I8)) ITYPE-5
IF((I0T.EQ.R).0R.(I0T.EQ.X).0R.(I0T.EQ.A)) ITYPE-6 IF(.N0T.(I0T.EQ.H.0R.I0T.EQ.L.0R.I0T.EQ.C C .OR.IOT.EQ.R.OR.IOT.EQ.X.OR.IOT.EQ.A)) ITYPE-0
CALL INCR(IC.IL.LFIX)
RETURN
END
C
C 4c 4e« 4()|c4(4(« 4(4c)|(i|(« 4(«««« 4c««««««« 4e««« 4e 4e)|t 4c 4e 4e ♦
C
SUBROUTINE INCR(IC.IL.LFIX)
LOGICAL LBLANK.LLEFT,LAND.LOR,LSLASH,LEQUAL.LRIGHT.LXOR.LXNOR.
C LFIX»LX1
BYTE IPAGE,IBLANK.ILEFT,lAND,lOR.COMENT,ISLASH.lEQUAL.
C IRIGHT.ICOLON
COMMON LBLANK,LLEFT,LAND.LOR.LSLASH.LEQUAL.LRIGHT.LXOR.LXNOR COMMON /PGE/ IPAGE(80.100)
DATA IBLANK/’ ILEFT/’(’/,lAND/’*’/,lOR/’+’/.COMENT/’;
C ISLASH/’/’/.lEQUAL/’-’AIRIGHT/’)’/.ICOLON/’:’/
LBLANK-.FALSE.
LXOR-.FALSE.
LXNOR-.FALSE.
LX1-.FALSE.
LRIGHT-.FALSE.
10 IC-IC+1
IF(IC.LE.79.AND.IPAGE(IC.IL).NE.C0MENT) GO TO 30 IL-IL+1 20 IC-0 GO TO 10
30 IF(IPAGE(IC.IL).EQ.ICOLON.AND.(LFIX)) RETURN IF(IPAGE(IC.IL).NE.IBLANK) GO TO 31
LBLANK-.TRUE.
GO TO 10
31 IF(IPAGE(IC.IL).NE.ICOLON) GO TO 32 IF((LXOR).OR.(LXNOR)) GO TO 33 LX1-.TRUE.
GO TO 10
33 IF(LXOR) LOR-.TRUE.
IF(LXNOR) LAND-.TRUE.
RETURN
32 IF(.N0T.(LX1.AND.(IPAGE(IC.IL).EQ.I0R.0R.IPAGE(IC.IL).EQ.IAND)))
C GO TO 34
IF(IPAGE(IC.IL).EQ.IOR) LXOR-.TRUE.
IF(IPAGE(IC.IL).EQ.IAND) LXNOR-.TRUE.
GO TO 10
34 LLEFT »(IPAGE(IC.IL).EQ.ILEFT)
LAND -(IPAGE(IC.IL).EQ.IAND)
LOR -(IPAGE(IC.IL).EQ. lOR)
LSLASH-(IPAGE(IC.IL).EQ.ISLASH)
LEQUAL-(IPAGE(IC.IL).EQ.lEQUAL)
LRIGHT-(IPAGE(IC.IL).EQ.IRIGHT)
RETURN
END
C
C 4c 4c 4(4e 4c 4(4(4c 4c 4c 4(4(4c 4(4(4(4c 4c 4(4c 4c 4c 4(4c 4c 4c 4c 4c 4(4c 4c 4c ♦ 4c 4c ♦ ♦ 4c 4c 4c 4c 4c 4c 4c 4c ♦ 4c ♦ 4c 4c 4c 4(4c 4c 4c 4c 4e 4c 4(4c 4c 4(4c 4c 4c 4(4c 4c 4c 4c 4c 4c
c
SUBROUTINE GETSYM(LPHASE.ISYM.J.IC.IL,LFIX)
BYTE ISYM(8.20)
LOGICAL LBLANK,LLEFT.LAND.LOR.LSLASH.LEQUAL,LRIGHT,LXOR,LXNOR.
C LFIX,LPHASE(20)
BYTE IPAGE.IBLANK
COMMON LBLANK,LLEFT.LAND.LOR,LSLASH.LEQUAL.LRIGHT.LXOR.LXNOR COMMON /PGE/ IPAGE(80,100)
DATA IBLANK/’ */
LFIX-.FALSE.
IF(.NOT.(LLEFT.OR.LAND.OR.LOR.OR.LEQUAL.OR.LRIGHT)) GO TO 10 CALL INCR(IC.IL.LFIX)
IF(LLEFT) GO TO 60 10 LPHASE(J)-(.NOT.LSLASH)
IF(LPHASE(J)) GO TO 15 CALL INCR(IC.IL,LFIX)
15 DO 20 1=1,8 20 ISYM(I.J)-IBLANK
28 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
25 DO 30 1-1,7
30 ISYM(I,J)-ISYM(1+1.J)
ISYM(8.J)=IPAGE(IC.IL)
CALL INCR(IC.IL.LFIX)
IF(LLEFT.OR.LBLANK.OR.LAND.OR.LOR.OR.LRIGHT.OR.LEQUAL) RETURN GO TO 25 60 LFIX-.TRUE.
RETURN
END
C
c
SUBROUTINE MATCH(IMATCH.IBUF.ISYM)
BYTE IBUF(8.20).ISYM(8.20)
LOGICAL LMATCH BYTE C.A.R.Y
DATA C/*CV.A/*A7,R/*R7.Y/*Y7
IMATCH-0
DO 20 J-1,20
LMATCH-.TRUE.
DO 10 1-1.8
10 LMATCH-LMATCH.AND.(IBUF(I.1).EQ.ISYM(I.J))
IF(LMATCH) IMATCH-J 20 CONTINUE
IF(IBUF(3,1).EQ.C.AND.IBUF(4.1).EQ.A.AND.IBUF(5.1).EQ.R.AND.
C IBUF(6,1).EQ.R.AND.IBUF(7,1).EQ.Y) IMATCH-99
RETURN END C
c**
c
SUBROUTINE IXLATE(IINPUT.IMATCH,LPHASE.LBUF,ITYPE)
BYTE ITABLE(20.6)
LOGICAL LPHASE(20).LBUF(20)
DATA ITABLE/
C 3. 1, 5. 9,13,17,21.25,29,-10.31.-1,-1,-1,-1,-1,-1.-1,-1.-20.
C 3. 1. 5, 9.13,17.21,25,29.-10.31,27,-1.-1.-1.-1.-1.-1, 7,-20,
C 3. 1. 5. 9.13.17.21.25,29.-10.31.27.23.-1,-1.-1.-1.11. 7.-20,
C 3, 1, 5. 9,13.17,21.25.29,-10,31,27.23.19,-1,-1,15.11, 7,-20,
C 3, 1, 5. 9,13.17.21,25.29,-10,31.-1,27.23.19.15.11, 7.-1,-20,
C -1. 1. 5. 9.13,17.21,25,29.-10.-1.31,27.23.19.15,11, 7. 3,-20/
IINPUT-0 IBUBL-0
IF(((LPHASE(IMATCH)).AND.(.NOT.LBUFf1))).OR.
C ((.NOT.LPHASE(IMATCH)).AND.(LBUF(i)))) IBUBL-1
IF(ITABLE(IMATCH.ITYPE).GT.0) IINPUT-ITABLE(IMATCH.ITYPE)+IBUBL RETURN END C
C**
C
SUBROUTINE PLOT(LBUF.IBUF.LFUSES.IPROD.TITLE.LDUMP.ITYPE.
C LPROD.IOP.IBLOW)
BYTE IBUF(8.20),IOUT(64),TITLE(80)
LOGICAL LBUF(20).LFUSES(32,64).LDUMP.LPROD(80)
BYTE ISAVE(64.32).IAND,lOR.ISLASH.
C IDASH.X.IBLANK,P,B.HIFANT,lOP.CLRS
DATA ISAVE/2048*’ ’/,lAND/**’/.lOR/’+V.ISLASH/*/’/.
C IDASH/*-*/.X/*X*/,IBLANK/’ '/.P/’P'/.B/’B*/.
C HIFANT/*O*/,CLRS/X*0C’/
IF(.NOT.LDUMP) GO TO 4
4 IF(LOUMP) GO TO 60
IF(ISAVE(IPROD,1).NE.IBLANK) RETURN IF(LBUF(i)) GO to 5 DO 30 J-1.31
30 ISAVE(IPROD.J)-ISAVE(IPROD.J+1)
ISAVE(IPROD.32)-ISLASH
5 DO 20 1-1,8
IF(ISAVE(IPROD.1).NE.IBLANK) RETURN IF(IBUF(I.1).EQ.IBLANK) GO TO 20 DO 10 J-1,31
10 ISAVE(IPROD,J)-ISAVE(IPROD.J+1)
ISAVE(IPR0D.32)-IBUF(I,1)
20 CONTINUE
IF(ISAVE(IPROD,1).NE.IBLANK) RETURN
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 29
c
40 DO 50 J-1,31
50 ISAVE(IPROD.J)-ISAVE(IPROD.J+1)
ISAVE(IPROD.32)-IAND
RETURN
60
WRITE
(1,62)
CLRS,TITLE 62
FORMATC ’,A1.80A1,//.
C * 11 1111 1111 2222 2222 2233*./.
C • 0123 4567 8901 2345 6789 0123 4567 8901’,/)
DO 100 I88PR0-1.57.8 DO 94 I8PR0-1,8
IPR0D-I88PR0+I8PR0-1 ISAVE(IPROD.32)-IBLANK DO 70 1-1.32
IF(ISAVE(IPROD.1).NE.IBLANK) GO TO 70 DO 65 J-1.31
ISAVE(IPROD.J)-ISAVE(IPROD.J+1)
65 CONTINUE
ISAVE(IPROD.32)-IBLANK 70 CONTINUE
DO 80 1-1,32 IOUT(I)-X
IF(LFUSES(I.IPROD)) IOUT(I)-IDASH IOUT(I+32)-ISAVE(IPROD,I)
80 CONTINUE
IF(ITYPE.LE.4) CALL FANTOM(ITYPE.lOUT,IPROD,I8PRO)
IPROD-IPROD-1 DO 85 J-1,32
IF(IOP.EQ.B.AND.IOUT(J).EQ.HIFANT) IOUT(J)-IBLANK 85 CONTINUE
IF((IOP.EQ.P).OR.(IOP.EQ.B.AND.(LPROD(IPROD+1))))
C WRITE(1.90) IPROD.lOUT
90 FORMATC •.I2.8(’ •.4A1).’ ’.32A1)
94 CONTINUE
WRITE(1.96)
96 FORMAT(IX)
100 CONTINUE
WRITE(1,110)
110 FORMAT(/,
C’ LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)’)
IF(I0P.EQ.P.AND.ITYPE.LE.4) WRITE(1.111)
111 FORMAT(
C’ 0 : PHANTOM FUSE (L.N.0) 0 : PHANTOM FUSE (H.P.I)’)
WRITE(1.112) IBLOW
112 FORMAT(/,’ NUMBER OF FUSES BLOWN - ’,14)
WRITE(1,113)
113 FORMATC////)
RETURN
END
c
SUBROUTINE TWEEK(ITYPE,lOT,LFUSES)
BYTE lOT LOGICAL LFUSES(32.64)
BYTE L.C
DATA L/’L’/.C/’C’/
IF(ITYPE.GE.4) GO TO 20 DO 10 IPROD-1,64
LFUSES(15,IPROD)-.TRUE.
LFUSES(16,1PROD)-.TRUE.
LFUSES(19,1PROD)-.TRUE.
LFUSES(20,1PROD)-.TRUE. IF(ITYPE.GE.3) GO TO 10 LFUSES(11.IPROD)-.TRUE.
LFUSES(12.IPROD)-.TRUE.
LFUSES(23.IPROD)-.TRUE.
LFUSES(24,1PROD)-.TRUE. IF(ITYPE.GE.2) GO TO 10 LFUSESC 7.IPROD)-.TRUE.
LFUSES(8,IPROD)-.TRUE.
LFUSES(27,1PROD)-.TRUE.
LFUSES (28,1 PROD)-. TRUE.
10 CONTINUE
DO 18 IINPUT-7.28
DO 12 IPROD-1,57,8
LFUSES(IINPUT,IPROD+4)-.FALSE. LFUSES(IINPUT.IPROD+5)-.FALSE.
30 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

Chapter Notes
	(*
 LINKLIST.PAS *)
	♦ This program maintains an ordered linked list of strings. It Is *)
	♦ designed for an Apple lie or an Apple 11+ with on 80-column card. ♦)
	If you're using Pascal with 40 columns, all that has to be changed ♦) Is the number 40 In the GOTOXY calls. A printer Is also assumed. ♦)
	If you have none online, then one procedure call must be removed,
	and It Is marked as such In the program. x,)
	*)
	The program commands are as follows: #)
	A^dd - adds string to list
	Djelete - deletes string from list ♦)
	Bilank - destroys list Pjrint - dumps list to printer E)nd - terminates program
	Please note that on an Apple lie the Caps Lock button must be ♦)
	y
 depressed for the program to accept these commands. ♦)
	PROGRAM MANAGER;
	j WARNING: shuts off range checking ((♦$R-*)
	COMCHARS-SET OF CHAR;
	ST1-STRING[15];
	ST2-STRING[6];

 January

 LFUSES(IINPUT.IPROD+6)-.FALSE.

 12 LFUSES(IINPUT.IPROO+7)=.FALSE.

 IF(ITYPE.GE.3) GO TO 18 DO 14 IPROD-17.41.8

 LFUSES(IINPUT,IPROD+2.FALSE.

 14 LFUSES(IINPUT.IPROD+3)-.FALSE.

 IF(ITYPE.GE.2) GO TO 18 DO 16 IPROD-1,57.8

 LFUSES(IINPUT,IPROD+2)-.FALSE.

 1 $ LFUSES (11 NPUT, IPROD+3)>= .FALSE.

 18 CONTINUE

 20 IF((ITYPE.EQ.1) .OR. ((ITYPE.EQ.4).AND.(I0T.EQ.L))) RETURN DO 99 IINPUT=1.32 DO 30 IPROD-1,8

 LFUSES(IINPUT,IPROD+ 0)- (lOT.NE.L)

 30 IF(IOT.NE.C) LFUSES(IINPUT,IPR0D+56)- (lOT.NE.L)

 IF(ITYPE.LE.2) GO TO 99 DO 40 IPROD-1,8

 LFUSES(IINPUT,IPROD+ 8)- (lOT.NE.L)

 40 IF(IOT.NE.C) LFUSES(IINPUT,IPR0D+48)- (lOT.NE.L)

 IF(ITYPE.LE.3) GO TO 99 DO 50 IPROD-1,8

 LFUSES(IINPUT.IPROD+16)- (lOT.NE.L)

 50 IF(IOT.NE.C) LFUSES(IINPUT,IPROD+40)- (lOT.NE.L)

 99 CONTINUE RETURN END C

 C^iummm**’*****

 C

 SUBROUTINE SLIP(LFUSES,I88PR0,INOAI.IOT,INOO,IBLOW)

 LOGICAL LFUSES(32,64)

 BYTE R,I1.I2,I4.I6,I8,I0T,IN00,IN0AI

 DATA R/-RV.I1/’1 •/.I2/'2*/.lV'*’/.I6/'6V.I8/*8’/

 IF((INOAI.NE.16) .OR. (INOO.EQ.I1) .OR. (IN00.EQ.I2) .OR.

 C ((I0T.EQ.R).AND.(IN00.EQ.I8)) .OR.

 C ((I88PR0.GE. 9).AND.(I88PR0.LE.49).AND.(IN00.EQ.I6)) .OR.

 C ((I88PR0.GE.17).AND.(I88PR0.LE.41).AND.(IN00.EQ.I4))) RETURN

 DO 10 1=1,32

 IBLOW - IBLOW + 1 10 LFUSES(I,I88PRO) - .TRUE.

 I88PR0 - I88PRO + 1 RETURN END C

 C***

 c

 SUBROUTINE FANTOM(ITYPE,lOUT,IPROD,I8PRO)

 BYTE IOUT(64)

 BYTE X,IOASH,LOFANT,HIFANT DATA X/*X7,IDASH/*-7,LOFANT/'07,HIFANT/’OV DO 10 1-1,32

 IF(IOUT(I).EQ.IDASH) IOUT(I)-HIFANT IF(IOUT(I).EQ.X) IOUT(I)-LOFANT 10 CONTINUE

 IF((ITYPE,EQ.4).AND.((IPR0D.LE,24).0R.(IPROD.GE.41))) RETURN IF((ITYPE.EQ.3).AND.((IPR0D.LE.16).0R.(IPR0D.GE.45))) RETURN IF((ITYPE.EQ.2).AND.((IPR0D.LE. 8).OR.(lPR0D.GE.53))) RETURN IF ((ITYPE. LE. 3) . AND. (18PR0. GE. 5)) RETURN IF((ITYPE.LE.2).AND.(lPR0D.GE.19).AND.(IPR0D.LE.48).AND.

 C (I
8
PRO.GE.
3
)) RETURN IF((ITYPE.EQ.1).AND.(I8PR0.GE.3)) RETURN DO 50 1-1,32

 IF(((I,EQ.15).OR.(I.EQ.16).OR.(I.EQ.19).OR.(I.EQ.20)).AND.

 C (ITYPE,LE.
3
)) GO TO 50

 IF(((I.EQ.11).0R.(I.EQ.12).0R.(I.EQ.23).0R.(I.EQ.24)).AND.

 C (ITYPE.LE.
2
)) GO TO 50

 IF(((I.EQ. 7).0R.(I.EQ. 8).OR.(I.EQ.27).OR.(I.EQ.28)).AND.

 C (ITYPE.LE.l)) GO TO 50

 IF(IOUT(l).EQ.HIFANT) IOUT(I)-IDASH IF(IOUT(l).EQ.LOFANT)
IOUT(i)-X 50 CONTINUE RETURN END

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 31

 o oo

 January

 c

 C *******'*******************'»******f********<ii|(************i|i***D(****

 SUBROUTINE DATAIO (TEXT,NUMBER)

 LOGICAL TEXT(1)

 INTEGER NUMBER EXTERNAL PUNCH DO 10 I- 1, NUMBER 10 CALL PUNCH(TEXT(I))

 RElTURN

 END

 LOGICAL FUNCTION IHEXA(I)

 LOGICAL STRNG(16)

 DATA STRNG/'O*.'1
*.*2'.'3’.*4'.'S'.'6*.*7*.’S*.'9*. 1 'A'.'B'.'C’.'D’.’E'.’F*/

 M-MOD(I.16)+1 IHEXA-STRNG(M)

 RETURN END

 C 4e4(4i]|c)|i>KtKiK«)K

 81

 82

 83

 87

 88

 20

 40

 60

 70

 80

 SUBROUTINE HEX(LFUSES)

 LOGICAL LFUSES(32.64)

 LOGICAL ITEMP(64).IHEXA LOGICAL T(128)

 LOGICAL STX,ETX.NULL(50).DC1,READER EXTERNAL READER

 DATA STX/X *027. ETX/X ’ 03 V. NULL/50*X * OO V. DC 1 /X * 11 7 WRITE(1.81)
'

 FORMATC DATA I/O SETUP: 7’ TYPE *'SELECT 50,ENTER’") WRITE(1,82)
’

 FORMATC TYPE "SELECT D2.ENTER'")

 WRITE(1.83)

 FORMATC then PRESS "START" BUTTON ') IF(READER(0).XOR.DC1) GOTO 87 WRITE(1
,88)

 FORMATC STARTING TRANSMISSION')

 ENCODE(T.70)STX CALL DATAIO(T.I)

 DO 40 1-1.33,32 INC-I-1

 00
 40 IPROD-1,7,2 DO 20 J-1,2 DO 20 IINPUT-1,32 IHEX-O

 M-IPROD+INC+J-1

 IFfLFUSES(IINPUT.M+ 0)) IHEX-IHEX+1 IF(LFUSES(IINPUT.M+ 8)) IHEX-IHEX+2 IF(LFUSES(IINPUT.M+16)) IHEX-IHEX+4 IF(LFUSES(IINPUT.M+24)) IHEX-IHEX+8 M-IINPUT+32*(J-1)

 ITEMP(M)-IHEXA(IHEX)

 ENCODE(T.60)ITEMP CALL DATAI0(T.128)

 ENCODE(T.80)ETX.NULL CALL DATAI0(T.51)

 F0RMAT(64(A1.' '))

 FORMAT(AI)

 F0RMAT(51A1)

 RETURN

 END

 c

 SUBROUTINE ECHO(IPAL,INOAI.lOT.INOO.REST.PATNUM.TITLE.COMP)

 BYTE IPAL(4).REST(73).PATNUM(80).TITLE(80),COMP(79)
*

 BYTE IPAGE,INOAI.lOT.INOO.CLRS COMMON /PGE/ IPAGE(80.100)

 COMMON /FTEST/ IFUNCT,IDESC.lEND DATA CLRS/X'0C'/

 WRITE(1,10)CLRS,IPAL.INOAI.IOT,INOO.REST,PATNUM.TITLE,COMP 10 FORMATC' ’.A1,4A1.A1.A1.A1.73A1./.' '.80A1./.'
',80A1./.'
 '.80A1) DO 30 J-1,IEN0
'

 WRITE(1.20) (IPAGE(I.J).I=1.80)

 32 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 * o

 January
20 FORMAT(• ’.SeAl)
30 CONTINUE RETURN END C
c *«**«« K* «««>> **«*<**«****«« ««<« *
>1’

»"X

’X***’•"I’**
■*■**■•■* **’•"*’•"•■*’•■* *
SUBROUTINE 8INR(LFUSES.H,L)
BYTE ITEMP(4,8).H,L.CLRS LOGICAL LFUSES(32,64)
DATA CLRS/X'0C'/
WRITE(1.10)CLRS 10 FORMATC '.Al)
DO 20 1-1,33,32 INC-I-1
DO 20 IPROD-1,8 DO 20 J-1,25,8 DO 15 K-1,8 IINPUT-J+K-1 ITEMP(1,K)-L ITEMP(2,K)-L ITEMPf3,K)-L ITEMP(4,K)-L MYINX - IPROD + INC
IF(LFUSES(IINPUT,MYINX + 0)) ITEMP(4,K)-H
IFfLFUSESniNPUT,MYINX + 8)) ITEMP(3
,k)-H
IF(LFUSES(IINPUT,MYINX + 16)) ITEMP(2,K)-H IF(LFUSES(IINPUT,MYINX + 24)) ITEMP(1,K)-H 15 CONTINUE
20 WRITE(1,30) ITEMP
30 FORMATC •,8CB’,4A1,*F ’))
WRITE(1,10)
RETURN
END
C***'*********
C
SUBROUTINE PINOUT(IPAL,INOAI,lOT,INOO,TITLE)
BYTE IPAL(4),TITLE(80).PIN(8,20).IIN(7,2)
BYTE IPAGE,IBLANK,ISTAR,INOAI,lOT,INOO,CLRS COMMON /PGE/ IPAGE(80,100)
DATA IBLANK/’ ’/.ISTAR/'*’/.CLRS/X*0C’/
DO 10 J-1,20 DO 5 1-1,8
5 PIN(I,J)-IBLANK
10 CONTINUE 15 DO 25 J-1,2
DO 20 1-1,7
20 IIN(I,J)-IBLANK
25 CONTINUE
	IINI
	;2.i)
	»-IPAL(

	IIN(
	4,1
)-IPAL(

	IINI
	6,1
	|-IPAL(

	IINI
	ii.2:
	>-IPAL(

	IINI
	3
,
2
;
	l-INOAI

	IINI
	5,2
)-IOT

	IINI
	(
7
,
2
:
)-INOO

	J.0
	
	

	IL-0
	

30 IC-0 IL-IL+1 35 IC-IC+1
40 IF(IC.GT.80) GO TO 30
IF(IPAGE(IC,IL).EQ.IBLANK) GO TO 35 J-J41
IF(J.GT.20) GO TO 60 DO 55 1-1,8
PIN(I,J)-IPAGE(IC,IL)
IC-IC+1
IF(IC.GT.80) GO TO 40 IF(IPAGE(IC,IL).EQ.IBLANK) GO TO 40 55 CONTINUE 60 DO 75 J-1,10 11-0
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 33
65 II-II+1
IF(II.EQ.9) GO TO 75
IF(PIN(II.J).NE.IBLANK) GO TO 65
I- 9
70 I-I-1
II- II-1
PINfl.J)-PIN(II.J)
PIN(II.J)-IBLANK IF(II.NE.I) GO TO 70
75 CONTINUE WRITE(1,76)CLRS,TITLE
76 FORMAT(• '.AI.BOAI)
WRITE(1,78) ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR
- TCTAD TCTAO ___ •
c
c
c
ISTAR.ISTAR.ISTAR,ISTAR,ISTAR,ISTAR,ISTAR.ISTAR,
• ISTAR, ISTAR. ISTAR, ISTAR.ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR *,14X,UA1,3X,UA1.
M4X.A1.13X,A1.1X.A1.13X.A1)
78 FORMAT(/,’
c /.
JJ-20 DO 88 J-1.10
WRITEfI .8l) (PIN(I,JhI-1,8). ISTAR. J. ISTAR.
C (nN(I.1).I-1.7).ISTAR.JJ,ISTAR.(PIN(I.JJ),I-l,8)
82 raSi(:'?!, l™. ISTAR, ISTAR, ISTAR, ISTAR
WRITE(1.84) ISTAR.(IIN(I.2).1-1,7).ISTAR
84 FORMATC M4X.A1.11X.7A1, IlX.AI)
DO 86 11-1,2
DO 85 1-1,7
85 IIN(I,II)-IBLANK
86 CONTINUE JJ-JJ-1
88 CONTINUE
WRITEd.90) ISTAR.ISTAR.ISTAR.ISTAR.ISTAR.ISTAR.ISTAR.ISTAR C ISTAR,ISTAR,ISTAR.ISTAR,ISTAR,ISTAR.ISTAR.ISTAR,
C ISTAR,ISTAR,ISTAR.ISTAR.ISTAR,ISTAR,ISTAR,ISTAR,
C ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR,ISTAR
90 FORMATC M4X.31A1)
RETURN
END
C
C
SUBROUTINE FIXSYM(LBUF.IBUF.IC.IL.LFIRST.LFUSES.IBLOW,IPROD LFIX) LOGICAL LBUF(20),LFUSES(32.64),LFIRST,LMATCH.LFIX ’ ^
BYTE IBUF(8,20).FIXBUF(8)
BYTE IPAGE.A,B.ISLASH.lOR.IBLANK.IRIGHT.lAND.
C N.Q.N0.N1.N2,N3.IC0L0N,TABLE(5,14)
COMMON /PGE/ IPAGE(80.100)
DATA V’A7.B/'By. ISLASH/7 V. IOR/* + 7. IBLANK/’ ’/. IRIGHT/’) ’/,
C
C
IciJJ°/:!:/’N/'N7.Q/'Q7.N0/’0’>:N1/’1’>.N2>’2TN3/^ DATA TABLE / ’ ’ ’A’ ’+’ ’/’ ’B’
’ '.‘A’.’/’.’A’d + ’i’/’i’B’
’A’.’:’.’+’.’:’.>B’.’ ’.’A’,’*’.’/’,’B’ •A’.’:’,’*’,’:’.-B’.’ ’,’ ’,’ -.-B’
..7*.'A’.’/’.’A’.’*’.’/’.’B’
C
C
C
C
IINPUT-0 DO 20 1-1,8
IBUF(I,1)-IBLANK
20 FIXBUF(l)-IBLANK
21 CALL INCR(IC.IL.LFIX)
i-ipage(ic.il)
IFfI.EQ.IRIGHT) GO TO 40 IF(I.EQ.N0) IINPUT-8 IF(I.EQ.Nl) IINPUT-12 IF(I.EQ.N2) IINPUT-16 IF(I.EQ.N3) IINPUT-20 DO 24 J-1.7
24 IBUF(J.1)-IBUF(J+1.1)
IBUF(8.1)-I
.’A’.’+’.’B’.
*.7’.'B’.
.’A’.’+’.’B’.
.’A’.’*’,’B’,
.’A’,’*’.’B’/
IF(.NOT. ((i.eq.a).or.(i.eq.b).or.(i.eq.islash).or.(i.eq.ior)
c •0R.(I-EQ.IAND).0R.(I.EQ.IC0L0N))) GO TO 21
^
DO 30 1-1,4
34 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
30 FIXBUF(I)-FIXBUF(I+1)
FIXBUF(5)-IPAGE(IC.IL)
GO TO 21 40 IMATCH-0 DO 60 v)-1,14
LMATCH-.TRUE.
DO 50 1-1,5
50 LMATCH-LMATCH .AND. (FIXBUF(I).EQ.TABLE(I.J))
60 IF(LMATCH) IMATCH-J
IF(IMATCH.EQ.0) GO TO 100 IF^NOT.LFIRST) GO TO 85 LFIRST-.FALSE.
DO 80 1-1,32
LFUSES(I, IPROD)-. TRUE.
80 IBLOW - IBLOW -i- 1
85 DO 90 1-1,4
IF((IMATCH-7).LE.0) GO TO 90
MYINX - IINPUT + I
LFUSES(MYINX,IPROD)-.FALSE.
IBLOW - IBLOW - 1 IMATCH-IMATCH-8 90 IMATCH-IMATCH+IMATCH LBUF(1)-.TRUE.
CALL PLOT(LBUF,IBUF,LFUSES.IPROD,TITLE,.FALSE.,ITYPE,
C LPROD,IOP,IBLOW)
100 LFIX-.FALSE.
CALL INCR(IC,IL,LFIX)
RETURN
END
SIMLT.FOR
Contributed by: Trevor G. Morsholl
"PALs Simplify Complex Circuits," by Trevor G. Morsholl. Jonuory, poge 247.
C
c
SUBROUTINETEST(LPHASE,LBUF,TITLE,IC,IL,ILE,ISYM,IBUF,
C ITYPE.INOO,LFIX)
BYTE ISYM(8,20).ISYM1(8,20),IBUF(8,20).
C IVECT(20).IVECTP(20).IPAGE,IDASH.L.H.X.C.Z.N0,N1.
C IBLANK,COMENT,I6,I8,CLRS,INOO.XORSUM.
C ISTATE(20).ISTATT(20).IPIN(20).TITLE(80)
LOGICAL LBLANK.LLEFT.LAND,LOR.LSLASH.LEQUAL.LRIGHT.LXOR,LXNOR,
C LFIX.LSAME,XORFND.LERR.LPHASE(20).LPHAS1(20),LBUF(20).
C LOUT(20).LOUTP(20).LCLOCK,LPTRST.LCTRST,LENABL(20).NREG
COMMON LBLANK.LLEFT.LAND.LOR.LSLASH.LEQUAL.LRIGHT,LXOR.LXNOR COMMON /PGE/ IPAGE(80.100)
COMMON /FTEST/ IFUNCT,IDESC,lEND
DATA IDASH/'-’/.L/'L7.H/*H*/,X/*XV.C/*C7.Z/’Z7.
C N0/*07,N1/*17.
C IBLANK/’ 7,COMENT/*:7.I6/*67I8/*87.CLRS/X’0C7
IF(IFUNCT.NE.0) GO TO 3 WRITE(1.2)
2 FORMAT(A' FUNCTION TABLE MUST BE SUPPLIED IN ORDER TO PERFORM’,
C ' SIMULATION’)
RETURN
3 WRITE(1.4)CLRS.TITLE
4 FORMAT(’ ’.A1.’ CHECKING THE FUNCTION TABLE’.80A1./)
LERR-,FALSE.
ITRST-0
IC-0
IL-IFUNCT + 1
CALL INCR(IC,IL.LFIX)
DO 10 1-1,19
CALL GETSYM^PHASI . ISYM1.1. IC, IL.LFIX)
DO 5 J-1.8
5 IBUF(J.1)-ISYM1(J.I)
IF(IBUF(8.1).EQ.IDASH) GO TO 12 CALL MATCH(IMATCH.IBUF.ISYM)
IF(IMATCH.NE.0) GO TO 7 WRITE(1.6) (IBUF(J,1),J-1.8)
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 35
6
 FORMAT(/,’ FUNCTION TABLE PIN LIST ERROR
AT’.
 8A1)
RETURN
7 LOUT(I)-.FALSE.
ISTATTn)-X
IVECTP(I)-X
IFfITYPE.NE.S) GO TO 10 IFfIMATCH.EQ.1) ICLOCK-I IF(IMATCH,EQ.11) ITRST-I
10 IPIN(I)-IMATCH
12 IMAX-I-1 NVECT-0
90 NVECT-NVECT+1 IC1-0 IL1-ILE
23 IF(IPAGE(1.IL).NE.COMENT) GO TO 24 IL-IL+1
GO TO 23
24 CONTINUE
DO 20 I-1,IMAX
IF(IPAGE(IC.IL).EQ.IBLANK) GO TO 21 GO TO 22
21 IC-IC+1
IF(IPAGE(IC.IL).EQ.IBLANK) GO TO 21
22 IVECT(I)-IPAGE(IC.IL)
IC-IC+1
20 CONTINUE IL-IL+1 IC-1
IF(IVECT(1).EQ.IDASH) GO TO 95 DO 11 I-1,IMAX
IF(
IVECT(n.EQ.L.OR.IVECT(I).EQ.H.OR.IVECT(I).EQ.X.OR.
C IVECT(I).EQ.Z.OR.IVECT(I).EQ.C) GO TO 11
WRITE(1.8) IVECT(I).NVECT
8
 FORMAT(/,’
’.Al.’
 IS NOT AN ALLOWED FUNCTION TABLE ENTRY’,
C ’ IN VECTOR
’.13)
RETURN
11 CONTINUE LCLOCK-.FALSE.
LCTRST-.TRUE.
LPTRST-.TRUE.
DO 13 I-1,IMAX
13 LENABL(I)-.TRUE.
NREG-.FALSE.
DO 15 1-1.20 15 ISTATE(I)-X
IFfITYPE.NE.S) GO TO 25 IF(IVECT(ICLOCK).EQ.C) LCLOCK-.TRUE.
LSAME»((LPHASEf11)).AND.f LPHASIfITRST)).OR.
C (.NOT.LPHASE(11)).AND.(.NOT.LPHAS1(ITRST)))
IF(IVECT(ITRST).EQ.L.AND.(.NOT.LSAME).OR.
C IVECT(ITRST).EQ.H.AND.(LSAME)) LPTRST-.FALSE. IF(LPTRST) GO TO 25 DO 46 I-1,IMAX J-IPIN(I)
IF(J.EQ.14.0R.J.EQ.15.0R.J.EQ.16.0R.J.EQ.17) LENABL(I)=.FALSE IFf IN00.EQ.I6.AND.fJ.EQ.13.0R.J.EQ.18)) LENABL(I)-.FALSE IF(INO0.EQ.I8.AND.(J.EQ.12.0R.J.EQ.13 C .0R.J.EQ.18.0R.J.EQ.19)) LENABL(I)=.FALSE
46 CONTINUE
25 CALL INCR(ICI.ILI.LFIX)
26 CALL GETSYM(LBUF.IBUF,1.IC1.IL1,LFIX)
IFfLLEFT) GO TO 29
27 IF(.NOT.LEQUAL) GO TO 26 29 IF(LEQUAL) GO TO 35
NREG-.TRUE.
33 CALL GETSYM(LBUF,IBUF.1.IC1.IL1.LFIX)
CALL MATCH(IINP,IBUF.ISYM1)
IF(IINP.NE.0) GO TO 32 CALL MATCH(IMATCH.IBUF,ISYM)
ILL-IL1
IF(IINP.EQ.0.AND.IMATCH.NE.10.AND.IMATCH.NE.20) GO TO 100 IF(IMATCH.EQ.10.AND.(LBUF(1)).OR.
C IMATCH.EQ.20.AND.(.NOT.LBUF(1))) LCTRST-.FALSE.
GO TO 34
32 ITEST-IVECT(IINP)
IF(ITEST.EQ.L.AND.(LPHAS1(IINP)).AND.(LBUF(1))
36 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
C.OR. ITEST.EQ.H.AND.(LPHAS1(IINP)).AND.(.NOT.LBUF(1))
C.OR. ITEST.EQ.H.AND.(.NOT.LPHASiniNP)).AND.(LBUF(I))
C.OR. ITEST.EQ.L.AND.(.NOT.LPHAS1(IINP)).AND.(.NOT.LBUF(1))
C) LCTRST-.FALSE.
IF(ITEST.EQ.X.OR.ITEST.EQ.Z) LCTRST-.FALSE.
34 IF(LAND) GO TO 33 GO TO 27
35 CALL MATCH(IOUTP.IBUF.ISYMI)
ILL-IL1
IF(IOUTP.EQ.0) GO TO 100 IF(NREG) LENABL(IOUTP)-LCTRST LOUT(IOUTP)-.TRUE.
IF(.NOT.LCTRST) LOUT(IOUTP)-.FALSE.
LCTRST-.TRUE.
LOUTP(IOUTP)-LBUF(1)
XORSUM-H XORFND-.FALSE.
ISUM-L 28 IPROO-H
30 1LL-IL1
CALL GETSYM(LBUF.IBUF,1.IC1.IL1,LFIX)
IF(.NOT.LFIX) GO TO 39 LFIX-.FALSE.
CALL FIXTST(LPHAS1,LBUF.IC1,IL1.ISYM,ISYM1.IBUF,
C IVECT.IVECTP.ITEST,LCLOCK.NREG,LFIX)
IF(IPROD.EQ.H) IPROD-ITEST GO TO 38
39 CALL MATCH(IINP.IBUF,ISYM1)
IF(nNP.NE.0) GO TO 45 CALL MATCH(IMATCH.IBUF,ISYM)
IF(IMATCH.NE.10) GO TO 100
ITEST-L
IINP-19
LPHAS1(19)-.TRUE.
GO TO 37
45 ITEST-IVECT(IINP)
IF((.NOT.LCLOCK).OR.(NREG)) GO TO 37 CALL MATCH(IIFB,IBUF,ISYM)
IF(IIFB.EQ,14,0R.IIFB.EQ.15.0R.IIFB.EQ.16.0R.IIFB.EQ,17)
C ITEST-IVECTP(IINP)
IF((IN00.EQ.I6.0R.IN00.EQ.I8).AND.(IIFB.EQ.13.0R.IIFB.EQ.18))
C ITEST-IVECTP(IINP)
IF(IN00.EQ.I8.AN0.(IIFB.EQ.12.0R.IIFB.EQ.19))
C ITEST-IVECTP(IINP)
37 IF(ITEST.EQ.L.AND.(LPHAS1(IINP)).AND.(LBUF(1))
C.OR. ITEST.EQ.H.AND.(LPHAS1(IINP)).AND.(.NOT.LBUF(1))
C.OR. ITEST.EQ.H.AND.(.NOT.LPHASI(IINP)).AND.(LBUF(l))
C.OR. ITEST.EQ.L.AND.(.NOT.LPHASI(IINP)).AND.(.NOT.LBUF(l))
C) IPROD-L
38 IF(LRIGHT) CALL INCR(IC1,IL1,LFIX)
IF(LAND) GO TO 30
IF(ISUM.EQ.L.AND.IPROD.EQ.X) ISUM-X
IF((ISUM.NE.H).AND.IPROD.EQ.H) ISUM-H
IF(.NOT.LXOR) GO TO 31
XORSUM-ISUM
XORFND-.TRUE.
ISUM-L GO TO 28
31 IF(LOR) GO TO 28
IF ^ NOT.XORFND) ISTATT(IOUTP)-1SUM
IF((XORFND).AND.((ISUM.EQ.L.AND.XORSUM.EQ.L).OR.
C (ISUM.EQ.H.AND.XORSUM.EQ.H))) ISTATT(IOUTP)-L
IF((XORFND).AND.((ISUM.EQ.H.AND.XORSUM.EQ.L).OR.
C (ISUM.EQ.L.AND.XORSUM.EQ.H))) ISTATT(IOUTP)-H
IF((XORFND).AND. (ISUM.EQ.X.OR. XORSUM.EQ.X)) ISTATT(IOUTP)-X NREG-.FALSE.
IF(IDESC.NE.0.AND.IL1.LT.IFUNCT.AND.IL1.LT.IOESC.OR.
C IDESC.EQ.0.AND.IL1.LT.IFUNCT) GO TO 27 DO 50 I-1,IMAX IF(.NOT.LOUT(I)) GO TO 50
IF(ISTATT(I).EQ.X.AND.IVECT(I).EQ.X) GO TO 50 LSAME - ((LOUTP(I)).AND.(LPHAS1(I)).OR.
C ^NOT.LOUTP(I)).AND.(.NOT.LPHAS1(l)))
IMESS-40
IF(ISTATT(I).EQ.L.ANO.IVECT(I).EQ.L.AND.(.NOT.LSAME)) IMESS-41
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 37
.NOT.LSAME)) IMESS-42 LSAME)) IMESS-42 LSAME)) IMESS-41 IMESS-43 IVECT(I).NE.Z) IMESS-44
irfISTATTn}.EQ.H,ANO.IVECT(I).EQ.H.ANO. IFflSTATTfn.EQ.L.AND.IVECTfn.EQ.H.AND. IF(ISTATT(I).EQ.H.AND.IVECT(I).EQ.L.AND.
IFf
(

LENABL(n).AND.IVECT(I).EQ.Z) iFr
(.N0T.LENABL(I)).AN0.(L0UT(I)).AND.
IFnMESS.NE.
40
) LERR-.TRUE.
IF(IMESS.EQ.41) WRITE(1.41) NVECT.(ISYM1(J.I).J-1.8)
41 FORMAT(/.' FUNCTION TABLE ERROR AT VECT0RM3.- PIN -• 8A1
C • EXPECT - H ACTUAL - L*)
IF(IMESS.EQ.42) WRITE(1.42) NVECT.(ISYM1(J.I),J-1.8)
42 FORMAT(/.’ FUNCTION TABLE ERROR AT VECTOR',13,’ PIN -' 8A1
C • EXPECT - L ACTUAL - H')
IF(IMESS.EQ.43) WRITE(1.43) NVECT,(ISYM1(J,I).J-1.8)
43 FORMAT(/.' FUNCTION TABLE ERROR AT VECTOR'.13.'PIN -' 8A1
C /,' EXPECT - OUTPUT ENABLE ACTUAL - Z')
IF(IMESS.EQ.44) WRITE(1,44) NVECT.(ISYM1(J.I).J-1.8).IVECTfn
44 FORMAT(/,' FUNCTION TABLE ERROR AT VECTOR',13 'PIN -' 8A1 ^ ^
C ' EXPECT -
Z
ACTUAL - '.A1)
50 CONTINUE DO 65 1-1,20
DO 55 J-1.IMAX IFnPIN(J),NE.I) GO TO 55 IF(IVECT(J).EQ.L.OR.IVECT(J).EQ.H) GO TO 51
51
ISTATE(I)-IVECT(J) GO TO 65 LSAME-(
IF
(LPHASE(I)), (.NOT,LPHASE(l)),
IF((ir((IP((
m
 (
ISTATE(I)-N0
ISTATE(I)-N1
ISTATE(I)-N1
ISTATE(I)=N0
.AND.(LPHAS1(J)).OR.
AND.(.NOT.LPHASI(J)))
IN00.EQ.N1.AND.(I.EQ.15.0R.I.EQ.16)) LOUT(J)-.TRUE (.NOT.LOUT(J)).AND.(LSAME).AND.^
IVECT(J).EQ.L)
IF((.NOT.LOUT(J)).AND.(LSAME).AND.
IVECT(J).EQ.H)
IF((.NOT.LOUT(J)).AND.(.NOT.LSAME).AND.
IVECT(J).EQ.L)
IF((.NOT.LOUT(J)).AND.(.NOT.LSAME).AND.
IVECT(J).EQ.H)
LOUT(J)).AND.(LSAME).AND.
IVECT(J).EQ.L.AND.(LENABL(J))) ISTATE(I)-L
LOUT(J)).AND.(LSAME).AND. ^ ^
IVECT(J).EQ.H.AND.(LENABL(J))) ISTATE(I)-H
LOUT(J)).AND.(.NOT.LSAME).AND.
IVECT(J),EQ.L.AND.(LENABL(J))) ISTATE(I)=H
LOUT(J)).AND.(.NOT.LSAME).AND. iVECT(J).EQ.H.AND.(LENABL(J))) ISTATE(I)-L
GO TO 65 55 CONTINUE
65 IF((lCLOCK).AND.IVECT(J).NE.Z) IVECTP(J)-IVECT(J)
ISTATE(10)-X
ISTATE(20)-N1
WRITE(1,60) NVECT,(ISTATE(I),1-1,20)
60 FORMAT(' ',12,' ',20A1)
GO TO 90
95 IF(.NOT.LERR) y»RITE(1,67)
67 FORMAT(/,' PASS SIMULATION')
RETURN
100 ILERR-ILL+4
WRITE(1,101) (I8UF(I,1),I-1.8),ILERR,(IPAGE(I,ILL),I-1,79)
101 FORMAT(/,' ERROR SYMBOL - ',8A1,' IN LINE NUMBER ',13,
C /,' ',80A1,/,' THIS PIN NAME IS NOT DEFINED IN THE',
C ' FUNCTION TABLE PIN LIST')
RETURN
END
C
C
SUBROUTINE FIXTST(LPHAS1,LBUF,IC1,IL1,ISYM,ISYM1,IBUF,
C _ , IVECT,IVECTP,ITEST,LCLOCK,NREG,LFIX)
BYTE ISYM(8,20),ISYM1(8,20),IBUF(8,20),IVECT(20),IVECTP(20),
C IPAGE,L,H»X»Z
LOGICAL LBLANK,LLEFT,LAND,LOR,LSLASH,LEQUAL,LRIGHT,LXOR,LXNOR,
r 1(20),LBUF(20),LCLOCK,NREG,TOR,TXOR,TXNOR,TAND,
C LPHASA,LPHASB
/k^r^^T'LSI-ASH,

lequal ,lright, lxor, lxnor COMMON /PGE/ IPAGE(80,
100)
DATA L/'L'/,H/'H'/,X/'X'/,Z/'Z'/
CALL GETSYM(LBUF.IBUF,1,IC1,IL1,LFIX)
38
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987
CALL MATCH(IINP.IBUF.ISYMI)
ITESTA-IVECT(IINP)
LPHASA - ((LBUF(1)).AND.(LPHAS1fIINP)).OR.
C (.NOT.LBUFO)).AND.(.NOT.LPHAS1(IINP)))
IF((.NOT.LCLOCK).OR.(NREG)) GO TO 5 CALL MATCH(IIFB.IBUF.ISYM)
IF(1IFB.EQ.U.0R.IIFB.EQ.15.0R.IIFB.EQ.16.0R.IIFB.EQ.17)
C ITESTA-IVECTP(IINP)
5 IF((.NOT.LPHASA).AND.ITESTA.EQ.L) GO TO 10 IF(^NOT.LPHASA).AND.ITESTA.EQ.H) GO TO 15 GO TO 20 10 ITESTA-H GO TO 20 15 ITESTA-L
20 IF(.NOT.LRIGHT) GO TO 25 ITEST-ITESTA RETURN
25 TOR - (LOR.AND.(.NOT.LXOR))
TXOR - (LXOR)
TXNOR - (LXNOR)
TAND - (LAND.AND.(.NOT.LXNOR))
CALL GETSYM(LBUF.IBUF.1.IC1,IL1,LFIX)
CALL MATCH(IINP,IBUF.ISYM1)
ITESTB-IVECT(IINP)
LPHASB - ((LBUF(1)).AND.(LPHAS1(IINP)).OR.
C ^not.lbufo)).and.^not.lphasi(iinp)))
IF((.NOT.LPHASB).AND.ITESTS.EQ.L) GO TO 30 IF(0NOT.LPHASB).AND.ITESTB.EQ.H) GO TO 35 GO TO 40 30 ITESTB-H GO TO 40 35 ITESTB-L 40 ITEST-L
IF((TOR).AND.(ITESTA.EQ.H.OR. ITESTB.EQ.H)) ITEST-H
IF((TXOR).ANO.((ITESTA.EQ.H.AND.ITESTB.NE.H).OR.
C (ITESTA.NE.H.AND.ITESTB.EQ.H))) ITEST-H
IF((TXNOR).AND.((ITESTA.EQ.ITESTB).OR.
C (ITESTA.EQ.X.OR.ITESTB.EQ.X))) ITEST-H
IF((TAND).AND.(ITESTA.NE.L.AND.ITESTB.NE.L)) ITEST-H
IF((ITESTA.EQ.X.OR.ITESTA.EQ.Z).AND.(ITESTB.EQ.X)) ITEST-X
RETURN END C
TESTAS1.PAL
Contributed by; Trevor G. Morsholl
"PALs Simplify Complex Circuits," by Trevor G. Morsholl. innuory, poge 247.
PAL16L8
DPORT20 : These 3 lines may be used
DMA SEQUENCER ; os you see fit
FIRST TRY AT A WORKING MODEL ; then put the pin list
/MEMR /SELECT /MEMW /HLDA86 NC Q0 Q1 Q2 Q3 GND
NC /FC0 /JAMCNTR /HOLD86 /AS /WRITE /DMAEN NC /DBEN VCC
;ond,
after o blank line, the device equations
IF (HLDA86)
AS - /Q3 • /Q2 * Q1 + /Q3 * /Q2 * Q1 + /Q3 * Q2 ♦ /Q1 + /Q3 * Q2 * /Q1 + /Q3 ♦ Q2 • Q1 + /Q3
*
Q2 *
qi + Q3 * /Q2 ♦ /QI + Q3 * /Q2 * /QI
	♦
	/Q0 ;
	: 0010
	i s
	count-2

	>K
	Q0
i
	: 0011
	i s
	count=3

	♦
	/Q0
i
	; 0100
	is
	count-4

	
	Q0 ;
	; 0101
	i s
	count-5

	♦
	/Q0 ;
	; 0110
	i s
	count-6

	♦
	Q0 ;
	; 0111
	I s
	count-7

	
	/Q0 ;
	; 1000
	is
	count-8

	Xc
	Q0 ;
	; 1001
	is
	count-9

continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 J9
TESTAS2.PAS
Contributed by: Trevor G. MorsholI
"PALS Simplify Complex Circuits," by Trevor G. Marshall. January, page 247.
PAL16L8
DPORT20 ; These 3 lines may be used
DMA SEQUENCER ;
08
 you see fit
SECOND TRY AT A WORKING MODEL ; then put the pin iist /MEMR /SELECT /MEMW /HLDA86 NC Q0 Q1 Q2 Q3 GND NC /FC0 /JAMCNTR /H0LD86 /AS /WRITE /DMAEN NC /OBEN VCC
;ond, after a bionk line, the device equations
IF (HLDA86) AS ■ /Q3 * Q1 ;0X1X is counts 2,3,6,7
+ /Q3 * Q2 * /Q1 ; 010X is counts 4.5
+ Q3 * /Q2 • /Q1 ; 100X is counts 8,9
Table captionFUNCTION TABLE
Table captionQ3 Q2 Q1 Q0 /HL0A86 /AS
	xxxx
	H
	Z
	;Check that the ouput goes trIstate

	LLLL
	L
	H
	;not asserted for 0

	LLLH
	L
	H
	;or for 1

	LLHL
	L
	L
	;but true from count of 2

	LLHH
	L
	L
	; through

	LHLL
	L
	L

	LHLH
	L
	L
	

	LHHL
	L
	L
	

	LHHH
	L
	L
	

	HLLL
	L
	L
	

	HLLH
	L
	L
	;9

	HLHL
	L
	H
	;deasserted at 10

	HLHH
	L
	H
	;and should not come back

	HHLL
	L
	H
	; through

	HHLH
	L
	H

	HHHL
	L
	H
	

	HHHH
	L
	H
	;15

Table captionDESCRIPTION
This PAL implements the Address Strobe function of the DPORT20 dualoort controller PAL of the DSI-020 design.
TSTHOLDI.PAL
Contributed by: Trevor G. Marshall
"PALs Simplify Complex Circuits." by Trevor G. MorsholI. Jonuory. page 247.
PAL16R4
IC2
(C) Copyright 1984.1985 Definicon Systems Inc.
Hold arbitration PAL for DSI-32 Rev B. TM. 12/5/84, first try CLK /HLDA CTTL NC NC NC /H0LD86 /RFIO NC GND
' ^ /EN NC /HOLD /RFSHACK /HLDA86 /RFIOI /H0LD86I NC NC VCC
RFIOI :- RFIO H0LD86I :- H0L086
iLotch the asynchronous inputs, first refresh request land now the access request from the 8086
IF(VCC) HOLD = H0L086I + RFIOI
;immediately we get a request tell the CPU
:And then resolve the priorities, waiting for the HLDA before ocknowledging :First the higher priority, the 8086
^
HLDA86 := HLDA * H0LD86I * /RFIOI * RFSHACK :Refresh about to end
+ HLDA * H0LD86I * /RFSHACK * /HLDA86 ;0/Ps Inactive, do 8086 HLDA * H0Lp86I * HLDA86 ;Latch the acknowledge
^Then the refresh acknowledge
RFIOI ♦ /H0LD86I ♦ HL0A86 ;HLDA86 active and about to go
RFSHACK away
HLDA *
pending
+ HLDA ♦ RFIOI ♦ /RFSHACK ♦ /H0LD86I ♦ /HLDA86 ;0K.unless rfsh + HLDA * RFIOI ♦ RFSHACK ;Latch the acknowledge
40 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
Table captionFUNCTION TABLE
Table captionCLK /EN /H0LD86 /RFIO
Table caption/RFIOI /HOLD86I /HOLD /HLDA /HLDA86 /RFSHACK
	CL
	HH
	HH
	H
	H
	XX
	:ciock everything inactive

	CL
	HH
	HH
	H
	H
	HH
	;clock everything inactive

	CL
	HL
	LH
	L
	H
	HH
	;RFIO recognized

	CL
	HL
	LH
	L
	L
	HL
	;and acknowledged

	XL
	HL
	LH
	L
	L
	HL
	;Check DIAGON function

	CL
	HH
	HH
	H
	H
	XX
	;clock everything inactive

	CL
	HH
	HH
	H
	H
	HH
	;clock everything inactive

	CL
	LH
	HL
	L
	H
	HH
	;H0LD86 recognized

	CL
	LH
	HL
	L
	L
	LH
	;and acknowledged

	XL
	LH
	HL
	L
	L
	LH
	;Check DIAGON function

	CL
	HH
	HH
	H
	H
	XX
	;clock everything Inactive

	CL
	HH
	HH
	H
	H
	HH
	;clock everything inactive

	CL
	LL
	LL
	L
	H
	HH
	;both arrive at once

	CL
	LL
	LL
	L
	L
	LH
	;8086 wins

	CL
	HL
	LH
	L
	L
	LH
	:8086 goes away,hold active

	CL
	HL
	LH
	L
	L
	HL
	;rfsh wins now

DESCRIPTION
The HOLD PAL arbitrates between two possible sources of bus requests to the 32032. refresh and PC-BUS access.
TSTHOLD2.PAL
Contributed by: Trevor G. Marshall
“PALs Simplify Complex Circuits," by Trevor G. Marshall. January, page 247.
PAL16R4
IC2
(C) Copyright 1984,1985 Definicon Systems Inc.
Hold arbitration PAL for DSI-32 Rev B, TM, 3/5/85, Implements T2 lockin
CLK /HLDA CTTL /TSO NC NC /H0LD86 /RFIO /ADS GND
/EN NC /HOLD /RFSHACK /HLDA86 /RFIOI /H0LD86I NC /T1 VCC
;To get around the problems in the 32032 we want to lockout holds except for T2
;This is done with a single tristate output latch, using feedback IF(/CTTL) T1 « ADS ;When ADS pulses and CTTL is low then /T1 will go low
+ T1 ;and latch low until CTTL goes high and releases it all
RFIOI :■ RFIO ♦ T1 ;Latch the asynchronous inputs only when /T1 Is true
+ RFIO * HOLD ;If already holding, stay holding and ignore lockouts
HOLD86I :■ HOLD86 ♦ T1 ;same for 8086 requests + H0LD86 ♦ HOLD
IF(VCC) HOLD ■ H0LD86I ;immediately we get a request tell the CPU + RFIOI
;And then resolve the priorities, waiting for the HLDA before acknowledging •.First the higher priority, the 8086
HLDA86 HLDA ♦ H0LD86I ♦ /RFIOI ♦ RFSHACK ;Refresh about to end
+ HLDA ♦ H0LD86I ♦ /RFSHACK ♦ /HLDA86 ;0/Ps Inactive, do 8086
+ HLDA ♦ H0LD86I ♦ HLDA86 ;Latch the acknowledge
;Then the refresh acknowledge
RFSHACK HLDA ♦ RFIOI ♦ /H0LD86I ♦ HLDA86 ;HLDA86 active and about to go away
+ HLDA ♦ RFIOI * /RFSHACK ♦ /H0LD86I ♦ /HLDA86 ;0K,unless rfsh
pending
+ HLDA ♦ RFIOI ♦ RFSHACK ;Latch the acknowledge
FUNCTION TABLE
DESCRIPTION
The HOLD PAL arbitrates between two possible sources of bus requests to the 32032, refresh and PC-BUS access. This version only applies HOLDS to the CPU during T2.
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 41

 [image: Picture #5]

 TSTH0LD3.PAL
Contrlbut«d by: Trevor G. Morsholl
"PALS Simplify Complex Circuits," by Trevor G. Morsholl. Jonuory. poge 247
PAL1$R4
IC2
(C) Copyright 1984,1985 Oefinicon Systems Inc.
Hold arbitration PAL for DSI-32 Rev 8, TM. 3/5/85, implements T4
CLK /HLDA CTTL /TSO NC NC /HOLD86 /RFIO /ADS GND
/EN NC /HOLD /RFSHACK /HLDA86 /RFIOI /H0LD86I NC /T1 VCC
lock In
get around the problems in the 32032 we wont to lockout holds except for
;To T4
ij/l® ® tristote output latch, using feedback
IF(/CTTL) T1 - ADS :When ADS pulses and CTTL Is low then /T1 will go low + T1 ;and latch low until CTTL goes high and releoses it oil
RFIOI RFIO*T1
+ RFIOIeTSO + RFIOeHOLD
H0LD86I H0LD86*T1 + H0LD86*TS0 + H0LD86*H0LD
;recogni2e only during T1..BUT jKeep ready during TSO lockout :ok If 8086 Is already holding for us
IF(VCC)
HOLD
»
H0LD86I*/TS0*/T1 jOnly assert HOLD
if
not
in
TSO or
T2 + RFI0I*/TS0*/T1
1
 oriAT^^
already asserted by other source
+ RFIOI ♦ HOLD ; then Ignore lockouts
for the HLDA before acknowledging .First the higher priority, the 8086 ^
HLDA86 HLDA * H0L086I * /RFWI * RFSHACK :Refresh about to end
* /RF^SHACK * /HLDA86 :0/Ps Inactive, do 8086
:Then the ?e??esh SckSoil^dJe'"''®® ocknowledge
oway^'^'^ ■*’ * HLDA86 :HLDA86 active and about to go
pending * /RFSHACK • /H0LD86I * /HLDA86 :OK,unless rfsh
+ HLDA ♦ RFIOI ♦ RFSHACK ;Latch the acknowledge
FUNCTION TABLE
DESCRIPTION
Ik* between two possible sources of bus requests to
the 32032, refresh and PC-BUS access. This version only applies HOLDS to the CPU during T2.
MODE.ASM
Contributed by: Chris H. Poppas and
William
 H. Murray EGA Times 12," by Chris H. Pappas and
William
 H. Murray. January, page 313
MODE.ASM, AN ASSEMBLY LANGUAGE PROGRAM WHICH WILL ALLOW SCREEN MODE CHANGES FROM THE SYSTEM LEVEL ON IBM PC/AT/XT AND COMPATIBLE SYSTEMS EQUIPPED WITH AN EGA BOARD.
ENTER THE PROGRAM, ASSEMBLE, AND LINK TO OBTAIN THE .EXE FILE.
MYDATA
MESSAGE
MYDATA
SEGMENT PARA ’DATA'
ENDS screen mode desired (in Hexadecimal): $"
MYCODE
MYPROC
SEGMENT
PROC
ASSUME
PUSH
SUB
PUSH
PARA ’CODE :DEFINE CODE
far :procedure is
CS:MYCODE,DS:MYDATA
SEG. FOR MASM NAMED MYPROC
OS
AX, AX AX
:SAVE LXATION OF DS REG. :GET A ZERO IN AX :SAVE ZERO ON STACK. TOO
42 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
	
	MOV
	AX,MYDATA ;
	GET DATA LOCATION IN AX

	
	MOV
	DS,AX ;
	PUT IT IN DS REGISTER

	
	LEA
	DX,MESSAGE ;
	;PRINT MESSAGE TO SCREEN

	
	MOV
	AH, 9
	

	
	I NT
	21H
	

	
	MOV
	DL,0
	

	DIGIT:
	MOV
	AH,01 ;
	;PREPARE TO READ KEY INPUT

	
	INT
	21H
	

	
	SUB
	AL,30H
	CONVERT FROM ASCII TO HEX DIGIT

	
	CMP
	AL,0
	IS NUMBER >-0?

	
	JL
	DOIT
	IF LOWER, MAKE JUMP FOR MODE SWITCH

	
	CMP
	AL,9
	IS NUMBER <«9?

	
	JLE
	ACCEPT
	IF SO, NUMBER IN 0-9 RANGE - ACCEPT IT

	
	SUB
	AL,7
	IF NOT 0-9, IS IT A LETTER (A TO F)?

	
	CMP
	AL,0
	CHECK FOR "A"

	
	JL
	DOIT
	IF NOT, QUIT PROCESS

	
	CMP
	AL,06H
	CHECK FOR "F"?

	
	JG
	DOIT
	IF NOT, MAKE JUMP FOR MODE SWITCH

	ACCEPT:
	MOV
	CL,04H
	PREPARE TO ACCUMULATE UP TO TWO DIGITS

	
	SAL
	DL,CL
	ROTATE DL CONTENTS ONE "DIGIT" TO LEFT

	
	ADD
	DL,AL
	ADD IN NEW "DIGIT"

	
	JMP
	DIGIT
	ANOTHER DIGIT?

	DOIT:
	MOV
	AL,DL
	;PREPARE TO SWITCH SCREEN MODES

	
	MOV
	AH,0
	

	
	INT
	10H
	;CALL INTERRUPT

	
	RET
	
	RETURN CONTROL TO DOS

	MYPROC
	ENDP
	
	END PROCEDURE NAMED MYPROC

	MYCODE
	ENDS
	
	END CODE SEGMENT NAMED MYCODE

	
	END
	
	;END WHOLE PROGRAM

MODULA.LST
Contributed by: Paul A. Sand
"Three Modula 2 Programming Systems," by Paul A. Sand. January, page 333. All the programs from this review.
) MODULE filewrite;
Write 64 Kbyte disk file — Logitech version ♦)
FROM Filesystem IMPORT
File, Lookup, Close, WriteNBytes;
FROM SYSTEM IMPORT ADR;
CONST
CHUNKSIZE ■ 128; size of chunks in bytes ♦)
NCHUNKS - 512; number of chunks to write *)
TYPE
chunkarray - ARRAY [1..CHUNKSIZE] OF CHAR;
VAR
chunk ; chunkarray; cf : FILE; i : CARDINAL; fs : FileState; name : ARRAY [0..30] OF CHAR;
BEGIN
FOR I 1 TO CHUNKSIZE DO
chunk[i]
CHR(ORD(*r)
+ (i - 1) MOD 8)
END;
name "C:\TEST.DAT";
Lookup(cf, name, TRUE);
FOR i 1 TO NCHUNKS DO
WrlteNBytes(cf, ADR(chunk), CHUNKSIZE)
END;
Close(cf)
♦ one chunk ♦)
♦ chunk
file
 variable *)
♦ loop control variable *)
♦ status from Create/Close ♦)
♦
file
 name *)
continued
BYTE LISTINGS SUPPLEMENT •)ANUARY-MARCH. 1987 43
END fll«wrlt«.
MODULE ftleread;
(♦ 64 Kbyte file read — LOGITECH version ♦)
FROM FlleSystem IMPORT
File, Lookup, Close, ReadBytes;
FROM SYSTEM IMPORT ADR;
CONST
CHUNKSIZE ■ 128; f* size of chunks In bytes ♦) NCHUNKS ■ 512; number of chunks to write ♦)
TYPE
chunkarray - ARRAY [1..CHUNKSIZE] OF CHAR;
VAR
chunk : chunkarray; cf : FILE;
*)
I : CARDINAL;
Junk ; CARDINAL;
ReadBytes ♦)
fs ; FI I estate;
name ; ARRAY [0..30] OF CHAR;
(♦ one chunk ♦)
(♦ chunk
file
 varIabI
(♦ loop control variable ♦)
(♦ status from
(« status from Open & Close
* (♦
file
 name *)
BEGIN
name "CiXTEST.DAT";
Lookup(cf, name, TRUE);
FOR I 1 TO NCHUNKS DO
ReadNBytes(cf, ADR(chunk), CHUNKSIZE, junk)
END;
Close(cf);
END fIleread.
MODULE calculations;
(* Modula-2 program to perform o series of real ♦) (♦ multiplications and divisions ♦)
FROM ReallnOut IMPORT WrIteReaI;
FROM InOut IMPORT
WrIteStrIng, WrIteLn;
CONST
MAX « 5000; (♦ number of Iterations ♦)
VAR
a, b, c : REAL; (♦ used In calculations ♦)
I : CARDINAL; (♦ loop control variable ★)
BEGIN
a 2.71828;
. b := 3.14159; c := 1.0;
FOR I 1 TO MAX DO c :* c ♦ a;
c := c ♦ b;
c :■ c / a;
c :« c / b
END;
Wr I
test
rIng(*Error * *);
WrlteReal(c - 1.0, 10);
Wr I teLn
END calculations.
MODULE sieve;
FROM InOut IMPORT
WrIteLn, WrIteStrIng, WrIteCard;
CONST
SIZE - 7000;
44 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
VAR
flags : ARRAY [0..SI2E] OF BOOLEAN;
I, prime, k, count, Iter : CARDINAL;
BEGIN
Wr i teStrlng(* 10 iterations*);
Wr i teLn;
FOR iter := 1 TO 10 DO count ;■ 0;
FOR i :* 0 TO SIZE DO fIags[i] :* TRUE
END;
FOR i ;« 0 TO SIZE DO IF flags[i] THEN
prime :« I + I +3; k :■ i + prime;
WHILE k <- SIZE DO
flags[k] ;= FALSE; k :* k + prime
END;
INC(count)
END
END
END;
WriteCard(count, 1);
Wr i teString(* primes *);
WriteLn END sieve.
MODULE scout;
(♦ test character output to screen ♦)
FROM InOut IMPORT Write;
CONST
MAX = 10000; (* number of iterations ♦)
VAR
i : CARDINAL;
BEGIN
FOR i ;= 1 to MAX DO Write(*a’)
END
END scount.
MODULE precision;
determine storage req. and precision of REAL type ♦)
(* find smallest number for which (1.0 + eps) > 1.0 ♦)
FROM SYSTEM IMPORT TSIZE;
FROM InOut IMPORT
WriteString, WriteCard, WriteLn;
FROM Rea IInOut IMPORT WriteReaI;
VAR
eps : REAL;
BEGIN
WriteStringC'Size of REAL - *);
WriteCard(TSIZE(REAL), 1);
Wr i
test
ring(* bytes*);
Wr i teLn; eps :« 1.0;
REPEAT
WriteReaI(eps, 10);
WriteLn; eps :* eps/2.0 UNTIL 1.0 -f eps - 1.0;
END precision.
MODULE underflow;
(♦ find smallest positive REAL ♦)
FROM InOut IMPORT Wr iteLn;
FROM RealInOut IMPORT WriteReal;
VAR
X : REAL;
BEGIN
X
1.0;
REPEAT
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 45
WrlteR«ol(x. 10); Wr(t«Ln;
X x/2.0 UNTIL X - 0.0 END underflow.
MODULE overflow;
(* find lorgest positive REAL *) FROM InOut IMPORT WriteLn;
FROM RealInOut IMPORT WrIteReol;
VAR
X
: REAL;
BEGIN
X
:■ 1.0;
REPEAT
WrIteReal(x, 10); WriteLn;
X :■ 2.0 ♦ X
UNTIL FALSE END overflow.
MODULE Dhrystone;
FROM InOut IMPORT
WriteLn. Wrltelnt, WrIteStrIng;
FROM Rea IInOut IMPORT WrIteReal;
FROM Storage IMPORT
ALLOCATE. DEALLOCATE;
FROM Strings IMPORT CompareStr;
FROM TImeDate IMPORT GetTIme. Time;
CONST
NumberOfExecutIons «
10000
; NumberOfMeasurements =
10
; LargeRealNumber =
1000000
.
0
; MIcrosecondsPerClock =
1000
.
0
;
Enumeration - (Jdentl. Ident2. Ident3. Ident4. IdentS); OneToThIrty » [1..30];
'
OneToFIfty « [1..50];
CapItalLetter -
['A'..*2*];
Strlng30 - ARRAY[0..30] OF CHAR;
ArrayIDImInteger ■ ARRAY OneToFIfty OF INTEGER;
Array2DlmInteger » ARRAY OneToFIfty. OneToFIfty OF INTEGER* RecordPoInter » POINTER TO RecordType;
RecordType « RECORD
PoInterComp : RecordPoInter;
CASE DIscr : Enumeration OF Identi :
EnumComp : Enumeration;
IntComp : OneToFIfty;
I StrIngComp : Strlng30;
Ident2 :
EnumComp2 : Enumeration; StrlngComp2 : Strlng30;
ident3, Ident4. IdentS :
CharCompl. CharComp2 : CHAR;
END;
END;
VAR
Executlonindex : [1..NumberOfExecutIons]; Measurementindex : [1..NumberOfMeasurements];
Beg InClock. EndClock. SumClocks. EmptyLoopCIocks.
TImePerExecutIon. SumTIme. MInTIme : REAL; PoInterGlob. NextPoInterGlob : RecordPoInter;
IntGlob : INTEGER;
BooIGI
Ob
; BOOLEAN;
CharGlobl. CharGlob2 ; CHAR;
46 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
ArrayGlobI : ArraylDimlnteger;
ArrayGlob2 : Array2DimInteger;
IntGlobI, IntGlob2, IntGlob3 : OneToFifty;
Charindex : CHAR;
EnumGlob : Enumeration;
StringGlobI, StrlngGlob2 : String30;
PROCEDURE Prod(PolnterParVal : RecordPoInter);
BEGIN
WITH PolnterParVal^.PointerComp^ DO
PolnterParVal^.PoInterComp^ := PoInterGlob^; PolnterParVal'".IntComp := 5;
IntComp := PolnterParVal'".IntComp;
PoInterComp := PolnterParVal^.PoInterComp; Proc3(PolnterComp);
IF DIscr » Ident! THEN IntComp := 6;
Proc6(PolnterParVal^.EnumComp, EnumComp);
PoInterComp ;= PoInterGlob^.PoInterComp;
Proc7(IntComp. 10. IntComp);
ELSE
PolnterParVal^ :» PolnterParVal^.PoInterComp^;
END;
END;
END Prod;
PROCEDURE Proc2(VAR IntParRef ; OneToFifty);
VAR
IntLoc : OneToFifty;
EnumLoc : Enumeration;
BEGIN
IntLoc :* IntParRef + 10;
REPEAT
IF CharGlobI « »A* THEN IntLoc :» IntLoc - 1;
IntParRef ;« IntLoc - CARDINAL(IntGlob);
EnumLoc ;« Identi;
END;
UNTIL EnumLoc « Identi;
END Proc2;
PROCEDURE Proc3(VAR PoInterParRef : RecordPoInter);
BEGIN
IF PoInterGlob <> NIL THEN
PoInterParRef :* PoInterGlob^.PoInterComp;
ELSE
IntGlob 100;
END;
Proc7(10, IntGlob, Po I nterG I
Ob'".
IntComp) ;
END Proc3;
PROCEDURE Proc4();
VAR
BoolLoc : BOOLEAN;
BEGIN
BoolLoc ;« CharGlobI ■
A;
BoolLoc :« BoolLoc OR BooIGlob;
CharGlob2 :«
B;
END Proc4;
PROCEDURE Proc5();
BEGIN
CharGlobI :■
A;
BoolGlob FALSE;
END ProcS;
PROCEDURE Proc6(EnumParVaI : Enumeration; VAR EnumParRef : Enumeration); BEGIN
EnumParRef ;« EnumParVal;
IF NOT Func3(EnumParVal) THEN
EnumParRef :■ Ident4;
END;
CASE EnumParVal OF Identi :
EnumParRef ;■ Identi;
I
Ident2 :
IF IntGlob > 100 THEN
EnumParRef :■ Identi;
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 47
ELSE
EnumParRef :■ Ident4;
END;
I
Ident3 :
EnumParRef ;■ Ident2;
Ident4 :
Ident5 :
EnumParRef ;■ Ident3;
END;
END Proc6;
PROCEDURE Proc7(IntPar1Val. IntPar2Val : OneToFIfty; VAR IntParRef : OneToFIfty);
VAR
IntLoc : OneToFIfty;
BEGIN
IntLoc IntParIVal + 2;
IntParRef IntPar2Val + IntLoc;
END Proc7;
PROCEDURE Proc8(VAR ArrayParIRef : ArraylDlmlnteger; VAR ArrayPar2Ref : Array2DlmInteger; IntParIVal. IntPar2Val : INTEGER);
VAR
Intindex,
BEGIN
IntLoc ;■
IntLoc : OneToFIfty; IntParWal + 5;
ArrayParIRef[IntLoc] :« IntPar2Val;
ArrayParIRef |lntLoc + 1] :» ArrayPar1Ref[IntLoc]; ArrayParIRef[IntLoc + 30] := IntLoc;
FOR Intindex := IntLoc TO IntLoc + 1 DO
ArrayPar2Ref[IntLoc, Intindex] := IntLoc;
END;
ArrayPar2Ref[IntLoc, IntLoc - 1]
ArrayPar2Ref[IntLoc + 20,IntLoc]
IntGlob 5;
END ProcB;
PROCEDURE Fund(CharPar1VaI VAR
ArrayPar2Ref[IntLoc,IntLoc - 1] + ArrayPar1Ref[IntLoc];
CharPar2Val : CapItaI Letter) : Enumeration;
CharLod, CharLoc2 : Cap I ta I Letter ; BEGIN
CharLod :■ CharParIVal;
CharLoc2 ;» CharLod;
IF CharLoc2 <> CharPar2Val THEN RETURN Identi;
ELSE
RETURN Ident2;
END;
END Fund;
PROCEDURE Func2(VAR StrIngPar1Ref. StrIngPar2Ref : Strlng30) : BOOLEAN; VAR
IntLoc : OneToThIrty;
CharLoc : Cap ItaI Letter;
BEGIN
IntLoc :» 2;
WHILE IntLoc <= 2 DO
IF Fund(StrIngPar1Ref[IntLoc], StrIngPar2Ref[IntLoc+1])
Identi THEN
CharLoc :»
A;
IntLoc :« IntLoc + 1;
END;
END;
IF (CharLoc >*
*W’)
 AND (CharLoc <
'Z*)
 THEN IntLoc := 7;
END;
IF CharLoc - *X* THEN
RETURN TRUE;
ELSIF CompareStr(StrIngParIRef, StrIngPar2Ref) > 0 THEN IntLoc := IntLoc+7;
RETURN TRUE;
ELSE
END;
RETURN FALSE;
48 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
END Func2;
PROCEDURE Func3(EnumParVaI : Enumeration) ; BOOLEAN;
VAR
EnumLoc : Enumeration;
BEGIN
EnumLoc ;« EnumParVal;
IF EnumLoc = Ident3 THEN RETURN TRUE;
END;
END Func3;
PROCEDURE clockO : REAL;
VAR
Now: Time;
mi I Iiseconds: CARDINAL; seconds: CARDINAL; minutes: CARDINAL; hours: CARDINAL;
BEGIN
GetTime(Now); WITH Now DO
END;
seconds :« millisec DIV 1000; milliseconds :> millisec MOD 1000; hours :* minute DIV 60; minutes :« minute MOD 60
RETURN FLOAT(mi I I Iseconds)+1000.0>»t(FLOAT(seconds)+60.0*(FLOAT(minutes)+60.0*FLOAT(hours)));
END clock;
BEGIN
NEW(NextPointerGlob);
NEW(PointerGlob);
PointerGlob^.PointerComp :» NextPointerGlob;
PointerGlob^.Discr :- Identi;
PointerGlob^.EnumComp :« Ident3;
PointerGlob^.IntComp :« 40;
PointerGlob^.StringComp :» ’DHRYSTONE PROGRAM, SOME STRING*; StringGlobI :« "DHRYSTONE PROGRAM. rST STRING";
WriteLn();
WriteString(*Dhrystone Benchmark (March 84), Version Pascal / 2*); WriteLnO;
WriteString(*Times are CPU user time per execution, in microseconds*); WriteLnO;
WriteLnO;
SumTime :■ 0.0;
MinTime :■ LargeReaI Number;
FOR Measurementindex :- 1 TO NumberOfMeasurements DO BeginClock :■ clock();
Array2Glob[8][7] :■ 10;
FOR Executionindex :» 1 TO NumberOfExecutions DO Proc5();
Proc4();
IntGlobI :- 2;
IntGlob2 :« 3;
StringGlob2 :- "DHRYSTONE PROGRAM. 2*ND STRING";
EnumGlob :■ Ident2;
BoolGlob :« Func2(StringGlobI.StringGlob2);
WHILE IntGlob1<IntGlob2 DO
IntGlob3 :- 5 ♦ IntGlobI - IntGlob2; Proc7(IntGlob1, IntGlob2. IntGlob3); IntGlobI :- IntGlobl+1;
END;
Proc8(ArrayGlob1. ArrayGlob2, IntGlobI. IntGlob3);
Prod (PointerGlob);
FOR Charindex :■ *A* TO CharGlob2 DO
IF EnumGlob « Fund(CharIndex.
C)
 THEN Proc6(Ident1, EnumGlob);
END;
END;
IntGlob3 :■ IntGlob2 ♦ IntGlobI;
IntGlob2 :- IntGlob3 DIV IntGlobI;
IntGlob2 :■ 7 * (IntGlob3 - IntGlob2) - IntGlobI; Proc2(IntGlob1);
END;
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 49
EndClock :■ clock();
SumClocks :■ (EndClock - BegInClock) * MIcrosecondsPerClock;
BegInClock :■ clock();
FOR Executlonindax ;■ 1 TO NumberOfExecutIons DO END;
EndClock ;■ clock();
EmptyLoopClocks :■ (EndClock - BegInClock) ♦ MIcrosecondsPerClock;
SumClocks :> SumClocks - EmptyLoopCIocks;
TImePerExecutIon :* SumClocks / FLOAT(NumberOfExecutIons); WrIteStrlng(*Tlme for run *);
WrIteint(MeasurementIndex, 4);
WrIteStrlng(*: *);
WrIteReol(TImePerExecutIon, 10);
WrIteLnO;
SumTIme :■ SumTIme+TImePerExecutIon;
IF TlmePerExecutlon<MlnTlme THEN
MInTIme ;■ TImePerExecutIon;
END;
END;
Wr I teLn();
WrIteStrlng(’Average execution time; ’);
WrIteReol(SumTlme/FLOAT(NumberOfMeasurements), 10);
WrlteLnf);
WrIteLnO;
WrIteStrlng(’Mlnumum execution time: *);
WrIteReaI(MlnTIme, 10);
WrlteLnf);
WrIteLnO;
END Dhrystone.
PARTS.LIS
Contributed by; Robert A. Freedman
"A PAL Programmer," by Robert A. Freedman. January, page 263.
Printed Circuit Board, WW 1 Socket Module P. C. Board 1 24 Pin ZIF Socket 1 20 Pin ZIF Socket 1 RS-232 D-Sub 25-S Rt. Ang. 1
1521
RS-232 D-Sub 25-P 1 UNC5810A Sprague 3 UNC5821A 4 UNC5895A 1 IRFD-9123 HEXDIP Power FET 1 7406 1 LS138 1 LS245 1 LS251 2 LS259 1 LS273 2 LS390 1 PAL 16L8 2 PAL 16R8 1
28.00 28.00 JDR MIcroDevIces
8.00

8.00
15.80 15.80 3M-Textool
13.27 13.27
3.29 3.29 R. S. Cat # 276
3.29 3.29
2.80 8.40
2.70 10.80
2.34 2.34
2.25 2.25
0.40 0.40
0.49 0.49
0.99 0.99
0.50 1.00
1.19 1.19
0.79 1.58
0.89 0.89
3.00 6.00
3.00 3.00
50 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987
	DAC-08 EP
	2
	2.09
	4.18

	LM-317 T-220. Adjust. Reg.
	2
	1.89
	3.78

	LM-324, Quad OP-Amp
	1
	0.40
	0.40

	LM-336, 2.5 V Reference
	1
	0.40
	0.40

	LM-339, Quad Comparator
	3
	0.40
	1.19

	TL-497ANC
	1
	1.49
	1.49

	1N4002 Diode
	6
	0.20
	1.20

	1N4740A. 10 Volt Zener
	1
	0.25
	0.25

	1N4935 Fast Recov. Diode
	1
	0.25
	0.25

	100. Ohm 1/4 watt 5% Res.
	1
	0.00
	0.00

	240. Ohm 1/4 watt 5% Res.
	2
	0.00
	0.00

	1.0K Ohm 1/4 watt 5% Res.
	1
	0.05
	0.05

	1.2K Ohm 1/4 watt 5% Res.
	2
	0.05
	0.10

	2.0K Ohm 1/4 watt 5% Res.
	1
	0.05
	0.05

	2.2K Ohm 1/4 watt 5% Res.
	1
	0.05
	0.05

	2.7K Ohm 1/4 watt 5% Res.
	1
	0.05
	0.05

	5.IK Ohm 1/4 watt 5% Res.
	8
	0.05
	0.40 1% better, but 5%

	5.6K Ohm 1/4 watt 5% Res.
	1
	0.05
	0.05

	15.K Ohm 1/4 watt 5% Res.
	1
	0.05
	0.05

	8-pln IC Sockets
	1
	0.20
	0.20

	14-pln IC Sockets
	8
	0.28
	2.24

	16-pln IC Sockets
	16
	0.32
	5.12

	18-pln IC Sockets
	3
	0.36
	1.08

	20-pln IC Sockets
	7
	0.40
	2.80

	24-pln IC Sockets
	1
	1.00
	1.00

	DALE IHA-203 100uH
	1
	4.00
	4.00

	or any 100-250 uH ® 1 Amp
	0
	0.00
	0.00

	100 pf Mica Cap
	1
	0.33
	0.33

	.01 Mfd Monolythic Caps
	2
	0.15
	0.30

	0.1 Mfd Monolythic Caps
	40
	0.15
	6.00

	15 Mfd Q 20V Tantalum Cap
	4
	0.50
	2.00

	22 Mfd ® 25V Tantalum Cap
	2
	1.00
	2.00

	470 Mfd ® 16V Aluminum Cap
	1
	1.00
	1.00

	1.0 Ohm 1 Watt Resistor
	1
	0.79
	0.79

	Resistor Sip 1.0K x 7
	1
	0.35
	0.35

	Resistor Sip 2.2K x 9
	3
	0.35
	1.05

	Resistor Sip 4.7K x 7
	2
	0.35
	0.70

	Resistor Sip 4.7K x 5
	2
	0.35
	0.70

BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 51
ZAPAL.C
Contributed by: Robert A. Freedman
"A PAL Programmer," by Robert A. Freedman. January, page 263.
/* ZAPAL.C - Byte Magazine ZAP-A-PAL Programmer for IBM-PC ♦/
/* Version 1.1 - by Robert A. Freedman - 2 Oct 1986 - 11:25 PM ♦/
jflinclude <8tdIo.h>
/♦ ^Include "stdio.h" ♦/
]|ldeflne uchar unsigned char #deflne ERROR -1 Idefine base 0x100 ^define DAC_A ba8e+0 jjldeflne DAC_B base+1 ^define SCLK base-i-2
Idefine STROBE base-i-OxS ^define ENAB base-fOxS #deflne ENCH base+OxA ^define ENCL base+0xB #deflne VLH base+0xD #deflne VINHIB base-hOxE jjideflne TRIG base+0xF
#deflne BUSY #deflne CAL_REF_10V #deflne CAL.REF.2P5 ^define P23 base+0x8 Idefine P22 ba8e+0x0 Idefine P21 base+0x1 Idefine P20 base+0x2 Idefine P19 base+0x3 Idefine P18 ba8e+0x4 Idefine P17 ba8e+0x5 Idefine P16 base+0x6 define P15 base+Ox? define P14 ba8e+0x9
Int c,e,err,k,from,to,busy,vcc.vIhh,v5_0,v5_5,v6_0,v11_75;
Int vcc.want,vlhh_want;
static Int vcclo.vcchl,vlhlo,vIhhI; /♦ Auto-Cal Points ♦/
Int dac;
/♦ Enable BIMOS drivers ♦/
Inportb(base+0xC)
k
 1 Inportbfbase+0xA^
k
 1 InportbCbase-f-OxB)
k
 1
static Int verpin,vad,fuse; /♦ Pin | to verify, I/O adr, State */ static Int veradr[10] ■
{9,7,6,5,4,3,2,1,0,81; /♦ Mux adr for Pins 14 - 23 */
uchar plns[32];
/♦ Outputs Control
2

2

2

1

1

1

1

1

2

1

1 2109876534

13
static uchar clear[28] »
10
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
static uchar odlo[28] ■
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2,1
,
0
,
0
,
0
,
0
,
0
,
0
,
static uchar odhl[28] *
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
2
,
0
,
0
,
0
,
0
,
0
,
0
,
static uchar x1[28] **
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
static uchar x2[28] «
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
static uchar x3[28] ■
{0,1,2,1,2,1,4,1,4,1, 0,1,0,1,0,1,0,1,
Inputs
1 1
2345678901
 */
0,0,0,0,0,0,0,0,0,0}; /♦ Clear*/ 0,0,0,0,0,0,0,0,0,01; /* OD lo*/ 0,0,0,0,0,0,0,0,0,0}; /♦ OD hi*/ 0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
0
,
1
,
0
,
1
,
0
,
1
,
0
,
1
,
0
,
1
};
static Int pind[24] • /* Maps Pin |*s to Shift Register Position */ {10,18,19.20,21,22.23,24,25,26,27,28,11,9,7,6,5,4,3,2,1,0.8};
static s; /* s Is Style of fuze-map print-out */
static char *chlp; /* Point to string le "16L8" */
52 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
int cl,chip_lndex;
static char chlp_nam[32][10] « /♦ Array of "Chip Names" */
I "16L8"."16R8","16R6","16R4"."20L8"."20R8"."20R6","20R4"
\;
static uchar nplns[32] ■ /♦ either 20 or 24, 0 « empty */
} 20,20,20,20, 24,24,24,24
unsigned seg,offset,off,word;
struct regval j Int ax,bx,cx,dx,sl,dl,d8,es;
struct regval ♦8reg,*rreg;
char rbuf[128]; /♦ buffer line from file ♦/
unsigned char byte,best; unsigned Int cnt,fdl,fdo;
Int n,n_wr,I,j,8um,Ir,lx,lno,af,T20,T24,fuzno;
char *fn,fIiename[64],*p,fln[32],fon[32];
extern FILE ♦fopen();
FILE ♦fo.^fp;
static Int fuzmap[4096] «
j 0,1.0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1 J;
maln(argc,argv) Int argc; char **argv; \
 Int j,fooz;
/*
/*
/*
/*
printf ("\nZAP-A-PAL JEDEC Driver"); strcpyffIn,"fIle.jed");
8trcpy(fon,"fmap.jed");
T20 *1; /♦ Do 20-pln PALs */
cl -0;
vcc - 131; /* DAC-A 131 - 5.02 Volts ♦/
vihh - 154; /* DAC-B 154 - 11.75 Volts: 13.00 ® VIHH */
menu(); 8hutdn(); exlt(0);
outportbfVINHIB.I); /♦ Turn ON 497 Booster ♦/
outportbcDAC^, 156); /* Load DAC-A 156-6.0 V ♦/
outportb(DAC_B,0); /♦ Load DAC-B - 0 V ♦/
If (argc < 2) erra("Use FIXUM outflle"); ♦/
8trcpy(fIlename,argv[1]); ♦/ /* Capture output filename
fn - filename; prIntf("\nf11ename - Xs\n",fn); ♦/
fp - fopen(fn,"wb"); lf(!fp) erra("ERROR: opening"); ♦/
/* for (l-from;l<to;I++) j byte - peek(I,0xC800)
k
 0xFF; };
n_wr - fwrIte(buf,1,cnt-n«8192,fp); ♦/
/*
Y
menu()
lf(n_wr !- cnt) erra("wrlte error"); fclo8e(fp);
wIpeO while (1)
crt_srcp(0,0,0); prIntf(
"\tZAP-A-PAL Programmer - (C) 1986 by R. A. Freedman S# 00001");
T20 ■ (npln8[cl]—2071:0);
printf("\n\n\t\tPAL-%8 has %2d pins and %4d fuzes\n"
,chlp_nam[cl],npln8[cl],(12072048:3200));
prlntf("\n\tT - Select Device Type:"); prlntf("\n\tL - Load PAL chip Into RAM");
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 53
/*
I
printf("\n\tR prlntf("\n\tY pr Intf (''\n\tC pr Intf (''\n\tZ prIntf("\n\tl pr Intff"\n\tO prlntf('‘\n\tJ prIntf(“\n\tW printf(”\n\tS pr Intf (''\n\tU
prIntf("\n\tG prIntf(''\n\tM prIntf(”\n\tA pr Int f (''\n\tQ
pr Intf (''\n\t? - more to come\n\n\t
c - tolow6r(bdo8(1)
k
 0xFF);
Show fuze mop from PAL Chip");
Show fuze mop from RAM");
Compare PAL chip with RAM");
Burn
0
 PAL from RAM");
Set to READ file %8",fIn);
Set to WRITE file %8",fon);
Load JEDEC file Into RAM ♦");
Write JEDEC file from RAM");
Style of Fuze MAP Is %8 ",U&1?"JEDEC":"PALASM")); FUZEs are shown as %s".(8&2?"T or *0*";"*X* or
%t GAP every 4th fuse",(8&4?"In8ert”;"Don*t Calibrate manually");
Auto-CalIbrate");
Quit to DOS \n\n\t");
	switch(c)
	\
	

	case
	m;
	calIb();
	break;

	case
	’a*:
	autocalQ;
	break;

	case
	
	returnf0);
	break;

	case
	r:
	shopal(1*8);
	break;

	case
	» X/ • .
7 •
	shopaI(0,8);
	break;

	case
	z:
	zapal();
	break;

	case
	•r :
	loadpal0;
	break;

	case
	
	lf(loadJedec()—ERROI

	
	
	prlntf(
	"ERROR"

	case
	w:
	
	

	case
	p:
	paltypeO;
	break;

	case
	*c’:
	shopal(2,s);
	break;

	case
	*s’:
	s ■ s ^ 1;
	break;

	case
	•u*:
	8 ■ s ^ 2;
	break;

	case
	
	8 ■ s ^ 4;
	break;

	case
	•f :
	cl- (cI+1)
k
	7;

	case
	*!•;
	getfnffInJ;
	break;

	case
	0:
	getfn(fon);
	break;

	case
	•s*:
	8-8 1;
	break;

	case
	•s’;
	8 - 8 1;
	break;

	case
	•s’:
	8-8^1;
	break;

	case
	•s’:
	8 - s 1;
	break;

	default :
	
	break;

/♦ Show Fuz-Map from chip ♦/ /♦ show Fuz-Map from RAM ♦/
/♦ Compare PAL with RAM ♦/
Table captionbreak;
Table captionh
h
aetfn(fn) char ♦fn;
|char *p; Int I;
prlntf(" Enter Flle.nam "); fgets(fn,30,stdln); l=strIen(fn); p « fn + I - 1; ♦p » 0; /♦ zot \n
wlp«()
*/
prInt f("\n"); poltypaOH
loadJedec() Load a JEDEC
file
 into RAM
*/
fp « fopon(fin,"r");
if (ifp) { prlntf("\nCan’t OPEN Xs-.fln);
getchorO: return(0); j:
for (fuzno»0; fuzno < (T20?2048:3200); fuzno++) j
fuzmap[fuzno] ■ 2; /* Mark os Empty ♦/
h
I;
while (1) I
while ((c-fgetc(fp)) i-
'*•)
 j
if
 (c—ERROR) return(ERROR);
c ■ fgetc(fp); /* get command letter, Q G F L C #
*/
54 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
if (c — 'L*) I
fuzno » 0; for (i=0;i<4:i++) j c » fgots(fp):
fuzno « fuzno * 10 + ani(c); fgets(fp); /♦ Skip space ★/
do { c « fgets(fp); If (c « ERROR) return(ERROR);
fuzmap[fuzno] * c & 1; fuzno++;
J while(c == * 1’ I I c ** *0*) ;
If (c " *C*) { fclose(fp); return(0);
If (c — T*) {
chor bcda(p) char ♦p; {return(anI (*p++)>iti6+anI (♦p++)); } int anl(c) char c; }return(c >« ? (c-*7*) : (c-*0*)); {
loadpalO /♦ Load from PAL chip Into RAM ♦/
mount 0;
for (fuzno=0; fuzno < (12072048:3200); fuzno++) j fuzmap[fuzno] « readfuz(fuzno); shutdn();
mount 0
} prIntf("\nPlease mount PAL In ZIf Socket. Watch Pin 1");
getchar0;
revupO; /♦ Turn ON the Power ★/
shopal(f,s) Int f.s;
/*
 f ■ source: 0 * from RAM
1 ■ from PAL chip
2 ■ show differences
8 ■ Style: bits
0
1
2
4
8
JEDEC vs PALASM numbering “V
k
 *0^8
k Space every 4 bits
Int fooz.fuz.j;
lf(f !« 0) mount(); s « s & 7;
♦/
fuzno-0; while (fuzno < (T20?2048:3200)) {
/♦ prlntf(''\n-'*); ♦/
printf ((8&1?''\n>i«L%04d ••:''\n%4d ”)•
(s&1?fuzno:fuzno/(T20?32:40))); for (J-0;j<(T20?32:40);J++) { f - f & 3;
Ifff ■■ 0^ I fooz « fuzmap[fuzno];
Ifif ■■ 1) I fooz ■ readfuz(fuzno);
lf(f ■■
2)
 j fooz ■ fuzmap[fuzno] ^ readfuz(fuzno);
prlntf("%c".
);
h
I; shutdnO;
Ifooz ? : (fuzmap[fuzno] ? *0*:*U*)):
s&2?(fooz?*0*:* r):(fooz?*X*:*-*))
fuzno++;
If (l(fuzno % 4)) printf((s&4?" •':'•")); getcharO; wlpe();
outocalO /♦ Automatic Calibration of Voltage Generators ♦/
i Int d.test;
outportb(DAC^.0); /♦ Load DAC-A - 0 V ♦/
outportb(DAC_B.0); /♦ Load DAC-B - 0 V ♦/
printf(''\nPlease Remove PAL from socket during Calibration”); getcharO;
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 55
revupO; /♦ Turn ON the Power */
outportbrOAC^A.e); /♦ Load DAC-A - 0 V
outportb(DACJ.0); /♦ Load DAC-B -07
test - 0; d - 0; dac ■ 0;
♦/
♦/
vccio ■ 8lew(0,0); If (vccio vcchl ■ 8lew(0,1); If (vccio
ERROR) printf('‘XnXnPUNT"); ERROR) prIntf("XnXnPUNT");
outportb(DAC^.0h /♦ Load DAC-A ■ 0 V */
outportb(DACJ,0); /♦ Load DAC-B -07 ♦/
dac » 0;pr Intf (''\n");
for
vihlo ■ siew(1,0); vihhl - 8lew(lJ); l»0; l<»400; I+-5) j
If (vccio « ERROR) prIntf("XnXnPUNT"); If (vccio « ERROR) prIntf("XnXnPUNT"); vcc_want * I; vihh_want « 1;
vcc ■ (((vcchl - vccio)
* 2 *
 vcc_want) / (15 ★ 20));
vihh ■ (((vihhl - vihio) ♦ 2 ♦ vlhh_want) / (15 ♦ 20));
printf C'Xn %4d / 20 ■> vcc ■ %4d" ,vcc_want ,vcc);
printf ('• %4d / 20 ■> vIhh - %4d" ,vlhh_want ,vlhh);
Int 8lew(d,te8t) Int detest; /♦ Scan for Thresholds ♦/
do I If (dac > 255) return(ERROR);
outportb((d?DAC_B;DACJV).dac); /♦ Load DAC-(A or B) ♦/
prIntfC'Xr%8 - %3d ® 2.5Volt Point and %3d ® 10.0V Point %3d". (d?''vlhh'': ” vcc'*),(d?vlhlo:vcclo),(d?vlhhl :vcchl),dac++);
} while (I(test? CAL.REF_10V : CAL_REF_2P5)); return(dac);
callb() /« Calibrate Programmable Voltage Sources */
{ Int d,dac[2]; d - 0; dac[0] ■ 0; dac[1] ■ 0;
printf("XnType ’C’ to Calibrate, anything else to use defaults-''); c ■ tolower(getchar()); If (c !■ *c*) return(0);
revupO; /♦ Turn ON the Power ♦/
outportbfDAC_A.0); /♦ Load DAC-A - 0 V ♦/
outportb(DAC_B.0); /♦ Load DAC-B ■ 0 V ★/
while (1)
\
outportb((d?DAC_B:DAC^),dac[d]); /♦ Load DAC-(A or B) */ c ■ tolower(getchar());
if fc«*q*) {vcc - dac[0]; vihh « dac[1]; break;
If (c*«*v*) d * ++d & 1; /♦ Other DAC ♦/
If (c*=*u*) dac[d] - ++dacrdl
k
 0xFF;
If (c«*d*) dac[d] » —dac[dj
k
 0xFF;
printf ("Xrvcc-%4d, vlhh*%4d %s %8",dac[0],dac[1],
fCAL_REF_10V ? "High":" Low"), (CAL_REF_2P5 ? "High";" Low"));
revupO /♦ Set up DACs and Turn On Power ♦/
outportb(ENAB,0);
/*
 Disable BIMOS drivers ♦/ outportbfENCL,!); /* Disable BIMOS drivers CLOCK ♦/ outportb(ENCH,l);
/*
 Disable BIMOS drivers OD ♦/
56 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
	outportb(VINHIB,1);
	/♦ Turn ON 497 Booster */
	

	outportbfVLH,0);
	/♦ Set Booster to Low (15V)
	*/

	outportb(TRIG,0);
	/♦ Make sure TRIG Is low
	*/

	outportb(DAC^, vcc);
	/♦ Load DAC-A « vcc Volts
	*/

	outportb(DAC_B.vIhh);
	/* Load DAC-B « VIHH Volts
	*/

prlntf ("Xnvcc * %3d
shutdnO
outportb(ENAB,0); outportbfENCL,1); outportb(ENCHJ);
Table captionvihh - %3d'‘,vcc.vihh);
/♦ Disable BIMOS drivers /♦ Disable BIMOS drivers CLOCK /* Disable BIMOS drivers OD
♦/
*/
outportb(VINHIB.0); /♦ outportb(DAC^,0); /♦ outportb(DAC_B,0); /*
Turn OFF 497 Booster ♦/ Load DAC-A - 0 V ♦/ Load DAC-B - 0 V */
zapalO /♦ Burn a PAL from RAM Image ♦/
{
 Int e,x;
mount 0;
for (fu2no*0; fuzno < (T20?2048:3200); fu
2
no++) j
If (fuzmapFfuznol >* 2) continue;
If (fuzmap[fuznoJ »*= 0) continue;
If (fuzmap[fuzno] ■■ 1) }
/♦ Set-up and see If fuze Is already blown ♦/
X
■ do_a_fuz(fuzno);
/♦ for 16L8 fuze Is low If blown ♦/
/* If (!x) continue; ♦/ /♦ Skip If blown ♦/
h
h
shutdnO;
lf((e-zot()) — ERROR) }
prlntf(“XnCan't Program Fuze # %4d " getcharO; break; {;
return(e);
int readfuz(fuzno) Int fuzno;
/*
 Read state of selected fuse
*/ return(do_a_fuz(fuzno));
Int do_a_fuz(fuzno) Int fuzno; /* Set up to read or write a fuze */ { Int half,pin;
pin - (fuzno / (T20 ? 32 : 40));
If (pin > (T20?63;79)) return(ERROR);
,fuzno);
outportb(ENAB,0); /♦ Disable BIMOS drivers ♦/ outportbiENCL,1); /♦ Disable BIMOS drivers CLOCK ♦/ outportb(ENCH,1); /♦ Disable BIMOS drivers OD ♦/
half - (T20 ? 32 : 40); /♦ Set OD and CLOCK pins ♦/ pln(1, (pin >- half?1:2)); pln(13. (pin >- half?2:1));
(pin >* half ? Idsr(odhl) : Idsr(odlo)); /♦ Shift OD & Clock ♦/
outportb(ENCL.0); /♦ Enable BIMOS drivers CLOCK ♦/
outportb(ENCH.0); /♦ Enable BIMOS drivers OD */
selfuz(fuzno); Idsr(plns);
outportb(ENAB,1); /« Enable BIMOS drivers ♦/
return(verlfuz()); /♦ Return state of addressed fuze */
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 57
zot()
{ Int 1;
for (i»0:l<5-4;I++) j
outportb(TRIG.I): outportb(TRIG,1): while (IBUSY) jj; outportb(TRIG,0); while (BUSY) }j;
If (verifuzO) return(l); i; return(ERROR):
I
Int verifuzO /• Return state of fuze •/
outportb(ENCL.I): /* Pulse CLOCK pin by floating */
outportb(ENCL.0)! /* CLOCK to 2 momentorily */
vod - veradr[verpin-14] + base; /• Compute Mux odr of Pin */
fuse - inportb(vod) & 1; /• Read the stote of the fuse •/
^ return(fuse); /• 0 - Blown. 1 - Intact fuse •/
seIfuz(fuzno) int fuzno;
{ Int an.holf,of,ox,I Ino.pI,pIn,I;
Idsr(clear); /* Clear out old fuze info */
/* Compute and place Input pins */
lino »(fuzno % (T20 ? 32 : 40));
pin ■ (fuzno / (T20 ? 32 : 40));
If (pin > (T20?63:79)) return(ERROR);
Ir ■ 0; If (lino 42) Ir * 2: /• Find which half »/
lx “ 0; If (!(llno 4 1)) lx ■ 1; /* Find the state of Pin x */
/* Now find where to put the selected pin, ie [10..19] ♦/
for (1-0;l<10:i++) pin(2+l,2); /* Pull oil input pins to VIHH ♦/
Ino - lino / 4; pln(2+lno.lx); /* Then set Selected pin to TTL ♦/ /♦ Compute and Ploce Output Pins */
half - (T20 ? 32 : 40): /• Set 00 ond CLOCK pins ♦/
pln(1. (pin >- half?1:2)); pin(13. (pin >- holf?2:1));
pi - pin; If(pin >= half) pi » pin-half;
on - pi X 8; /* A0..An - pi mod 8 ♦/
ox = (pi / 8) 4 (T20?0xF:0x1F); /♦ Select Outp Pin to pulse •/
for (1-14;i<»23;i++) j pln(i.0); [; /* Clear all Outputs ♦/
of - (T20?16;15); of - (T20?22:23);
if (pin >- half) j of - (T20?19:19); of - (T20?18:18); 1;
If ((pin < holf) 44 1T20) an - bitinv(an,4);
an - on 4 (T20? 7 ; 0xF);
for (I - (T20?2:3); 1 >- 0; 1—) } /♦ Set Address bits */ pln(af+l,(on X 2 ? 2 : 0)); on = an / 2;
}
1
pln(of-ox,4); /* Set Output Pin to Pulse */
verpin - of-ox; /♦ Save pin to verify fuse state ♦/
pln((pin < holf ? (T20?15:14) : (T20?22:23)),lr); /* Set L/R
*/
}
int pln(n.val) int n.vol; /* Read or Store value of a pin */
[int v; uchar *p; if (n — 0 |1 n > (T20?24:24)) vol - 0xE;
p - pins + <i<(pind + n - 1 1;
V
- *p; *p - vol; return(v);
58 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987
s-opInO
I prlntf("\n");
for (i=0;l<28;i++) } lf(i -- 10 || i »« 18) printfC*
if(I 4 II I — 8 I i «« 23) prIntfO' ”);
printf
r
 %1x".pins[i]
&
 0xF);
ccpin(p) uchor ^p;
} Int i; for (i«0;i<28;i++) j pins[i] = p[i]; {
:dsr(p) char *p; /* Load pins Into Hardware Shift Register
*/
|lnt I; 1-27; while (I >- 0) } outportb(SCLK.p[l~]);
outportbfSTROBE,1) ; /* Strobe all bits Into BIMOS latches */
outportb(STROBE,0) ;
int bltlnv(val.bits) Int val.bits; /♦ Invert n bits of val ♦/
{ Int res; res - 0;
while (bits)
\
 res - res + res + (val % 2); val - val / 2; bits—; }; return(res);
erraO
n
/•
breaker 0
{ bdos(9, “Break! 1 l\r\n$'') ; exlt(0);
I
•/
$ubr()
}
/♦ seg « 0xC000; off - offset - 0; byte - 0xaa; word - 0xAAAA;
pokew(offset.seg,word); n - peek(offset.seg);
V
word - word; /♦ offset « ++offset &
0X000F
; ♦/
\
LISTING
Contributed by; Robert A. Freedman
"A PAL Programmer," by Robert A. Freedman. January, page 263.
/♦ 2APAL.C - Byte Magazine ZAP-A-PAL Programmer for IBM-PC ♦/
/* Version 1.9 - (C) by Robert A. Freedman - 23 Oct 1986 - 8:00 PM */
Idefine base 0x100 Idefine DAC_A base+0 Idefine DAC_B base+1 Idefine SCLK base+2
Idefine STROBE base+OxS
Idefine ENAB base+0x9 /♦ Enable BIMOS drivers ♦/
Idefine ENCH base+0xA Idefine ENCL base+OxB Idefine VLH base-»-0xD Idefine VINHIB base+OxE fdeflne TRIG base+0xF
#defIne BUSY (lnportb(base+0xC) & 1)
static Int verpin,vad,fuse; /♦ Pin | to verify, I/O adr. State ♦/
static Int veradr[10] - |9,7,6,5,4,3,2,1,0,8(; /♦ Mux adr for Pins 14 - 23 */
uchar pln8[32]; /♦ Set up pin values here, then shift out to hardware ♦/
/♦ Outputs Control Inputs
2221111121

1

11 210987653413 2345678901
 ♦/
static uchar clear[28]
}0.0.0,0.0.0,0,0,0.0, 0.0.0.0,0,0,0.0. 0.0.0.0.0.0.0.0.0.0}; /* Clear
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 59

 January

 static uchar odlo[28] ■

 {0.0.0.0.0,0.0.0.0,0, 2,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0}; /* QD lo static uchar odhl[28] ■

 |0»0*0»0»0»0,0,0,0,0, 1,2,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0(; /♦ OD hi static Int plnd[24] - /♦ Maps Pin numbers to Shift Register Position ♦/

 {10,18,19,20,21,22,23,24,25,26,27,28,11,9,7,6,5,4,3,2,1,0,8};

 Int

 n,I,Ir,Ix,Ino,af,T20,fu2no;

 Int do_a_fu2(fuzno) Int fuzno; /♦ Set up to read or write
a fuze
 ♦/

 { Int half,pin; '

 pin - (fuzno / (T20 ? 32 : 40)); /* Product-Line # */

 outportb(ENAB,0) outportb(ENCL,1) outportb(ENCH,1)

 /♦ Disable BIMOS drivers •/ /* Disable BIMOS drivers CLOCK •/ /*
 Disable BIMOS drivers OD ♦/

 half - (T20 ? 32 : 40): Pfn(1, (pin >- half?1:2));

 /* Set OD
and
CLOCK
pins Pln(13, (pin >- half?2:1));

 */

 (pin >■ half ? Idsr(odhl) : Idsr(odlo)); /* Shift OD
&
 Clock */

 outportb(ENCL,0); outportb(ENCH,0):

 /*
 Enable BIMOS drivers CLOCK */ /• Enable BIMOS drivers OD •/

 {

 |Ot()

 selfu
2
(fuzno): Idsr(plns); /* Set up and load Shift-registers •/ outportb(ENAB,1): /* Enable BIMOS drivers
*/

 return(verlfuz()); /♦ Read and return state of addressed fuze */

 /* TRIGger the timing PAL to zap the fuze */

 while ' - ' ' -- • '

 while while

 Table captionInt verlfuzO /♦

 {

 	
 (BUSY '

 	
) { outportb(TRIG,0); };

 	
 (IBUSY

 	
) outportb(TRIG,1); ;

 	
 (BUSY ’

 	
) 1 outportb(TRIG,0);

 	
 (0);

 	
 Return

 	
 state of fuze ♦/

 /*
 Assume the shift-registers are all set up by selfuz(fuzna)' outportb(ENCL,n: /• Puilse CLOCK pin by floating
*/

 -»0)l
*

 outportb(ENCL,

 /♦ CLOCK to Z momentarily

 ♦/

 vad = veradr[vorpln-14] + base; /• Compute Mux adr of Pin fuse - Inportb(vad) 41; /* Read the state of the fuse

 /* On 16L8, 16R8 etc PALs, 0 ■ Blown, 1 « Intact fuse */

 ^ return(fuse);

 selfuz(fuzno) Int fuzno; /* Analyzes fuze-number and sets up all pins { Int an,half,of,ox,Ilno,pl,pln,I;

 */

 */

 */

 */

 ♦/

 half = (T20 ? 32 : 40); /♦ T20 Is true for 20, false for 24 pin PAL

 Idsr(clear); /* Cleor out old fuze info */

 /* Compute and place input pins •/

 Iino =(fuzno % holf);

 pin ■ (fuzno
/half
);

 if
 (pin > (T20?63:79)) return(ERROR);

 Ir “ 0; if (lino 42) Ir * 2; /♦ Find which half ♦/

 ix - 0; If (!(IIno 4 1)) ix - 1; /* Find the state of Pin x ♦/

 /♦ Now find where to put the selected input pin, ie [10..19] */

 for (1-0;i<10;i++) pin(2+i,2); /* Pull all Input pins to VIHH ♦/

 ino - lino / 4; pin(2+ino,ix); /* Then set Selected pin to TTL */

 60 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Compute and Place Output Pins

 January

 /•

 */

 pln(1, (pin >« half?1:2)); /♦ Set OD and CLOCK pins ♦/

 pin03. (pin >» half?2:1));

 pi * pin; if(pin >« half) pi ■ pin-half;

 an ■ pi % 8; /♦ A0..An ® pi mod 8 ♦/

 ox « (pi / 8) & (T20?0xF:0x1F); /♦ Select Outp Pin to pulse ♦/

 for (i«14;l<«23;i++) { pin(i,0); |; /♦ Clear all Outputs ♦/

 af « (T20?16:15); of - (T20?22:23);

 if (pin >- half) } of = (T20?19;19); of - (T20?18:18); {;

 if ((pin < half)
kk
 !T20) an ** bitinv(an,4);

 an • an & (T20? 7 : 0xF);

 for (i ■ (T20?2:3); i >« 0; I—) { /* Set Address bits ♦/

 pin(af+i,(an % 2 ? 2 : 0)); an ■ an / 2; |;

 pin(of-ox,4); /♦ Set Output Pin to Pulse ♦/

 verpin « of-ox; /* Save pin to verify fuse state ♦/

 pin((pin < half ? (T20?15:14) : (T20?22:23)),lr); /* Set L/R ★/ (/♦ Now all the pins are set for programming or verification ♦/

 int pin(n,val) int n,val; /♦ Read or Store value of a pin */

 Jint v; uchar *p; If (n ■* 0 || n > 24) val * 0xE;

 p ■ pins + ♦(pind + n - 1 V ■ *p; *p * val; return(v;;

 Idsr(p) char ♦p; /♦ Load pins Into Hardware Shift Register ♦/

 { int i; 1-27; while (I >- 0) } outportb(SCLK.p[i—]); {;

 outportb(STROBE,1) ; /♦ Strobe all bits Into BiMOS latches ♦/

 outportb(STROBE,0) ;

 I

 PROFILER.ASM

 Contributed by: Byron Sheppord

 "High Performance Software Analysis on the IBM PC," by Byron Sheppard. January, page 157.

 TITLE: Profiler.timer

 DESCRIPTION: Fully compensated, high resolution timer.

 Internal timing resolution - 838n8.

 AUTHOR: Byron Sheppard

 CALLING SEQUENCE; call TIMER.START (FAR call) code to be timed call TIMER.STOP (FAR call)

 INPUT: none

 OUTPUT: Display of elapsed time between the TIMER.START call and the TIMER_STOP call.

 REGISTERS CRASHED: none

 STACK REQUIREMENTS: 10 bytes

 CONDITION OF INTERRUPTS: TIMER.START - no change TIMER_STOP - vorlable, exit on

 EXTERNAL REFERENCES:

 Procedures: none

 Data: none

 CONFIDENCE QUOTIENT FOR:

 Debugged: average

 Speed: n/a

 Elegance: average

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 61

 SPECIAL NOTES: -Counter 0 Is used and must not be modified In the Interval between the two tImer cal Is.

 -All DOS timekeeping functions will operate os norma I.

 -Timing events > 54.925 ml I II-sec requires Interrupts ON.

 -PROFILER^TIMER does not affect code under test.

 Data segment - word comb I noble as DATASEG

 Code segment - byte comb I noble as CODESEG

 PROFILER.TIMER starts here

 DATASEG SEGMENT tlmer_low blos.dotaseg tImer.mode tImerO equ count

 count.micro count^mlI 11 tImer.micro

 tlmer_mlI I I tImer_sec max_count odjustm tlmer_convert count_convert ten_thousand fIve_thousand thousand ten dw messoge.sec message.mlI 11 message.micro ascII_strIng DATASEG ENDS

 WORD PUBLIC equ ds:[006ch] equ 0040h

 equ 43h

 40h

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 dw

 10

 db

 db

 db

 db

 0 ;no. of Interrupt ticks

 ; (54.925mlI I sec)

 0 ;calc. from Interrupt ticks

 0 ;calc. from Interrupt ticks

 0 ;from 8253 countdown...

 ;... a I so final value 0 ;flnal value

 0 :final value

 65535 ;65536 ticks In a full count

 67 ;compensatIon factor

 8381 ;838.096 nsec per tick

 54925 ;54.925 ml I II-sec per count

 10000 5000 1000

 •Seconds: •,’$•

 •MI 111-seconds: •,•$•

 •Micro-seconds: •,•$’

 5 dupCd^),0dh.0ah, •$*

 print macro

 prInt^strIng mov Int endm

 macro oh, 9 21h

 ;DOS function call to print string ; pointed to by DS:DX

 public tlmer_8tart. timer.stop, bln asc CODESEG SEGMENT BYTE PUBLIC

 assume C8:codeseg, ds:dataseg

 ; tlmer_8tart routine ; No parameters required

 tlmer_start proc far

 push ax push dx push ds

 mov dx.dataseg ;poInt to my own data segment

 mov ds,dx

 mov tlmer_mlcro,0

 mov tImer_ml111,0

 mov tlmer_sec,0

 :- Initialize counter 0 of 8253 timer

 mov al,00110100B ;ctr 0, LSB then MSB,

 ; mode 2, binary

 out tImer_mode,al ;mode register for 8253

 sub ax,ax ;0 results In max count

 out tlmer0,al ;LSB
first

 62 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 January

 Table captionout timer0,al ;MSB next

 	
 :-read current BIOS time-of

 	
 day

 	
 mov

 	
 dx,bios_dataseg

 	
 ;point to BIOS data segment

 	
 mov

 	
 ds.dx

 	

 	
 mov

 	
 ax,timer_low

 	
 ;get count

 	
 mov

 	
 dx,dataseg

 	
 ;point to my own

 	
 mov

 	
 ds ,dx

 	
 ; data segment

 	
 mov

 	
 count,ax

 	
 ;save count

 	
 pop

 	
 ds

 	

 	
 pop

 	
 dx

 	

 	
 pop

 	
 ax

 	

 	
 ret

 timer_start

 	
 endp

 	

 TIMER.STOP routine no parameters required

 timer_stop proc far

 push ax push bx

 push dx

 push ds ;save user's DS

 mov ax.dataseg ;point to my own

 mov ds,ax

 	
 elapsed time since TIMER^START consists of:

 timer count intervals - 840ns

 2) interrupt ticks - 54 ms

 	
 - read counter 0 of 8253 timer

 	
 mov

 	
 ai.eeh ;latch

 	
 counter for read

 	
 cl i

 	
 ;interrupts off unti I

 	

 	
 : BIOS

 	
 tod is read

 	
 out

 	
 timer_mode,al

 	
 ;8253 mode register

 	
 i n

 	
 al,tImer0

 	

 	
 mov

 	
 dl ,al

 	

 	
 I n

 	
 0
1,timer0

 	

 	
 mov

 	
 dh,al ;dx has 16 bit timer count

 	
 ;-calc the

 	
 time due to 8253

 	
 counting

 	
 mov

 	
 ax,max_count

 	

 	
 sub

 	
 ax,dx ;timer

 	
 count value

 	
 mu I

 	
 timer_convert

 	
 ;get In usable form

 	
 di V

 	
 ten^thousand

 	
 ;gives time in usee

 	
 mov

 	
 timer.micro.ax

 	
 ;save usee, round nsec

 	
 cmp

 	
 dx,five.thousand

 	
 Jb

 	
 cont ;round

 	
 down

 	
 inc

 	
 timer_mIcro

 	
 ;round up

 	
 .-get BIOS

 	
 time due to interrupt ticks

 	
 cont: mov

 	
 dx,bios_dataseg ;point to BIOS data segment

 	
 mov

 	
 ds ,dx

 	

 	
 mov

 	
 ax,timer^low

 	

 	
 mov

 	
 dx,dataseg

 	
 ;point to my own

 	

 	

 	
 ; data segment

 	
 mov

 	
 ds ,dx

 	

 	
 st I

 	
 ;Interrupts ok now

 	
 sub

 	
 ax,count

 	
 ;now have number of

 	

 	

 	
 ; 54 ms ticks

 	
 mu I

 	
 count.convert

 	
 ;get into usable form

 	
 div thousand

 	

 	
 mov

 	
 count.mlI 11,ax

 	
 ;save ml I 11 sec part

 	
 mov

 	
 count_micro,dx

 	
 ;save micro sec port

 	
 ;-check for Jitter

 	

 	
 cmp

 	
 ax,0 ;check

 	
 If elapsed time Is "small"

 	
 jne

 	
 jitter^ok

 	
 ;if not, then don't worry

 	

 	

 	
 ; about jitter

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 63

 	
 January

 	

 	
 mov

 	
 ox.adjustm

 	
 cmp

 	
 tlmer_mlcro,ax
;

 	
 Jaa

 	
 jltter_ok ;If no jitter then ok

 	
 mov

 	
 tImer_inlcro.ax ; else "-ve time artifact

 	
 ■

 	
 : so fix

 	
 1

 : combine the

 	
 timer and count values

 	
 ; put result

 	
 In timer variables

 	
 j1tter.ok;

 	
 mov ox.dx ;get count^mlcro

 	
 odd

 	
 ox.tImer.mIcro ;sum micro fields

 	
 cmp

 	
 aXsOdjustm :check for underflow

 	

 	
 ;
possibl1ity

 	
 Joe

 	
 compensate ; go ahead - safe

 	
 dec

 	
 count_mlIII ; borrow

 	
 odd

 	
 ax,1000

 	
 compensate:

 	

 	
 sub

 	
 ax.adjustm ;compensate for time delays

 	
 mov

 	
 tImer_mlcro,ax

 	
 cmp

 	
 ax,1000 ;check for field overflow

 	
 jb

 	
 fld_ok ;tlmer_mlcro field ok

 	
 sub

 	
 dx,dx ;tlmer_mlcro too large

 	
 dl V

 	
 thousand ;8o carry out

 	

 	
 ; Into tImer.ml111

 	
 mov

 	
 tImer.ml111,ax

 	
 mov

 	
 tlmer_mlcro,dx

 	
 f1
d_ok: mov

 	
 ax.count_fflt 111 :8ummlin fields

 	
 odd

 	
 tImer^ml111,ax

 	
 cmp

 	
 tlmer_mi111,1000 :check as above

 	
 Jb

 	
 display

 	
 sub

 	
 dx,dx

 	
 mov

 	
 ax,tlmer_ml111

 	
 dlv

 	
 thousand

 	
 mov

 	
 tlmer_sec,ax

 	
 mov

 	
 tlmer_ml111,dx

 	
 ;-
Display results

 	
 display:

 	

 	
 1 ea

 	
 dx,message_sec ;dlsplay seconds header

 	
 print.

 	
 .str Ing

 	
 1 ea

 	
 bx,ascll_strIng ;convert seconds In ascii

 	
 mov

 	
 ax,tlmer_sec

 	
 col 1

 	
 bln_asc

 	
 mov

 	
 dx,bx ;bx points to converted ascii strl

 	
 pr Int.

 	
 .string ;dlsplay seconds

 	
 1 ea

 	
 dx,message_ml111 ;dlsplay ml 11l-seconds

 	

 	
 ;
header

 	
 print.

 	
 .string

 	
 1 ea

 	
 bx,ascll_strIng ;convert ml 11i-seconds

 	

 	
 ;
In asci1

 	
 mov

 	
 ax,timer_ml111

 	
 CO 1 1

 	
 bln_asc

 	
 mov

 	
 dx,bx

 	
 pr1nt.

 	
 .string ;dlsplay ml 11i-seconds

 	
 1 ea

 	
 dx,message_mlcro ;display micro-seconds

 	

 	
 ; header

 	
 print.

 	
 .string

 	
 1 ea

 	
 bx,asc1l_str1ng ;convert micro-seconds

 	

 	
 ; in oscl1

 	
 mov

 	
 ax,tImer^mlcro

 	
 cal 1

 	
 bln_asc

 	
 mov

 	
 dx,bx

 	
 print.

 	
 .string ;display micro-seconds

 	
 pop

 	
 ds ;restore user’s DS

 	
 pop

 	
 dx

 	
 pop

 	
 bx

 	
 pop

 	
 ox

 	
 ret

 	

 	
 tlmer_stop

 	
 endp

 January

 Binary to Ascii conversion routine Successive division by 10 Store remainder Entry:

 BX * pointer to string buffer AX * unsigned binary number Exit:

 BX « ptr to Ascii number

 Din_asc proc near push dx push cx push ox

 mov

 clear_buf:

 inc

 loop

 cx,5 ;clear strina buffer

 mov byte ptr [bxj,30h

 bx

 clear^buf

 convert:

 di V

 add

 dec

 mov

 or

 Jnz

 	
 sub

 	
 dx,dx ;clear upper half

 	

 	
 ; of dividend

 	
 ten

 dx,30h

 	
 ;(dx:ox)/10

 ;convert decimal digit ; to oscii digit

 	
 bx

 	
 [bx],dl

 	
 ;save character

 	
 ox .ax convert

 	
 ;finished?

 pop ox pop cx pop dx ret

 bin.osc endp

 CODESEG ENDS end

 RGNMAKER.ASM

 Contributed by: Howard Katz

 "Region Maker," by Howard Katz. January, page 145.

 ; RgnMaker.ASM Sun 23 Feb *86 h. katz

 ; Tue 22 July

 XREF DoContour ; source In < Traverse.ASM >

 XREF Save_To_File, PutFI Ie.Pos11 ; source In < SaveRgn.ASM >

 XREF Have.PriorJITLs, ItemHit

 Table captionXDEF GetFirstPIxel, FormingRgn, StartCoords, Trav_Count, MyRowBytes XDEF IsRegion, CreateMenu, WMgrPort, ScratchSTR, PenPoint, WStorage

 	
 XDEF Save.Image,

 	
 Restore

 	
 L.Image,

 	
 Stop_Alert, RgnHondle, UnHILIte

 	

 	
 INCLUDE QuickEqu

 	
 .D

 	

 	

 	

 	

 	
 ; portRect

 	
 equ

 	
 16

 	
 ; offset in Window Record

 	

 	
 ; Bounds

 	

 	
 equ

 	
 6

 	
 ; offsets into BitMop

 	

 	
 ; rowBytes

 	
 equ

 	
 4

 	

 	

 	
 ; Top

 	

 	
 equ

 	
 0

 	
 ; offsets into portRect & Bounds

 	

 	
 ; Left

 	

 	
 equ

 	
 2

 	

 	

 	
 ; Bottom

 	
 equ

 	
 4

 	

 	

 	
 ; Right

 	

 	
 equ

 	
 6

 	

 	

 	
 StringToNum

 	
 equ

 	
 1

 	
 »

 	
 selector for _Pack7

 	

 	
 scratchS

 	
 equ

 	
 $9FA

 	

 	

 	

 	
 scratch20

 	
 equ

 	
 $1E4

 	

 	

 	

 	
 ScreenBase

 	
 equ

 	
 $824

 	

 	

 	

 	
 ScropSIze

 	
 equ

 	
 $960

 	
 •

 	
 (word) size In bytes

 	

 	
 ScrapHand1e

 	
 equ

 	
 $964

 	

 	

 	

 	
 ScrapCount

 	
 equ

 	
 $968

 	
 »

 	
 (
 word
)
 current counter value

 	

 	
 ScrapState

 	
 equ

 	
 $96A

 	
 »

 	
 (word ; + ■ on disk

 	

 	

 	

 	

 	
 1

 	
 0 ■ in mem / - ■ not Inlted

 	
 continued

 Table captionBYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 65

 	
 January

 	

 	

 	

 	

 	
 ScrapName

 	
 aqu

 	
 $960

 	
 »

 	
 StrIngPtr

 	
 CmdKey

 	
 aqu

 	
 8

 	
 ;

 	
 BItNum In Evant Modlflar Racord

 	
 PutFIle.ID

 	
 aqu

 	
 -3999

 	
 •

 	
 RasID for SFPutFIla Dialog

 	
 WIndID

 	
 aqu

 	
 100

 	

 	

 	
 App1eMenu

 	
 aqu

 	
 1

 	

 	

 	
 FI 1eRgnMenu

 	
 aqu

 	
 2

 	

 	

 	
 Wr1teRgn^Item

 	
 aqu

 	
 1

 	

 	

 	
 Qu I t_I tarn

 	
 aqu

 	
 3

 	

 	

 	
 EdI tRgr^Menu

 	
 aqu

 	
 3

 	

 	

 	
 Cutitem

 	
 aqu

 	
 3

 	

 	

 	
 Copyltem

 	
 aqu

 	
 4

 	

 	

 	
 Pasteltam

 	
 aqu

 	
 5

 	

 	

 	
 CreateRgnMenu

 	

 	
 aqu

 	
 4

 	

 	
 Bu11dRgnItam

 	

 	
 aqu

 	
 1

 	

 	
 DontBui1dltern

 	

 	
 aqu

 	
 2

 	

 	
 CopyReglonItam

 	
 aqu

 	
 4

 	

 	
 Additem

 	

 	
 aqu

 	
 5

 	

 	
 Subtractitem

 	

 	
 aqu

 	
 6

 	

 	
 Disp1ayRgnMenu

 	
 aqu

 	
 5

 	

 	

 	
 LastMenu

 	
 aqu

 	
 5

 	

 	

 	
 FIrstDACNum

 	
 aqu

 	
 3

 	

 	

 	
 HIBItNum

 	
 aqu

 	
 7

 	
 ;

 	
 working with bytas

 	
 MousaOownEvent

 	
 aqu

 	
 1

 	

 	

 	
 KayDownEvent

 	
 aqu

 	
 3

 	

 	

 	
 Travarsa_Cursor

 	
 aqu

 	
 10

 	
 *

 	
 RasNum of my cursor

 	
 INCLUDE MacTraps

 	
 i.D

 	

 	

 	

 	
 st

 	
 FormIngRgn(a5)

 	
 ; turn off If we don’t wont to ; collect _LIna*s Into o RgnDaf

 	
 sf

 	
 DeskAcc_0pened(a5)

 	
 sf

 	
 Hava_Pastad(a5)

 	

 	
 st

 	
 FIrst^ActIvata(a5)

 	

 	
 sf

 	
 DoneF1agfa5)

 IsReglon^aS)

 	

 	
 sf

 	
 ; We’ve not done o Traverse with ; ’Form Region’ On

 	
 sf

 	
 DoneCopyRegI on(a5)

 	
 ; We’ve not copied o Region Trover ; to the Work Areo

 	
 sf

 	
 Have_PrIor_DITLs(a5)

 	
 ; no prior saving of DITLs

 	
 mova.1

 	
 #0, BItMap(a5)

 	
 ; haven’t done a CopyBIts yet

 	
 BSR

 	
 InitManagars

 	

 	
 BSR

 	
 Save_WMgrPort

 	

 	
 BSR

 	
 Instai I
31
anus

 	

 	
 BSR

 	
 OpenWIndow

 	

 	
 EvantLoop

 	
 ^SystamTask

 	

 	
 tst .b

 	
 Hava_Pastad(a5)

 	
 ; If we haven’t Pasted,

 	
 beq

 	
 @1

 	
 ; leave the cursor alone

 	
 c 1 r . 1

 	
 -(sp)

 	

 	
 _FrontWIndow

 	
 ; which window Is frontmost ?

 	
 move.1

 	
 (sp)+,
00

 	
 1 ea

 	
 WStorage, a2

 	
 ; get Ptr to the Contour Window

 	
 cmpa.1

 	
 00
, o2

 	
 beq.s

 	
 ®Check_pRect

 	
 ; Contour Window is In front

 	
 bra.s

 	
 @1

 	
 ; some other window is In front

 66 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 •Check^pRect

 	
 cl r

 	
 -(*p)

 	
 : space for Boolean Func Result

 	
 peo

 	
 HouseLoc

 	

 	
 _GetMouse

 	
 ; where's the cursor ?

 	
 move.1

 	
 MouseLoc, -(sp)

 	

 	
 peo

 	
 portRect(o2)

 	

 	
 _PtInRect

 	

 	
 tst

 	
 (sp)+

 	

 	
 beq.8

 	
 «1

 	
 ; NOT In contentRgn of Contour Window

 	
 bsr

 	
 Set^Troverse^Cursor

 	
 bro.s

 	
 62

 	

 •1 ^InltCursor

 t2 bsr GetNextEvent

 tst.b DoneFlag(a5) beq.8 EvantLoop .ExItToShelI

 Sat_Traverse_Cur8or

 cir.l -(sp)

 move #Travar8e_Cursor,

 _GetCur8or

 move.I (sp^+,
00

 move.I (
00
),
00

 move.I
00
, -(ep)

 _SetCur8or

 RTS

 ; reserve apoce for Hondle (ap) ; Cursor ID

 ; ptr to CursorDoto

 GetNextEvent

 	
 subq.I

 	
 #2. sp

 	

 	
 move

 	
 #-1, -(sp)

 	
 ; eventMosk ■ everyEvent

 	
 peo

 	
 EventRecord

 	
 ^GetNextEvent

 	

 	
 tst.b

 	
 (»p)+

 	

 	
 beq.8

 	
 Return

 	

 	
 move

 	
 Whot, D0

 	

 	
 beq.8

 	
 Return

 	

 	
 cmp

 	
 #9, d0

 	
 ; don't worry about events

 	
 bge.s

 	
 Return

 	
 ; numbered 9 or higher

 	
 odd

 	
 d0, d0

 	

 	
 lea

 	
 EventJToble, o0

 	

 	
 odd

 jmp(a0)

 	
 0(o0, d0),
00

 	
 ; we RTS out of each routine

 Table caption; to EventLoop

 	
 EventJTobIe

 	
 0NuIlEvent

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 0

 	
 0MDown

 	
 dc

 	
 MouseDown

 	
 - EventJToble

 	
 1

 	
 QMouseUp

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 2

 	
 0KDown

 	
 dc

 	
 KeyDown

 	
 - EventJToble

 	
 3

 	
 OKeyUp

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 4

 	
 0AutoKey

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 5

 	
 •Update

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 6

 	
 •Disk

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 7

 	
 •Activate

 	
 dc

 	
 Activate

 	
 - EventJToble

 	
 8

 	
 •Undefined

 	
 dc

 	
 Return

 	
 - EventJToble

 	
 9

 	
 Activate

 	
 ; check

 	
 If

 	
 the Contour Window

 	
 Is coming active.

 	
 If

 ond this Is the first time here, try Posting In from the Scrop. else check If o Desk Accessory wos open Just prior. If It wos, restore the soved background

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 67

 	

 	
 cir.l -(sp)

 .FrontWindow move.l (8p)+, a0 lea WStorage, a2

 cmpa.1 a0, a2

 bne.s GRts

 	
 ; which window is frontmost ?

 ; get Ptr to the Contour Window

 ; Contour Window

 	
 (60

 	
 tst.b

 beq.s

 sf

 BRA

 	
 First^/ctivate(a5)

 (61

 First^Act1vate(a5) Paste_From_CI1p

 	
 ; do an 'auto-Paste* on Ist Activate ; no ; yes

 	

 	
 tst.b

 beq.s

 	
 DeskAcc_0pened(a5)

 ®Rts

 	
 ; was User using the ScrapBook ?

 ; no

 	

 	
 sf

 	
 DeskAcc_0pened(a5)

 	
 ; yes - turn off flag

 	

 	
 BSR

 	
 Restore_Image

 	
 ; restore old background

 	
 iSRts

 	
 RTS

 	

 	

 MouseDown

 cir -(sp)

 move.I Wh«r«, -(sp)

 pea WhIchWIndow

 _FlndWindow

 move (8p)+, d0

 add d0, d0

 lea MouseJTable, a0

 add 0(a0. d0), a0

 jnip(o0)

 returns where Mouse was clicked global coords of Mouse Location whose ?

 where was It

 Table captionReturn

 	
 RTS

 	

 	

 	
 ; return to EventLoop

 	
 MouseJTob1e

 	

 	

 	

 	
 ®inDesk

 	
 dc

 	
 Return

 	
 - MouseJToble

 	
 ©inMBar

 	
 dc

 	
 InMenu

 	
 - MouseJTable

 	
 (6SysEvent

 	
 dc

 	
 SystemEvent

 	
 - MouseJTable

 	
 ©Content

 	
 dc

 	
 InContent

 	
 - MouseJTable

 	
 ©Drag

 	
 dc

 	
 Return

 	
 - MouseJTable

 	
 ©Grow

 	
 dc

 	
 Return

 	
 - MouseJTable

 	
 (6GoAway

 	
 dc

 	
 TrackGoAway

 	
 - MouseJTable

 	
 Save.Image

 	

 	

 	

 ; first get the intersection of the current port and the ; incoming Dialog or Alert in Global Coords.

 ; ResID of Resource in D3 / ResType in A3

 	
 1 ea

 	
 WStoroge+portRect, a0

 	

 	
 1 ea

 	
 Scratch20, a2

 	

 	
 move.1

 	
 (o0)+. (o2)+

 	
 »

 	
 move.1

 	
 (o0), (a2)+

 	
 *

 	
 pea

 	
 Scratch20

 	

 	
 _LocalToGlobal

 	

 	
 pea

 	
 Scratch20+4

 	

 	
 _LocaIToGlobal

 	

 	
 cir.l

 	
 -(sp)

 	
 »

 	
 move.1

 	
 o3, -(sp) d3. -(sp)

 	
 »

 	
 move

 	
 >

 	
 _GetResource

 	

 	
 move.,!

 	
 (sp)+, d1

 	
 ;

 	
 BEQ

 	
 ©ErrRts

 	

 	
 move.1

 	
 d1, 00

 	

 	
 move.1

 	
 (a0),
00

 	
 ;

 	
 move.1

 	
 (a0)+, (o2)+

 	
 >

 	
 move.1

 	
 (00). (02)

 	
 »

 move Window pRect into 1st 8 bytes of Scratch20 area

 Table captionreturned Handle •DLOG* or ‘ALRT* DLOG or ALRT ResID

 Table captionHand Ie

 Ptr to Data

 move pRect of DLOG into 2nd 8 bytes of Scratch20 area

 Table caption68 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 92

 cmp #PutFile_ID. d3

 bne.s
92

 ;
 SFPutFlIe DLOG requires an adjustment for PutFI Ie_Pos11 pea Scratch20*i-8

 move.I PutFIIe_PosIt, -(sp) ; Global TopLeft of DLOG pRect

 _0ffsetRect

 	
 pea

 move

 move

 	
 Scratch20+8 #-8. -(sp) #-8. -(sp)

 	
 _InsetRect

 	
 cl r

 	
 -(sp)

 	
 pea

 	
 Scratch20

 	
 pea

 	
 Scratch20+8

 	
 pea

 	
 Scratch20+8

 	
 _SectRect

 	
 tst

 	
 (sp)+

 	
 BEQ

 	
 ©ErrRts

 ; compensate for Window Frame ; around the DLOG/ALRT pRect

 BOOLEAN result

 Contour Window (Global)

 Dialog (Global)

 *> Intersection (Global)

 pea Scratch20+8

 _GlobaIToLocaI pea Scratch20+8+4

 _GlobalToLocal

 lea BltMap(a5), a3

 move.I Scratch20+8, Bounds(a3)

 move.I Scratch20+12, Bounds+4(a3)

 BSR Get.SIze

 move d1, rowBytes(a3)

 returns D0 * Size (bytes) D1 ■ rowBytes

 ^NewHandle.CLEAR BMI ©ErrRts

 move.I 00, Image.HandIe(a5) move.I (a0), (a3)

 move.I (oS), a2 move.I (a2). a2 lea 2(a2), a2

 move.I a2, -(sp) move.I a3, -(sp)

 pea Scratch20+8 move.I (sp), -(sp) move #0. -(sp) cIr.I
 -(sp)

 _CopyBIts BRA ©Rts

 deref to Ptr ■ BaseAddr In ToBItMap QDVars

 ; fromBItMap ; toBItMop

 ; local coords of fromRect ; again for ToRect ; mode

 ; maskRgn ■ NIL

 ©ErrRts move.I #0. BltMap(a5) ©Rts RTS

 Restore_Image

 pea WStorage

 _BeglnUpdate

 tst.l
 BltMap(a5)

 ?

 beq.s
9End

 lea BltMap(a5), a2

 move.I Imaae.Handle(a5), 00 move.I (00;. (a2)

 move.1 a2, -(sp)

 ; can’t save the Image - forget It

 ; have we done a ’Save.Image* CopyBIts ; no

 : baseAddr ; fromBItMap

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 69

 move.I a3

 move.I (a3;» o3

 pea 2(o3)

 pea Bound8(a2)

 move.I (ep), -(sp) move #0. -(ep)

 cir.l -(ep)

 _CopyBIte

 move.I #0, BItMap(a5) move.I Image.HandIe(a5), 00 .DIepoeHandIe

 ®End pea WStorage .EndUpdate

 RTS

 ; toBItMap (the ecreen)

 ; again for ToRect ; mode

 ; moekRgn > NIL

 ; clear CopyBfte 'flag*

 ; clear up epace on the Heap

 Get^Slze

 	
 move

 	
 Bounde+RIght(a3), d2

 	
 ext. 1

 	
 d2

 	
 eub

 	
 Bounde+Left(a3), d2

 	
 odd

 	
 #1. d2

 	
 divu

 	
 #16, d2

 	
 move

 	
 d2, d1

 	
 and. 1

 	
 #$FFFF0000, d2

 	
 beq.e

 	

 	
 add

 	
 #1. dl

 	
 add

 	
 d1, dl

 	
 move

 	
 Bounde+Bottom(a3), d0

 	
 eub

 	
 Bounde+Top(a3), d0

 	
 add

 	
 #1. d0

 	
 mu lu

 	
 dl, d0

 	
 RTS

 	

 ; width

 ; -> remainder + quotient ; eave quotient ; check remainder ; no remainder ; rowWorde

 ; worde -> bytee

 ; d1 ■> rowBytee

 ; d0 ■> Size (long) for _NewHandle

 TrackGoAway

 cir “(sp)

 pea WStorage

 move.I Where, -(sp)

 ^TrackGoAway

 move (ep)’!', d0

 bne SetDone

 RTS

 InMenu

 cir.l
 “(sp)

 move.I Where, -(sp)

 _MenuSeIect move.I (sp)+, d0 ewop d0

 FIndMenu

 cmp lAppIeMenu, d0

 BEQ In_AppIS-Menu

 cmp #F11eRgnMenu• d0

 BEQ InJ^IIe_Menu

 cmp |EdItRgnMenu, d0

 BEQ In.EdIt_Menu

 cmp #CreateRgnMenu, d0

 BEQ In_CreateRgn_Menu

 cmp #DIspIoyRgnMenu, d0

 BEQ In_DIspIayRgn_Menu

 BRA UnHILIte

 In_AppIe_Menu

 ; epace for BOOLEAN reeult ; from Event Record

 ; mouse WAS released In goAway box ; It wasn’t

 ; global again

 ; track the mouse In the MBar ; save Menu and ItemNum ; MenuNum -> LowByte

 70 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 	
 swap

 	
 de

 	
 cmp

 	
 #1. d0

 	
 bne

 	
 (SGetDAC

 	
 move

 	
 #107, d3

 	
 move.1

 	
 #*DLOG', a3

 	
 BSR

 	
 Sav«_Iitiage

 	
 c 1 r . 1

 	
 -(sp)

 	
 move

 	
 #106. -(sp)

 	
 move.1

 	
 #0. -(sp)

 	
 move.1

 	
 #-1, -(sp)

 	
 .GetNewDialog

 	
 move.1

 	
 (sp)+, d4

 	
 BSR

 	
 @Wait_for_next

 	
 move.1

 	
 d4, -(sp)

 	
 .CioseDialog

 	
 c 1 r . 1

 	
 -(sp)

 	
 move

 	
 #107, -(sp)

 	
 move.1

 	
 #0. -(sp)

 	
 move.1

 	
 #-1. -(sp)

 	
 _GetNewDialog

 	
 move.1

 	
 (sp)+, d4

 	
 BSR

 	
 @Wait_for_next

 	
 move.1

 	
 d4, -(sp)

 	
 .CIoseDialog

 	
 cIr. 1

 	
 -(sp)

 	
 move

 	
 #108, -(sp)

 	
 move.1

 	
 #0. -(sp)

 	
 move.1

 	
 #-1, -(sp)

 	
 .GetNewDIalog

 	
 move.1

 	
 (sp)+, d4

 	
 BSR

 	
 ®WoIt_for_next

 	
 move.1

 	
 d4. -(sp)

 	
 _Clo8eDialog

 	
 BSR

 	
 Restore^Image

 	
 bra.s

 	
 UnHILite

 ; ItemNum back in Low Byte ; not Item 1 - must be Open a Desk Acc ; ResID of upcoming 'About* DLOG

 reserve space for Ptr 'About' DLOG ID create space in front of everything

 reserve space for Ptr 'About* DLOG Instructions ID create space in front of everything

 reserve space for Ptr

 'About' DLOG Instructions Part2 ID

 create space

 in front of everything

 @Wait_for_next

 move.I #0, -(sp)

 pea ItemHit

 _ModaIDialog

 move ItemHit, d0

 cmp #1, d0

 bne @Wait_for_next

 RTS

 ®GetDAC

 move.I HAppIeMenu(a5), -(sp) move d0, -(sp)

 pea DACName

 _GetItem

 st DeskAcc_0pened(a5)

 move #WindID, d3

 move.I I'WIND', a3 BSR Save_Image

 DeskAcc

 cir -(sp)

 no fiIterProc

 ; saved menuHandle for AppleMenu

 ; ResID of upcoming Dialog/Alert ; save Bits to be hidden by the

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 71

 pea DACNome

 .OpenOeskAcc move (sp)^*

 pea WStorage

 .SetPort

 UnHiLite

 cir -(sp)

 _HILlteMenu

 RTS

 In_FiIe_Menu

 swap 00

 cmp #Qult_Item, 00

 BEQ SetOone

 cmp #WrIteRgn.Item, d0

 bne UnHiLite

 	

 	
 BSR

 	
 Save_To_File ; see

 	
 source in < SaveRgn.ASM >

 	

 	
 bra

 	
 UnHiLite

 	

 	

 	
 In_Edit_Menu

 	

 	

 	

 	

 	
 swap

 	
 d0

 	
 ;

 	
 Put ItemNum in Low Byte

 	

 	
 move

 	
 d0, d3

 	

 	

 	

 	
 BSR

 	
 System_Edit

 	

 	

 	

 	
 BNE.s

 	
 ©Bra

 	
 »

 	
 Oesk Acc handled the Menu selection

 	

 	
 move

 	
 d3. d0

 	
 »

 	
 restore MenuIO
k
 ItemNum

 	

 	
 cmp

 	
 #CutItem, d0

 	

 	

 	

 	
 BEQ.s

 	
 ©Cut

 	

 	

 	

 	
 cmp

 	
 #CopyItem, d0

 	

 	

 	

 	
 BEQ.s

 	
 ©Copy

 	

 	

 	

 	
 cmp

 	
 #PasteItem. d0

 	

 	

 	

 	
 BNE.s

 	
 ©Bra

 	

 	

 	
 ; do
0

 	
 Paste

 	

 	

 	

 	

 	
 BRA

 	
 Paste_From_CIip

 	

 	

 	
 @Cut

 	

 	

 	

 	

 	

 	
 BRA

 	
 ©Bra

 	

 	

 	
 ©Copy

 	

 	

 	

 	

 	
 ©Bra

 	
 BRA

 	
 UnHiLite

 	

 	

 	
 System.

 	
 .Edit

 	

 	

 	

 	

 	
 sub

 	
 #1. d0

 	
 »

 	
 check if the Oesk Accessory is

 	

 	
 c 1 r

 	
 -(sp)

 	
 >

 	
 going to handle our Edit selection

 	

 	
 move

 	
 <J0, -(sp)

 	

 	

 	

 	
 _SysEdit

 	

 	

 	

 	
 move

 	
 (8p)+. d0

 	
 >

 	
 pop the result

 	

 	
 RTS

 	

 	
 >

 	
 (FALSE - WE handle it)

 	
 In_0isp1ayRgn_Menu

 	

 	

 	

 	
 swap

 	
 d0

 	

 	

 	

 	
 cmp

 	
 #1, d0

 	
 t

 	
 Clear Window ?

 	

 	
 beq.s

 	
 @cI ear

 	

 	

 	

 	
 tst.b

 	
 OoneCopyRegion(a5)

 	
 »

 	
 Oon’t Allow Region Operations if

 	

 	
 BEQ

 	
 ©bra1

 	

 	
 we haven't copied one to Work Area

 	

 	
 cmp

 	
 #3. d0

 	
 •

 	
 Frame Region ?

 	

 	
 beq.s

 	
 ©Frame

 	

 	

 	

 	
 cmp

 	
 #4. d0

 	
 ;

 	
 Paint Region ?

 	

 	
 beq.s

 	
 ©Paint

 	

 	

 Table caption72 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987

 	

 	
 cmp

 	
 #5. d0

 	

 	
 beq.s

 	
 ©Invert

 	

 	
 cmp

 	
 #7s d0

 	

 	
 beq.s

 	
 ©Draws Ize

 	

 	
 BRA

 	
 ©Bra1

 	
 ©Frame

 	
 move.I

 	
 RgnHandIe(a5), -(sp)

 	

 	
 _FrameRgn

 	

 	
 bra. s

 	
 @Bra1

 	
 ©Paint

 	
 move.I

 	
 RgnHandle(a5), -(sp)

 	

 	
 .PaIntRgn

 	

 	
 bro.s

 	
 ©Bral

 	
 ©Invert

 	
 move.I

 	
 RgnHand1e(a5), -(sp)

 	

 	
 .InverRgn

 	

 	
 bra.s

 	
 ©Bra1

 	
 ©cI ear

 	
 move.I move.I

 	
 (a5). a0 (a0), a0

 	

 	
 pea

 	
 16(a0)

 	

 	
 _EraseRect

 	

 	
 bra.s

 	
 @Bra1

 Table caption@DrawSize

 move.I WMgrPort, -(sp) _SetPort

 move.I PenPoint, -(sp)

 _MoveTo

 pea *

 _DrawStrIng

 	
 move.I

 	
 RgnHandIe(a5), a0

 	
 move.I

 	
 (a0), a0

 	
 move

 	
 (a0). d0

 	
 ext. I

 	
 d0

 	
 I ea

 	
 ScratchSTR, a0

 	
 move

 	
 #0. -(sp)

 	
 .Pack?

 	

 	
 pea

 	
 ScratchSTR

 	
 .Drawstring

 	
 pea

 	
 • Bytes'

 	
 .DrawStrIng

 	
 pea

 	
 WStorage

 	
 .SetPort

 	
 @bra1 BRA

 	
 UnHILIte

 	
 SetDone

 	

 	
 st

 	
 DoneFIag(a5)

 Table captionRTS

 In_CreateRgn_Menu

 swap D0

 move D0, 03

 cmp #0ontBuiIditem, d0

 bhi «2

 ; User Selected either 'Build Region*

 move.I CreateMenu(A5), -(sp) move #1, -(sp)

 8f -(sp)

 _CheckItem

 move.I CreateMenu(A5), -(sp) move #2, -(sp)

 ; Invert Region ?

 ; Handle

 ; Pointer to (Addr of) Region ; RgnSIze (INT)

 ; Num to String

 ; Save Selected Item Number

 ; Was It 'Copy* or greater ? or 'Display Only*

 ; UnCheck Both Items 1
k 2

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. I987 73

 January
sf -(sp)
.Checkitem
move.I CreateMenu(A5), -(sp) move d3, -(sp)
St
-(sp)
_CheckItern
and Check the Apt Item
cmp #OontBuI Idltem» d3 bne.s ®1
sf Form!ngRgn(A5)
BRA @Bra
; We*re ARE Forming a Region ; We*re NOT Forming a Region
st FormIngRgn(A5)
BRA @Bra
; User Selected either 'Copy to*, *Add to*, or *Subtract from Work Area*
®2
tst.b IsReglon(a5)
BEQ ®Bra
cmp #CopyRegIonItem, d3
beq.s ©CopyToWorkArea
We haven’t Formed a Region yet
tst.b DoneCopyRegIon(a5)
BEQ ®Bra ; We can’t Add or Subtract from the
; Work Area until we’ve done a ’Copy*
cmp #AddItem, d3
beq.s ®AddToWorkArea
cmp ^SubtractItem, d3
beq.s ©SubtractFromWorkArea
BRA @Bra
©CopyToWorkArea
tst.b DoneCopyRegIon(a5) beq.s ©3
move.I RgnHandIe(a5), -(sp) _DIsposRgn
®3 move.I a6, -(sp)
cIr.I -(sp)
_NewRgn
move.I (sp), RgnHandIe(a5) _CopyRgn
st DoneCopyRegIon(a5)
move.I FI IeMenu(A5), -(sp) move #WrIteRgn_Itern, -(sp)
_EnabIeltem
; have we previously done a ’Copy* ?
; no — *
d:
;
 we don’t want old Regions cluttering ..
; up the Heap * .
; Handle to Current (traverse) Region '
; use this flag to allow ; later Add
k
 Subtract
move.I CreateMenu(A5), -(sp) move.I (sp), -(sp) move ^Addltem, -(sp)
_EnabIeltem
move #SubtractItem, -(sp) _EnabIeltem
move.I DlspIayMenu(A5), -(sp)
move.I Tsp^, “(sp)
move.I (sp), -(sp)
move.I (sp), -(sp)
move #3, -(sp)
_EnabIeltem move #4, -(sp)
_Enableltem move #5, -(sp)
_Enableltem move #7. -(sp)
_EnableItem
BRA @Bra
a
: .
- 4- ^
; And allow these 2 selections '

 [image: Picture #6]

 ; Frame Region ; Paint Region ; Invert Region ; Draw Region Size
74
 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
Table caption©AddToWorkArea

 January

 	
 move.1

 	
 a6, “(sp) ;

 	
 SourceA = Current (traverse) Region

 	
 move.1

 Rgn

 move.1

 	
 RgnHandle(a5), -(sp) ;

 	
 SourceB » Destination (Work Area)

 	
 RgnHand1e(a5), -(sp) ;

 	
 Destination » Work Area

 	
 _UnlonRgn

 	

 	
 BRA. 8

 	
 ©Bra

 	

 	
 ©SubtractFromWorkArea

 	

 	
 move.1

 	
 RgnHand1e(a5), -(sp) ;

 	
 Region B

 	
 move.1

 	
 a6. -(sp) ;

 	
 - Region A

 	
 move. 1

 	
 RgnHand1e(a5), -(sp)

 	
 Jiff Rgn

 	

 	
 ©Bra BRA

 	
 UnHILIte

 	

 	
 SystemEvent

 	

 	

 	
 pea

 	
 EventRecord

 	

 	
 move.1

 	
 WhIchWIndow, -(sp)

 	

 	
 JystemCI Ick

 	

 	
 RTS

 	

 	

 	
 InContent

 	

 	

 	
 tst.b

 	
 Have_Pasted(a5) ;

 	
 have we got anything to traverse ?

 	
 beq

 	
 Return ;

 	
 no

 	
 bra

 	
 DoContour ;

 	
 (returns from DoContour to

 	
 EventLoop)

 	

 	
 KeyDown

 	

 	

 	
 ; check

 	
 to see If the Command Key

 	
 was down

 	
 ; I f so

 	
 , see It It’s a menu-item

 	
 equivalent

 	
 ; else

 	
 Ignore It

 	

 	
 move

 	
 Modifiers* d3

 	

 	
 btst

 	
 #CmdKey, d3

 	

 	
 bNE

 	
 ©GetCmdKey

 	

 	
 RTS

 	

 	

 	
 ©GetCmdKey

 	

 	

 	
 c 1 r . 1

 	
 -(sp)

 	

 	
 move

 	
 Mes8age+2* -(sp) ;

 	
 get the character

 	
 _MenuKey

 	

 	
 move.1

 	
 (8p)+. d0

 	

 	
 swap

 	
 d0 ;

 	
 put MenuID In Low Byte

 	
 BRA

 	
 FIndMenu

 	

 	
 PasteJromJI Ip

 	

 	

 	
 : check

 	
 the scrap. If there's no

 	
 PICT there* just

 	
 : beep

 	
 and return for now. else

 	
 frame It In the window

 	
 move.1

 	
 ScrapHondle* d0

 	

 	
 beq

 	
 ©8 ;

 	
 Beep no Scrap

 ; W6*ve got
a *PICT* on
the
Clipboard

 move.I #0, d0

 _NewHandie

 bml ErrReturn

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 75

 	
 move.1

 	
 aO,
02

 	
 c 1 r . 1

 	
 -(sp)

 	
 move.1 move.1

 	
 o2, -(sp)

 #’PICT', -(sp)

 	
 pea

 	
 Offsst

 	
 _GetScrap

 	
 tst. 1

 	
 (sp)+

 	
 bml

 	
 (58

 	
 move.1

 	
 02
, -(sp)

 	
 move.1

 	
 a2, a6

 	
 move.1

 	
 o

 CM

 O

 	
 1 ea

 	
 2(o2), o2

 	
 1 ea

 	
 ScrotchS, o3

 	
 move.1

 	
 (o2)+. (o3)+

 	
 move.1

 	
 (o2). (o3)

 	
 1 ea

 	
 Scrotch20, o4

 	
 1 ea

 	
 WStoroge, o2

 	
 move.1

 	
 portRect+L«ft(o2), d3

 	
 odd. 1

 	
 #$000AFFF6. d3

 	
 move.1

 	
 d3. (o4)

 	
 move.1

 	
 -2(o3). -(sp)

 	
 pea

 _SubPt

 	
 (o4)

 	
 move.1

 	
 (o4). d0

 	
 swop

 	
 d0

 	
 move.1

 	
 d0. (o4)

 	
 pea

 	
 ScratchS

 	
 move.1

 	
 (o4), -(sp)

 	
 _0ffsetRect

 	
 pea

 	
 WStorage+portRect

 	
 _EraseRect

 	
 pea

 	
 -4(o3)

 	
 _DrawPIcture

 	
 move.1

 	
 o6, -(sp)

 	
 _KI1IPIcture

 	
 tst.b

 	
 Hove_Posted(o5)

 	
 bne.s

 	
 ed

 	
 St

 	
 Hove_Post«d(o5)

 	
 bra

 	
 (59

 	
 move

 	
 #2. -(sp)

 	
 _SysBeep

 	
 BRA

 	
 UnHILIte

 ErrReturn

 _Debugger

 Offset dc.l 0

 ; save the handle

 ; destination handle for Incoming ; PICT

 ; byte count or OS ErrCode ; Beep No Data of Type In Scrap

 ; Handle to PICTure (used In 3rd call

 ; save the Handle

 ; Ptr to PICT Resource ; Ptr to PIcFrame

 ; A4 ■ PIcFrame.TopLeft ; .BottomRIght

 ; pRect.LeftBottom ; move PICT Org over (10. -10)

 ; PIcFrame.Left

 ; pRect.LeftBottom ■ destPoInt

 Table caption; erase any old PICTs

 ; destRect ■ pIcFrame rectangle

 ; free up some space In the heap

 ; reset to our Cursor If 1st time ; not 1st time

 Table caption; Beep If couldn’t Paste

 ; used If we need most ’Important* ; version of Type

 GetFIrstPIxel

 ; user points w/mouse to a point just to the left of any ; left-edged pixel (no 6-NeIghbor) In the region to be traversed. ; Program then scans left to right to find the apt byte and BItNum.

 ; < Where > Is global coords of point to left of ON pixel In Rgn

 ; now calculate byte offset to first pixel In block from ; global address

 pea Where _GlobaIToLocaI

 76 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 lea WStorage, a1 ;

 move portRect+Right(a1), d3 ;

 sub #4. d3 ;

 ©CheckNextPixeI

 move.I Where, -(sp)

 _><oveTo

 cir.b -(sp)

 move.I Where, -(sp)

 _GetPlxeI

 tst.b (sp)+

 bne.s @2 ;

 lea Where, a0

 add #1, 2(a0) ;

 cmp 2(a0), d3 ;

 bpi.s eCheckNextPIxeI ;

 @1 ^ShowCursor ;

 move #102, d3

 BSR Stop^lert ;

 RTS

 @2 move.I Where, StartCoords(a5)

 ; save the local Where for an _OpenRgn ; _MoveTo command & for closing the loop

 	
 pea

 	
 Where

 	
 ;

 	
 now that we've found the local coords of

 	
 _LocaIToGlobaI

 	
 *

 	
 our first pixel, convert that to an

 	
 move.I

 	
 I
Where, d0

 	
 *

 	
 absolute memory reference (Addr + BItNum)

 	
 ; get

 	
 byte addr (a1

 	
) and

 	
 bltNum of point (dl)

 	
 swop

 	
 d0

 	

 	
 ; y In Low Word

 	
 move

 	
 d0, dl

 	

 	

 	
 mu I u

 	
 #64, dl

 	

 	
 ; number of bytes down

 	
 swap

 	
 d0

 	

 	
 ; X back In Low Word

 	
 and. I

 	
 #$0000FFFF,

 	
 d0

 	
 ; zero HI Word

 	
 dl vu

 	
 #8, d0

 	

 	
 ; number of bytes over

 	
 add

 	
 d0, dl

 	

 	
 add. I

 	
 ScreenBase,

 	
 dl

 	

 	
 move.I

 	
 1 d1, A3

 	

 	
 ; - < Addr of StartPt >

 	
 swop

 	
 d0

 	

 	
 ; get back remainder In pixels

 	
 and. I

 	
 #$0000FFFF,

 	
 d0

 	
 ; zero quotient

 	
 sub.b

 	
 #7. d0

 	

 	

 	
 neg

 	
 d0

 	

 	

 	
 and. I

 	
 #7. d0

 	

 	

 	
 move

 	
 d0, D3

 	

 	
 ; ■ < BItNum of StartPt >

 	
 move

 	
 #-1. <10

 	

 	
 ; Neg Flag ■ Found One

 Table captionRTS

 set up Right Bounds to check against (else we erase the Window Frame) and leave a little leeway

 we found one !

 move horizontally 1

 have we passed the right edge ?

 no

 yes - we got problems

 StrlD for upcoming Alert 'Can't locate first point'

 Stop^Alert ; on Alert of some sort Is coming up

 ; the ID of the String DITL Is In 03

 move.I #'ALRT', a3 BSR Param_Text

 move #101» d3 ; ResID for all StopAlerts

 BSR Save^Image

 ^InltCursor ; reset to the standard northwest arrow

 cir -(sp)

 move d3, -(sp) ; AlertID

 move.I #0, -(sp)

 _StopAIert move (sp)+, d0

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 77

 BSR Re8tor6_Image RTS

 Param_Text

 cir.l
 -(sp)

 mov6 d3. -(sp)

 _GetStrIng

 move.I (8p^+,
00

 move.I (o0), -(sp) ; ^0

 move.I #0, -fsp) ;

 move.I #0. -(sp) ; "2

 move.I #0, -(sp) ; ^3

 _PoromText

 RTS

 OpenWf ndow

 cir.l
 -(sp)

 move #WIndID, -(sp)

 peo WStoroge

 move.I -(sp)

 ^GetNewWlndow

 .SetPort

 leo WStoroge, o0

 peo portRect(o0)

 .Cl IpRect RTS

 Sove.WMgrPort

 ; for returned WIndowPtr ; WIndowID

 ; storoge for Window Record ; In front

 ; push the oddr of portRect

 move.I (a5), o0

 move.I (
00
),
00
 ; thePort

 leo WMgrPort, o1

 move.I
00
, (o1)

 move ScreenBlts+rowBytes(o0), MyRowByte8(o5)

 Insto11 Jvlenus

 cir.l
 “(sp)

 move #AppleMenu, -(sp)

 .GetRMenu

 move.I (sp)* HAppIeMenu(o5) move.I (sp), -(sp) cir -(sp)

 .InsertMenu

 move.I #*DRVR*, -(sp) .AddResMenu

 cir.l
 -(sp)

 move jfri I eRgnMenu, -(sp) .GetRMenu

 move. I (sp), FMeMenu(o5) cIr -(sp)

 _InsertMenu

 cir.l
 -(sp)

 move #EdltRgnMenu, -(sp) .GetRMenu

 move.I (sp), EdltMenu(o5) cir -(sp)

 .InsertMenu

 cir.l
 -(sp)

 move #CreoteRgnMenu, -(sp)

 .GetRMenu

 move.I (sp), CreoteMenu(o5) cir -(sp)

 .InsertMenu

 : resNum of DeskAcc Menu ; sove MenuHondle for loter ; push copy for .^ddResMenu ; oppend to end

 ; Note: would hove been o bit more ; elegont to store these hondles ; In on orroy rother thon seporote ; vorlobles. Oh
well.

If

It
 works .

 78 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 cir.l
“(sp)

 move #DIspIoyRgnMenu, -(sp)

 _GetRMenu

 move.I (sp), DlspIayMenu(a5) cir -(sp)

 _InsertMenu

 JrawMenuBor

 move.I CreateMenu(A5), -(sp)

 move #BuiIdRgnItem, -(sp) ; check It

 St -(sp)

 _CheckItern

 RTS

 InitMonogers

 pea -4(a5)

 _InItGrof

 _InItFonts

 _InItWindows

 _InItMenus

 cir.l
 -(sp)

 _InItDI
0
 logs .TEInit _InitCursor

 move.I #$FFFF0000, d0

 Jr
 I ushEvents

 RTS

 Table caption; CONSTANTS (PC-rel addressing)

 	
 EventRecord

 What:

 	
 dc.w

 	
 0

 	

 	
 Message:

 	
 dc. 1

 	
 0

 	

 	
 When:

 	
 dc. 1

 	
 0

 	

 	
 Where:

 	
 dc. 1

 	
 0

 	

 	
 Modiflers:

 	
 dc.w

 	
 0

 	

 	
 PenPoint

 	
 dc. 1

 	
 0

 	
 ; start of Rgn Size Display

 	
 MouseLoc

 	
 dc. 1

 	
 0

 	
 ; for ^PtlnRect cursor check

 	
 ScratchSTR

 	
 dcb.b

 	
 10, 0

 	

 	
 WStorage

 	

 	
 dcb.b

 	
 156, 0

 	
 DACName

 	
 dcb.b

 	
 40, 0

 	

 	
 WhIchWIndow

 	
 dc. 1

 	
 0

 	

 	
 WMgrPort

 	
 dc. 1

 	
 0

 	

 	
 boundsRect

 	
 dc.w

 	
 45, 10,

 	
 335, 500

 	
 StandordProcs

 	
 deb. 1

 	
 13, 0

 	

 Table caption; VARs (
refd off A5)

 	
 Trav.Count

 	
 ds

 	
 1

 	

 	
 Defau1t_Vo1

 	
 ds

 	
 1

 	
 ; VolRefNum of Default Volume

 	
 CurRetFI
la

 	
 ds

 	
 1

 	
 ; RefNum of Current Res
File

 	
 MyRowBytes

 	
 ds. 1

 	
 1

 	
 ; used In Traverse.ASM / copy of rowBytes

 	
 RgnHand1e

 	
 ds. 1

 	
 1

 	
 StartCoords

 	
 ds. 1

 	
 1

 	

 	
 Image.Hand1e

 	
 ds. 1

 	
 1

 	
 ; Handle to saved Bit Image

 	
 HApp1eMenu

 	
 ds. 1

 	
 1

 	
 ; handles for menus

 	
 FI 1eMenu

 	
 ds. 1

 	
 1

 	

 	
 Ed 1tMenu

 	
 ds. 1

 	
 1

 	

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 79

 	
 CreateMenu

 	
 ds. 1

 	
 1

 	
 DIsp1oyMenu

 	
 ds. 1

 	
 1

 	
 BItMap

 	
 ds.b

 	
 14

 	
 DeskAcc.Opened

 	
 ds.b

 	
 1

 	
 FIrst_ActI vote

 	
 ds.b

 	
 1

 	
 Have^Pasted

 	
 ds.b

 	
 1

 	
 DoneFlog

 	
 ds.b

 	
 1

 	
 FormIngRgn

 	
 ds.b

 	
 1

 	
 IsRegion

 	
 ds.b

 	
 1

 	
 DoneCopyReglon

 	
 ds.b

 	
 1

 Table captionEND

 User has opened the ScrapBook DeskAcc for Pasting from the Scrap on 1st Activote have done a Paste

 GoAwayBox Click or File Menu ’Quit’

 Build / Don’t Build a Region during Traverse we’ve done a Traverse w/ ’Form Region’ On we’ve done a ’Copy Region’ to the Work Area

 RELXH.TXT

 Contributed by: Gregg Williams

 "An Introduction to Relaxation Methods," by Gregg Williams. January, page 111.

 About the Programs

 Listings 1 and 2 enable you to experiment with the relaxation method If you have a computer that runs Microsoft BASIC. These listings, as Is, run on an Apple II computer In 40-column mode, but only the subroutines at lines 10000 and 14000 In listing 1 and lines 10000 and 23000 In listing 2 (which Implement file Input from and output to disk) must be changed to get this program to work on machines like the Radio Shack Model IV, the IBM Personal Computer, the Commodore 64 and VIC, and other computers.

 You may want to change the print-array routines at line 20000 In each program to display data In the best way for your com puter; these routines were written to display data neatly on an 80-column printout. All REM statements can be removed, and all variables can be shortened to their first two characters. Variable names are sometimes spelled oddly; this is to ensure that they don’t conflict with BASIC reserved words and other variables. (In Applesoft and some other Microsoft BASICS, only the first two characters of a variable name are remembered.) In addition, try larger array sizes for the DIM (dimension) statements of both programs. Your computer may have more space available than mine does.

 Listing 1 Is the program I call EDITOR. With this program, you can create a new data file or modify a data file; modifications Include changing elements, changing the size of the array, or expanding the array to twice Its size. Listing 2, the program called RELAXN, reads this data file, does the relaxation In a semlautomated fashion, prints Intermediate and final results, and enables you to save the final result onto disk for later manipulation.

 The data file used by both programs has the following contents: first, the number of rows In the Input array; second, the number of columns; third, a numeric value that represents an Inactive node (called the "Inactive number"); and, finally, the elements of the Input array listed by rows.

 The Input array needs some explanation because It is used to represent several different kinds of data. I created the inactive number so these programs could work with rounded cross sections.

 The Inactive number can be any value not otherwise found In the

 Input array. You should use It only In the corners of the array

 to make a rounded shape fit Into a rectangular array. The second

 kind of data Is the boundary elements. The RELAXN program looks

 at the Input array and flags the outermost layer of numbers (IgnorIngInactIve

 nodes. If any) as boundary elements. The third

 kind of data Is any elements left; these represent the Initial values of the Interior nodes In the cross section.

 The RELAXN program reads the Input array Into the NODE array and, before manipulating It, creates a same-sized MASK array that stores the type of each element. Inactive elements have a MASK value of -1, boundary elements have a value of 0, and Interior elements have a MASK of 1. The program checks this array often to prevent doing Inappropriate operations on any given element.

 The notes for listing 1 provide a commentary on the EDITOR program, which Is pretty straightforward. You can start a data file
 from scratch or read In a previously existing one. You can change the array by row, column, or Individual element. You can change the size of an array loaded In from disk and also expand an array to twice Its size (actually, from m-by-n to (2m-1)-by-(2n-1)).

 80 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Thfs option, discussed in the main text, is used to get more accurate results. When you choose to expand the input array, the computer tries to interpolate the values of added elements in a context-sensitive way. It usually does a good job, but you should inspect the resulting array and patch up any flaws.

 The notes for listing 2 provide a commentary on the RELAXN program. The program reads in the input array, creates the MASK
^

 and RESID arrays, lets you do block relaxations (if desired), repeats the main loop of the iteration algorithm until the RESID array is within the specified range of accuracy, prints out the result, and allows you to save the solved NODE array for later use. The program also lets you set the number of iterations to be performed before the NODE and RESID arrays are to be printed, gives you a warning message if the relaxation "hangs” on a single node (which sometimes denotes the end of the algorithm at that level of accuracy before the official criteria for ending are fulfilled), and lets you abort the algorithm and save your results.

 I wrote this program to be as simple and clear as possible; there are numerous optimizations I did not perform, leaving that to the enterprising programmer. These two programs were designed us ing a structured flowchart format I described three years ago (see "Structured Programming and Structured Flowcharts,* March 1981 , page 20). The structured flowcharts were then translated into BASIC code, whcih accounts for the occasionally unconventional use of GOTOs In the programs. I reluctantly chose BASIC over Pascal because BASIC is still the lingua franca of BYTE readers—a recent study we did showed that 77% of our readers use BASIC most often, while 21% use some kind of assembly language, and only 15% use Pascal.

 One final note: I must confess to the use of a quick-and-dirty shortcut concerning the block relaxation subroutine in RELAXN.

 Instead of actually implementing the block relaxation algorithm (which decreases the number of computations to relax a block of elements by the same amount), I hod the computer execute a doublenested do-loop that relaxed each element individually. You should implement the true block relaxation algorithm if you are going to be doing many large block relaxations. Mea culpa, mea maxima culpa.

 Program Notes for Listing 1 Line Group Function

 181-195 Loads in an array from disk; you have the otions of expanding the array (line 184) or arbitrarily changing its size (line 188).

 200-210 Gets the size of the array (MROWS, MCOLS)

 and the value of the "inactive* element (INACTIVE) the array Is being built from scratch.

 410-465 Gets a row of values; this section repeats until you give it -1 for a row number 472-486 Gets a column of values; this section repeats until you give it -1 for a column number 505-550 Gets an individual element to change; this section repeats until you give it a -1,0,0 to end it 600-630 Saves the
file
 to disk.

 Subroutines

 10000-10060 Reads data
file
 from disk.

 11000-11500 Expands array A to a twice-sized array B. Does

 interpolation to
fill
 in missing values. If one of the two values used for interpolation is the inactive element, the value being interpolated is set equal to the active element.

 14000-14060 Writes data
file
 to disk.

 20000-20420 Displays the array being worked on (array B).

 Because the array may have more columns than can be printed on an 80-column printer, I wrote this routine to display C10LPERPAGE columns at a time; I can then paste these strips together to get the entire array. You may want to

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 81

 change the value of C10LPERPAGE or write a more efficient, Implementation-specific subroutIne.

 Program Notes for Listing 2

 210-220 Reads Input file.

 300 Creates MASK array from Input array.

 380 Sets flag MANUALS, which determines whether

 you can do point relaxations from the keyboard after every printout of the NODE and RESID arrays.

 400-410 Gets the desired number of decimal places of

 accuracy and computes the values of two errorlimit values, ERR ^maximum error for any one element) and ESUM (maximum error for sum of a I I error voIues).

 500 Calculates the value of the RESID array.

 600-660 Enables you to do block relaxation; this section

 of code repeats until you answer N to the question In line 605.

 800 Checks to see If relaxation algorithm Is finished.

 If It Is (very unlikely), QUITS Is set to Y.

 900 Gets the number of Iterations to be performed,

 ITERLEFT, before the NODE and RESID arrays are printed.

 1000-1300 Main loop of program, repeated until QUITS becomes Y. Its main events are doing a point relaxation on the element that needs It most (line 1103), and evaluating RESID for end-of-afgorIthm (setting QUITES to Y If the conditions are met— line 1200). Each time through this loop,

 ITERLEFT Is decremented by 1; If It goes to 0, the NODE and RESID arrays are printed (line 1160), you get a chance to quit the program prematurely (If It "hangs" on certain values—line 1240), and the program gets a new value for ITERLEFT (line 1242). In certain circumstances, the variation this algorithm gives is too "coarse" to adjust the RESID array below the given error threshold. This usually results In the program relaxing the same node endlessly. The program gives you a warning If It detects that the same node has been relaxed twice In a row.

 1400-1420 Gives you a chance to do manual relaxation to fine-tune the NODE array before saving It to disk.

 1500-1530 Recalculates the RESID array from the NODE array and rechecks to ensure that the NODE array actually meets the terminating conditions. The program does this because each relaxation adjusts the NODE and RESID arrays, and roundoff errors may have accumulated.

 2000-2110 Gives you the option to save the NODE data to a disk data file. RESID Is not saved because It can be directly calculated from NODE.

 SubroutInes

 15000-15620 Creates MASK array from Input array (which Is contained In the NODE array variable). All nonINACTIVE values on the first and last rows are considered to be border elements. On all other rows, the rows are Inspected from the ends Inward; the first non-INACTIVE value on each end Is taken to be a border element. All the elements framed by the two border elements are taken to be active (Interior) elements. InactI elements are marked by 1, border elements by 0, active elements by 1 In MASK.

 17000-1720 Relaxes node (I,J) by the amount N. The RESID values are changed according to the relaxation template only If the node Is an active. Interior

 82 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 one; border and inactive elements are not changed.

 19000-19210 Does a block relaxation given the upper-left

 corner element (RLO, CLO) and lower-right corner element (RHI, CHI). This routine automatically calculates the number of units for the block to be relaxed in line 19080.

 20000-20420 Prints the NODE and RESID arrays. See the

 reference to line 20000 in the program notes for listing 1.

 21000-21200 Evaluates the RESID array to determine if the program is finished (see line 21120). If so, QUIT$ is set to Y.

 22000-22200 Finds the element with the largest RESID value and relaxes it to 0.

 23000-23060 Saves the NODE array and related information to disk. This data file can be read again by either the EDITOR or RELAXN programs.

 24000-24080 Enables you to do point relaxations from the keyboard.

 RELXl.BAS

 Contributed by: Gregg Williams

 "An Introduction to Relaxation Methods," by Gregg Williams. January, page 111.

 100 REM

 110 REM ARRAY EDITOR/EXPANDER PROGRAM 120 REM

 130 REM BY GREGG WILLIAMS. 14 NOV 83 140 REM 150 REM

 155 DIM A(20.20).B(20,20)

 160 QUIT - - 1

 165 PRINT : PRINT : PRINT "ARRAY EDITOR/EXPANDER PROGRAM": PRINT "BY GREGG WILLIAMS BYTE MAGAZINE"

 167 PRINT : PRINT "THIS PROGRAM ALLOWS YOU TO CREATE AND/ORCHANGE A STARTING ARRAY OF ELEMENTS TO BE WORKED ON BY THE RELAXATION PROGRAM.": PRINT 170 PRINT "YOU WILL BE ABLE TO CHANGE THE ARRAY BY (IN THIS ORDER) ROWS, COLUMNS. AND INDIVIDUAL POINTS.": PRINT : PRINT

 175 PRINT : PRINT : INPUT "LOAD STARTING ARRAY FROM DISK (Y OR N)? ";FLAG$

 180 IF FLAGS » "N" THEN GOTO 200

 181 PRINT : PRINT : INPUT "NAME OF FILE CONTAINING ARRAY? ";NAME$

 182 GOSUB 10000: REM —INPUT FILE FROM DISK

 183 GOSUB 12000: REM —MOVE A ARRAY TO B

 184 PRINT : INPUT "EXPAND ARRAY TO NEXT FINER GRID SIZE? (Y OR N) ";FLAG$

 185 IF FLAGS - "Y" THEN GOSUB 11000: GOTO 188: REM —EXPAND ARRAY

 187 GOSUB 12000: REM —MOVE A ARRAY TO B

 188 PRINT : PRINT : PRINT "THE ARRAY NOW LOOKS LIKE THIS: ": GOSUB 20000:

 PRINT : INPUT "DO YOU WANT TO CHANGE THE SIZE OF THE ARRAY (Y OR N)?

 ";ANSWERS

 190 IF ANSWERS - "Y" THEN PRINT : INPUT "ENTER THE NEW ROW AND COLUMN SIZES:

 ";MROWS.MCOLS

 195 GOTO 400

 200 PRINT : PRINT : INPUT "NUMBER OF ROWS IN ARRAY? ";MROWS

 203 PRINT : PRINT : INPUT "NUMBER OF COLUMNS IN ARRAY? ";MCOLS

 205 PRINT : PRINT : PRINT "IF THE ARRAY IS NOT RECTANGULAR. YOU WILL NEED

 TO DENOTE INACTIVE GRID POSITIONS BY A NUMBER THAT IS NOT

 ELSEWHERE IN THE ARRAY."

 210 PRINT : INPUT "WHAT 'INACTIVE* VALUE DO YOU WANT TO USE (YOU HAVE TO SUPPLY A VALUE EVEN IF THE ARRAY IS RECTANGULAR)? ";INACTIVE 400 PRINT : PRINT : PRINT "THE ARRAY NOW LOOKS LIKE THIS: ": GOSUB 20000

 405 PRINT : PRINT : PRINT "YOU CAN NOW ENTER AN ENTIRE ROW": PRINT "OF

 "iMCOLS;" VALUES."

 410 PRINT : INPUT "ENTER ROW NUMBER TO CHANGE, OR -1 TO CONTINUE:

 ";ROWNUM

 420 IF ROWNUM - QUIT THEN 470 430 FOR I - 1 TO MCOLS

 440 PRINT "
ARRAY(";ROWNUM:
 INPUT B(ROWNUM.I)

 450 NEXT I

 460 PRINT : PRINT : PRINT "THE ARRAY NOW LOOKS LIKE THIS: ": GOSUB 20000 465 GOTO 410

 continued

 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987 83

 470 PRINT : PRINT : PRINT "THE ARRAY NOW LOOKS LIKE THIS; GOSUB 20000 472 PRINT ; PRINT : PRINT "YOU CAN NOW ENTER AN ENTIRE COLUMN"; PRINT "OF "*MROWS*" VALUES."

 474 PRINT ; INPUT "ENTER COLUMN NUMBER TO CHANGE. OR -1 TO CONTINUE; "iCOLNUM

 476 IF COLNUM » QUIT THEN 500 478 FOR I ■ 1 TO MROWS

 480 PRINT " ARRAY(";I;".";COLNUM;")-";; INPUT B(I.COLNUM)

 482 NEXT I

 484 PRINT ; PRINT ; PRINT "THE ARRAY NOW LOOKS LIKE THIS; "; GOSUB 20000 486 GOTO 472

 500 PRINT ; PRINT : PRINT "THE ARRAY NOW LOOKS LIKE THIS; "; GOSUB 20000

 505 PRINT ; PRINT ; PRINT "YOU NOW HAVE THE OPPORTUNITY TO CHANGE INDIVIDUAL

 POINTS."

 510 PRINT : INPUT "ENTER; ROW #, COLUMN #. AND NEW VALUE TO CHANGE AN ELEMENT OF THE ARRAY; OR ENTER -1,0,0 TO END AND PREPARE FOR SAVING THE ARRAY TO DISK; ";ROWNUM,COLNUM,NWVLUE 520 IF ROWNUM » QUIT THEN 600 530 B(ROWNUM,COLNUM) « NWVLUE

 540 PRINT ; PRINT ; PRINT "THE ARRAY NOW LOOKS LIKE THIS; "; GOSUB 20000 550 GOTO 510

 600 PRINT ; PRINT ; PRINT "YOU SHOULD NOW BE FINISHED WITH THE ARRAY. ";

 610 INPUT "UNDER WHAT FILENAME DO YOU WANT TO SAVE IT? ";NAME$

 620 GOSUB 14000

 630 PRINT ; PRINT ; PRINT "FILE ";NAME$;" SAVED"; PRINT "END OF PROGRAM"

 640 END 9990 REM 9992 REM

 9994 REM READ FROM FILE

 9995 REM NAME$ INTO ARRAY A

 9996 REM 9998 REM

 10000 D$ » CHR$ (13) + CHR$ (4)

 10005 PRINT D$;"OPEN ";NAME$

 10010 PRINT D$;"READ ";NAME$

 10020 INPUT MROWS 10030 INPUT MCOLS 10040 INPUT INACTIVE

 10050 FOR I - 1 TO MROWS; FOR J » 1 TO MCOLS; INPUT A(I,J); NEXT J; NEXT I 10055 PRINT D$;"CLOSE ";NAME$

 10057 PRINT ; PRINT "FILE ";NAME$;" READ FROM DISK."; PRINT "IT IS A

 QY "•UrOIQ*" APPAV "

 10058 PRINT "INACTIVE ELEMENTS ARE DENOTED BY
";INACTIVE"

 10060 RETURN

 10990 REM 10992 REM

 10994 REM EXPAND A TO TWICE

 10995 REM SIZED ARRAY B

 10996 REM 10998 REM

 11000 PRINT ; PRINT ; PRINT "THE INPUT ARRAY IS; "

 11006 REM —AT THIS POINT, ARRAY A HAS BEEN COPIED

 11008 REM —TO B; THE FOLLOWING PRINTS ARRAY B

 11010 GOSUB 20000 11092 REM

 11094 REM —CLEAR B ARRAY WITH INACTIVE VALUE 11096 REM

 11098 FOR I * 1 TO 2 ♦ MROWS - 1; FOR J * 1 TO 2 ♦ MCOLS - 1:B(I,J) = INACTIVE; NEXT J; NEXT I 11100 REM

 11110 REM —EXPLODE A, CREATING B 11120 REM

 11130 FOR I * 1 TO MROWS; FOR J * 1 TO MCOLS 11140 B(2 ♦ I - 1.2 * J - 1) «
A(I,J)

 11150 NEXT J: NEXT I 11160 REM

 11170 REM —INTERPOLATE VALUES FOR COLUMNS 1, 3, 5, ...

 11180 REM

 11200 FOR J « 1 TO 2 * MCOLS - 1 STEP 2; FOR I = 2 TO 2 * MROWS - 2 STEP 2

 11210 IF B(I -
1,J)
 » INACTIVE THEN
B(I,J) » B(I + 1,J);
 GOTO 11240

 11220 IF B(I +
1.J)
 » INACTIVE THEN
B(I,J) » B(I - 1,J);
 GOTO 11240

 11230
B(I,J) = INT ((B(I - 1,J) + B(I + 1,J)) / 2 + 0.5)

 11240 NEXT I; NEXT J 11250 REM

 11260 REM —INTERPOLATE VALUES FOR COLUMNS 2, 4, 6, ...

 11270 REM

 84 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 11300 FOR J - 2 TO 2 * MCOLS - 2 STEP 2: FOR I = 1 TO 2 * MROWS - 1

 11310 IF 8(1.J - 1) * INACTIVE THEN 8(1.J) * 8(I.J + 1): GOTO 11340

 11320 IF 8(I.J + 1) - INACTIVE THEN 8(1.J) « 8(1.J - 1): GOTO 11340

 11330 8(1.J) = INT ((8(1.J - 1) + 8(1.J + 1)) / 2 + 0.5)

 11340 NEXT I: NEXT J

 11345 MROWS - 2 ♦ MROWS - 1:MCOLS « 2 * MCOLS - 1

 11350 REM

 11500 RETURN

 11990 REM

 11992 REM

 11994 REM COPY A TO 8

 11996 REM 11998 REM

 12000 FOR I - 1 TO MROWS: FOR J « 1 TO MC0LS:8(I.J) = A(I.J): NEXT J: NEXT I:

 RETURN

 13990 REM

 13992 REM

 13994 REM SAVE ARRAY 8

 13996 REM TO FILE $NAME

 13998 REM

 14000 D$ = CHR$ (13) + CHR$ (4)

 14005 PRINT D$;"OPEN ";NAME$

 14010 PRINT D$:"WRITE ";NAME$

 14020 PRINT MROWS 14030 PRINT MCOLS 14040 PRINT INACTIVE

 14050 FOR I * 1 TO MROWS: FOR J « 1 TO MCOLS: PRINT 8(I.J): NEXT J: NEXT I 14055 PRINT D$;"CLOSE ";NAME$

 14060 RETURN 19990 REM 19992 REM

 19994 REM DISPLAY 8 ARRAY

 19996 REM 19998 REM

 20000 C10LPERPAGE - 5:L1IML0W - 1 20010 IF L1IMLOW > MCOLS THEN 20150

 20014 REM —C2DIFFERENCE-MIN OF C10LPERPAGE AND (MCOL-L1IMLOW+1)

 20015 C2DFFERENCE » MCOL - L1IMLOW + 1

 20017 IF C10LPERPAGE < C2DFFERENCE THEN C2DFFERENCE » C10LPERPAGE

 20018 J1 - L1IMLOW

 20020 J2 - L1IMLOW + C2DFFERENCE - 1 20030 PRINT : PRINT : PRINT "ARRAY IS:"

 20080 G0SU8 20400 20090 G0SU8 20200 20095 REM

 20100 L1IMLOW - L1IMLOW + C2DFFERENCE 20110 GOTO 20010 20150 PRINT 20170 RETURN

 20199 REM

 20200 FOR I - 1 TO MROWS: FOR J - J1 TO J2 20210 PRINT 8(1.J).

 20220 NEXT J: PRINT : NEXT I 20230 RETURN 20299 REM 20400 PRINT

 20410 FOR J - J1 TO J2: PRINT "COL # ";J.: NEXT J: PRINT 20420 RETURN

 RELX2.8AS

 Contributed by: Gregg Wlllioms

 "An Introduction to Relaxation Methods." by Gregg
Williams.
 January, page 111.

 	
 8

 	
 REM

 	

 	
 60

 	
 REM

 	

 	
 65

 	
 REM

 	
 ARRAY RELAXATION PROGRAM

 	
 70

 	
 REM

 	

 	
 75

 	
 REM

 	
 8Y GREGG WILLIAMS. 28 NOV 83

 	
 80

 	
 REM

 	

 	
 85

 	
 REM

 	

 	
 100

 	
 1 PRINT

 	
 : PRINT : PRINT "TWO-DIMENSIONAL RELAXATION ALGORITHM"

 Table captionGREGG WILLIAMS, 8YTE MAGAZINE": PRINT : PRINT

 Table captionPRINT "8Y

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 85

 A DISK FILE. ALLOWS YOU TO GOES THROUGH THE PROCESS

 110 PRINT "THIS PROGRAM READS AN INPUT ARRAY FROM DO (OPTIONAL)BLOCK RELAXATIONS, THEN AUTOMATICALLY OF FINDING A SOLUTION VIA RELAXATION.": PRINT 120 PRINT "YOU CAN TELL THIS PROGRAM HOW OFTEN YOU WANT TO LOOK AT THE INTERMEDIATE RESULTS AND WHEN YOU WANT TO BE ABLE TO DO POINT

 RELAXATION MANUALLY. YOU CAN"

 130 PRINT "ABORT THE PROGRAM AFTER ANY PRINTOUT AND SAVE THE RESULTING ARRAY, FINISHED OR NOT. TO DISK."

 140

 150

 152

 154

 156

 158

 PRINT

 REM

 REM

 REM

 REM

 REM

 PRINT : PRINT

 HOUSEKEEPING

 160 QUIT

 1

 162 DIM NODE(20.20),MASK(20.20),RESID(20,20)

 165 COUNTITERS « 0: REM —KEEPS TRACK OF # OF ITERATIONS COMPUTER HAS DONE 170 LCOL « 0:LROW » 0: REM —THESE WILL KEEP COORDINATES OF PREVIOUS RELAXATION 190 REM REM REM REM REM INPUT

 192

 194

 196

 198

 210

 220

 290

 292

 294

 295

 296 298 300 370 372

 374

 375

 376 378 380

 READ INPUT FILE

 GOSUB 10000: REM

 "WHAT INPUT FILE DO YOU WANT TO USE? ";NAME$

 REM —READ MROWS. MCOLS. INACTIVE. NODE ARRAY

 REM REM REM REM REM

 GOSUB 15000 REM REM REM REM REM REM PRINT

 CREATE MASK ARRAY FROM NODE ARRAY

 DO MANUAL RELAX»N AFTER PRINTING?

 PRINT

 INPUT "DO YOU WANT TO DO MANUAL RELAXATION ON INDIVIDUAL ARRAYS ARE DISPLAYED (Y OR N)? ";MANUAL$

 GET DECIMAL PLACES OF ACCURACY

 ACCURACY

 POINTS AFTER YOU SEE THE 390 REM 392 REM

 394 REM

 395 REM

 396 REM 398 REM

 400 PRINT : PRINT : INPUT "ENTER THE NUMBER OF DECIMAL PLACES OF DESIRED FOR THE CALCULATIONS: ";S1CALE 405 S1CALE = S1CALE + 1

 410 ERR = 5 ♦ 10 ^ - S1CALE:ESUM = 10 - (- S1CALE + 1)

 490 REM 492 REM

 494 REM CALCULATE RESID

 495 REM ARRAY

 496 REM 498 REM

 500 GOSUB 18000 590 REM 592 REM 594 REM 596 REM 598 REM

 600 GOSUB 20000:

 605 PRINT ";QUIT$

 610 IF QUITS 612 GOODS « "F"

 614 IF GOODS « "T" THEN 640

 615 PRINT : PRINT : PRINT "THE UPPER LEFT CORNER IS ELEMENT (1.1) (I.E.

 1. COLUMN 1). AND THE LOWER RIGHT ELEMENT IS (";MROWS;".";MCOLS;")."

 620 PRINT : INPUT "GIVE THE ROW AND COLUMN NUMBER OF THE UPPER LEFT CORNER OF THE BLOCK RELAX- ATION: ";RLO,CLO

 630 PRINT : INPUT "GIVE THE ROW AND COLUMN NUMBER OF THE LOWER RIGHT CORNER OF THE BLOCK RELAX- ATION: ";RHI.CHI

 635 IF MASK(RLO,CLO) = 1 AND MA$K(RHI.CHI) = 1 THEN
GOODS
= "T"

 DO BLOCK RELAXATION

 REM —DISPLAY NODE AND RES ID PRINT : INPUT "DO YOU WANT TO DO A BLOCK RELAXATION

 "N" THEN 800

 (Y OR N)?

 ROW

 86 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 636 IF GOODS = "F" THEN PRINT : PRINT "AT LEAST ONE POINT SPECIFIED IS NOT AN INTERIOR NODE—TRY AGAIN"

 637 GOTO 614 640 GOSUB 19000

 650 GOSUB 20000: REM —DISPLAY NODE AND RESID 660 GOTO 605 790 REM 792 REM

 794 REM EVALUATE RESIDUALS

 796 REM 798 REM

 800 GOSUB 21000 890 REM 892 REM

 894 REM GET # OF ITERATIONS

 895 REM UNTIL NEXT PRINTOUT

 896 REM 898 REM

 900 PRINT : PRINT : INPUT "HOW MANY ITERATIONS DO YOU WANT TO DO BEFORE THE

 NODE AND RESID ARRAYS ARE PRINTED? ";ITERLEFT

 980 REM

 990 REM

 992 REM

 994 REM * MAIN LOOP ♦

 995 REM ♦ OF PROGRAM ★

 996 REM 998 REM

 1000 IF QUITS - "Y" THEN 1400 1090 REM 1092 REM

 1094 REM DO RELAXATION ON

 1096 REM LARGEST RESIDUAL

 1097 REM

 1098 REM

 1100 PRINT : PRINT : PRINT "—STARTING RELAXATION #" ;COUNTITERS +
1;"—"

 1103 GOSUB 22000 1105 ITERLEFT » ITERLEFT - 1 1107 COUNTITERS * COUNTITERS + 1 1110 REM

 1120 DUPLICNS - "N"

 1125 IF LROW = RROW AND LCOL « RCOL THEN DUPLICNS » "Y"

 1130 IF ITERLEFT > 0 THEN 1250 1140 REM

 1150 REM —THIS DONE IF WE ARE PRINTING RESULTS 1160 GOSUB 20000: REM —PRINT ARRAYS 1170 REM

 1174 REM —POINT RELAXATION BY HUMAN (OPTIONAL)

 1175 IF MANUALS » "Y" THEN GOSUB 24000 1180 REM

 1185 IF DUPLICNS - "N" THEN 1200

 1190 PRINT : PRINT "THE PROGRAM HAS RELAXED ON THE SAME POINT TWICE.

 THIS PROBABLY MEANS THAT THIS PROGRAM WILL NEVER END": PRINT : PRINT "

 YOU MAY WANT TO QUIT ♦♦♦"

 1197 PRINT : INPUT "NUMBER OF ITERATIONS UNTIL NEXT PRINTOUT?

 ";MXITERS:ITERLEFT = MXITERS

 1198 REM

 1200 GOSUB 21000: REM —EVALUATE RESID. UPDATE QUITS 1220 IF QUITS » "Y" THEN 1300

 1240 PRINT : INPUT "DO YOU WANT TO QUIT CALCULATIONS AND SAVE THE NODE ARRAY AS IS (Y OR N)? ";QUITS

 1241 REM

 1242 PRINT : PRINT : INPUT "HOW MANY ITERATIONS DO YOU WANT TO DO BEFORE THE NODE AND RESID ARRAYS ARE PRINTED? ";ITERLEFT

 1243 REM

 1245 GOTO 1300

 1248 REM

 1249 REM —THIS DONE IF WE ARE NOT PRINTING RESULTS

 1250 GOSUB 21000: REM —EVALUATE RESID. UPDATE QUITS 1260 IF DUPLICNS - "N" THEN 1300

 1270 PRINT : PRINT "THE PROGRAM HAS JUST RELAXED ON THE SAME POINT TWICE. THIS PROBABLY MEANS THAT THIS PROGRAM WILL NEVER END.": PRINT 1280 PRINT " ♦♦♦ YOU MAY WANT TO QUIT THIS ♦♦♦ PROGRAM AT THE NEXT

 ♦♦♦ OPPORTUNITY

 1296 REM 1298 REM

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 87

 1300

 1308

 1310

 1312

 1314

 1316

 1318

 1320

 1322

 1390

 1392

 1395

 1396

 1397

 1399

 1400

 GOTO 1000: REM REM REM REM REM REM REM REM REM REM REM REM REM REM PRINT

 REM —END ’WHILE’ LOOP

 * END OF ♦

 * MAIN LOOP ♦

 DO MANUAL RELAXATION

 PRINT : INPUT "DO YOU WANT TO DO ANY POINT RELAXATIONS MANUALLY BEFORE ENDING THIS PROGRAM? (Y OR N)? ":FLAG$

 1420 IF FLAGS » "Y" THEN GOSUB 24000 1492 REM

 1494 REM RECALCULATE RESULTS

 1495 REM FOR ACCURACY

 1496 REM 1498 REM

 1500 GOSUB 18000: REM —RECALCULATE RESID ARRAY

 1510 GOSUB 21000: REM —EVALUATE RESID ARRAY

 1520 GOSUB 20000: REM —DISPLAY NODE. RESID, BIGRESID. SUMRESID

 1530 PRINT : PRINT "THIS PROGRAM PERFORMED "-.COUNT ITERS;" AUTOMATIC": PRINT

 "POINT RELAXATIONS"

 1990 REM

 1992

 1994

 1995

 1996 1998 2000

 REM

 REM

 REM

 REM

 REM

 PRINT

 WRITE FILE TO DISK (OPTIONAL)

 DO YOU WANT

 PRINT : INPUT "THIS PROGRAM HAS FINISHED ITS WORK.

 TO SAVE THE NODE ARRAY (Y OR N)? ";FLAG$

 2010 IF FLAGS = "N" THEN 2100 REM

 PRINT : INPUT "UNDER WHAT FILENAME DO YOU WANT TO SAVE IT? ";NAMES GOSUB 23000: REM —SAVE WORK TO DISK

 PRINT : PRINT : PRINT "FILE ";NAME$;" SAVED": PRINT "END OF PROGRAM" PRINT CHRS (4);"PR#0"

 END

 REM —EVALUATE RESID ONLY IF RELAXN IS TO CONTINUE PRINT : PRINT : PRINT "FILE ";NAMES;" SAVED": PRINT REM

 ♦ ♦

 * END MAIN PROGRAM. *

 ♦ BEGIN SUBROUTINES ♦

 2020

 2030

 2040

 2050

 2070

 2100

 2102

 2110

 9980

 9982

 9984

 9985

 9986

 9987

 9988 9990 9992

 9994

 9995

 9996 9998

 "END OF PROGRAM"

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 READ FROM FILE NAMES INTO ARRAY A

 10000 DS = CHRS (13) + CHRS (4)

 10005 PRINT DS;"OPEN ";NAMES 10010 PRINT DS;"READ ";NAMES 10020 INPUT MROWS 10030 INPUT MCOLS 10040 INPUT INACTIVE 10050 FOR I = 1 TO MROWS: FOR 10055 PRINT DS;"CLOSE ";NAMES 10057 PRINT "FILE ";NAMES;" READ FROM DISK" 10060 RETURN 14990 REM 14992 REM

 14994 REM CREATE MASK ARRAY

 14995 REM FROM NODE ARRAY

 14996 REM

 15000 FOR I = 1 TO MROWS STEP (MROWS - 1) 15010 REM —DOES LOOP TWICE: 1=1. I=MROWS 15020 REM

 J = 1 TO MCOLS: INPUT NODE(I.J): NEXT J: NEXT I

 88 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 15030 FOR J = 1 TO MCOLS

 15035 REM —CALCULATE FIRST AND LAST ROWS 15040 REM

 15050 IF NODE(I,J) = INACTIVE THEN MASK(I,J) = - 1: GOTO 15100

 15060 MASK(I,J) * 0: REM —HERE, MUST BE BORDER ELEMENT 15090 REM

 NEXT J: NEXT I REM

 FOR I = 2 TO (MROWS - 1)

 —DO ALL ROWS EXCEPT FIRST AND LAST

 15100

 15190

 15200

 15210

 15220

 15230

 15240

 15250

 15260

 15270

 REM

 REM

 REM

 REM

 REM

 REM

 REM

 —ATTACK ROW FROM EACH END; FIRST

 VALUE <> INACTIVE IS BORDER (MASK»0); NEXT VALUE IS ACTIVE (MASK»1); WORK SIMILARLY FROM END OF ROW

 0:LOCOL

 0;HICOL

 LOCOL + 1 HICOL - 1

 = HICOL THEN 15600

 15280 LOCOL = 1:HICOL = MCOLS 15290 REM

 15300 IF NODE(I,LOCOL) < > INACTIVE THEN 15400

 15310 MASK(I.LOCOL) - - liLOCOL = LOCOL + 1

 15320 GOTO 15300 15390 REM

 15400 IF NODE(I.HICOL) < > INACTIVE THEN 15500

 15410 MASK(I.HICOL) = - liHICOL « HICOL - 1

 15420 GOTO 15400 15490 REM 15500 MASK(I.LOCOL)

 15510 MASK(I.HICOL)

 15520 REM 15530 IF LOCOL >

 15540 REM

 15550 FOR J = LOCOL TO HICOL 15560 MASK(I,J) - 1 15570 NEXT J 15590 REM 15600 NEXT I 15610 REM 15620 RETURN 16990 REM 16992 REM

 16994 REM

 16995 REM

 16996 REM 16998 REM

 17000 IF MASK(I - 1.J) < >1 THEN 17020

 17010 RESID(I - 1,J) ■ RESID(I - 1.J) + N 17020 IF MASK(I +
I.J)
 <
>1
 THEN 17040

 17030 RESID(I + I.J) - RESID(I

 RELAX NODE (I.J) BY N

 + 1, J) + N IF MASK(I,J - 1) < >1 THEN 17060

 RESID(I.J - 1) + N

 17040

 17050 RESID(I,J - 1)

 17060 IF MASK(I,J + 1) < >1 THEN 17100

 17070 RESID(I.J + 1) « RE$ID(I.J + 1) + N

 « RESID(I.J) - 4 ♦ N NODE(I,J) + N

 CALCULATE RESID ARRAY

 1 TO MROWS: FOR J « 1 TO MCOLS

 17090 REM 17100 RESID(I,J)

 17110 NODE(I.J) >

 17200 RETURN 17990 REM 17992 REM

 17994 REM

 17995 REM

 17996 REM

 17998 REM 18000 FOR I 18010 RESID(I.J) = 0 18020 NEXT J: NEXT I 18030 FOR I - 2 TO MROWS - 1: FOR J 18040 IF MASK(I,J) < > 1 THEN 18100

 18050 RESID(I.J) - NODE(I -
I.J)
 + NODE(I +
I.J)
 + NODE(I.J 1) - 4 ♦ NODE(I,J)

 18100 NEXT J: NEXT I 18110 RETURN 18990 REM 18992 REM

 18994 REM DO BLOCK RELAXATION

 18996 REM

 2 TO MCOLS - 1

 1) + NODE(I.J +

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 89

 CLO TO CHI

 (RHI - RLO + 1) + 2 ♦ (CHI - CLO + 1)

 RADJUST

 18998 REM

 19000 RSUM * 0
N

 19010 FOR I - RLO TO RHI: FOR J 19020 RSUM * RSUM + RESID(I.J)

 19030 NEXT J; NEXT I 19040 RTEMP - RSUM 19045 BLOCKLEADS - 2 ♦

 19070 REM

 19080 RADJUST - RSUM / BLOCKLEADS:N 19090 REM

 FOR I - RLO TO RHI: FOR J - CLO TO CHI GOSUB 17000: REM —RELAX BY N-RADJUST NEXT J: NEXT I REM

 PRINT : PRINT : PRINT "BLOCK RELAXATION FINISHED": PRINT IS ";RTEMP: PRINT " BLOCK ADJUSTED BY ";RADJUST;" UNITS"

 19210 RETURN REM REM

 REM PRINT NODE, RESID

 REM ARRAYS

 REM REM

 20000 C10LPERPAGE - 5:L1IML0W = 1 20010 IF L1IMLOW > MCOL THEN 20150

 20014 REM —C2DIFFERENCE-MIN OF C10LPERPAGE AND (MCOL-L1IMLOW+1)

 20015 C2DFFERENCE - MCOL - L1IMLOW + 1 ;

 20017 IF C10LPERPAGE < C2DFFERENCE THEN C2DFFERENCE - C10LPERPAGE

 20018 J1 - L1IMLOW

 C2DFFERENCE - 1 : PRINT "NODE ARRAY IS:"

 19100

 19110

 19120

 19190

 19200

 19990

 19992

 19994

 19995

 19996 19998

 PRINT

 PRINT "RESID ARRAY IS:

 20020 J2 « L1IMLOW +

 20030 PRINT : PRINT 20040 GOSUB 20400 20050 GOSUB 20300 20060 REM

 20070 PRINT : PRINT 20080 GOSUB 20400 20090 GOSUB 20200 20095 REM

 20100 L1IMLOW « L1IMLOW + C2DFFERENCE 20110 GOTO 20010 PRINT RETURN REM

 FOR I - 1 TO MROWS: FOR J PRINT INT (10 " S1CALE ♦

 NEXT J: PRINT : NEXT I RETURN REM

 FOR I = 1 TO MROWS: FOR PRINT INT (10 ^ S1CALE NEXT J: PRINT : NEXT I RETURN REM PRINT

 FOR J = J1 TO J2: PRINT "COL # ";J,: NEXT J: PRINT

 20150

 20170

 20199

 20200 20210 20220 20230

 20299

 20300 20310 20320 20330

 20399

 20400 20410 20420 20990 20992

 20994

 20995

 20996 20998

 « J1 TO J2

 RESID(I.J) + 0.5) / 10 ^ S1CALE.

 - J1 TO J2

 NODE(I,J) + 0.5) / 10

 S1CALE.

 RETURN REM REM REM REM REM REM

 EVALUATE RESID ARRAY FOR END OF RELAXATION

 "N"

 "N"

 21000 RSUM = 0:RMAX = ABS (RESID(2,2)):QUIT$

 21007 RSUM = 0:RMAX = ABS (RESID(2,2)):QUIT$

 21010 FOR I = 2 TO MROWS - 1: FOR J = 2 TO MCOLS - 1 21015 IF MASK(I,J) < > 1 THEN 21100

 21020 RSUM « RSUM + RESID(I.J)

 21030 IF RMAX < ABS (RESID(I.J)) THEN RMAX = ABS (RESID(I.J))

 NEXT J: NEXT I

 PRINT : PRINT "RESIDUAL SUM « ";RSUM PRINT "LARGEST ABSOLUTE VALUE = ";RMAX IF RMAX > ERR OR ABS (RSUM) > ESUM THEN 21150 PRINT : PRINT "ARRAY WITHIN TOLERANCES—RELAXATION IS FINISHED' GOTO 21200

 PRINT : PRINT "ARRAY NOT WITHIN TOLERENCES—CONTINUING"

 RETURN

 21090

 21100

 21105

 21110

 21120

 21130

 m

"Y"

 21150

 21200

 " SUM

 QUITS

 90 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987

 21990 REM 21992 REM

 21994 REM RELAX ON NODE

 21995 REM W/ LARGEST RES ID

 21996 REM 21998 REM

 22000 LROW * RROW;LCOL = RCOL

 22005 RROW - 2:RCOL = 2;RMAX » ABS (RESID(RROW.RCOL))

 22010 FOR I - 2 TO MROWS - 1: FOR J - 2 TO MCOLS - 1 22020 REM

 22030 IF MASK(I,J) < > 1 OR RMAX > - ABS (RESID(I.J)) THEN 22100

 22040 REM

 22050 RMAX = ABS (RESID(I.J)):RROW » I:RCOL - J 22060 REM

 22100 NEXT J: NEXT I

 22105 RADJUST = RESID(RROW,RCOL) / 4

 22135 IF RADJUST - 0 THEN RADJUST » SGN (RESID(RROW.RCOL))

 22140 PRINT : PRINT : PRINT "NODE(":RROW:",“:RCOL;"), WITH VALUE RESID(RROW.RCOL):", IS RELAXED BY RADJUST 22145 REM

 22150 REM —SETUP FOR SUBROUTINE

 22160 N - RADJUST:! » RROW:J - RCOL

 22170 GOSUB 17000: REM —RELAX-BY-N SUBROUTINE

 22200 RETURN

 22990 REM

 22992 REM

 22994 REM SAVE NODE ARRAY

 22996 REM TO FILE $NAME

 22998 REM

 23000 PRINT CHR$ (4);"OPEN ";NAME$

 23010 PRINT CHR$ (4);"WRITE ";NAME$

 23020 PRINT MROWS 23030 PRINT MCOLS 23040 PRINT INACTIVE

 23050 FOR I - 1 TO MROWS: FOR J - 1 TO MCOLS: PRINT NODE(I.J): NEXT J: NEXT I

 23055 PRINT CHR$ (4);"CLOSE ";NAMES

 23060 RETURN

 23990 REM

 23992 REM

 23995 REM DO MANUAL

 23996 REM RELAXATION

 23997 REM

 23999 REM

 24000 Q2UIT$ « "N"

 24010 IF Q2UIT$ - "Y" THEN 24080

 24020 PRINT : PRINT "ENTER THE ROW #. COLUMN #. AND VALUE BY WHICH THIS POINT WILL BE RELAXED (OR -1,0,0 TO QUIT):

 24030 INPUT I,J,N

 24040 IF I - - 1 THEN Q2UIT$ - "Y": GOTO 24070

 24050 GOSUB 17000: REM —RELAX POINT BY N 24060 GOSUB 20000: REM —PRINT NODE, RESID ARRAYS 24070 GOTO 24010 24080 RETURN

 SAVERGN.ASM

 Contributed by: Howard Katz

 "Region Maker," by Howard Katz. January, page 145.

 SaveRgn.ASM 20 July *86 h. katz Abstracted from < RgnMaker.ASM >

 This module handles the code for creating a Macintosh resource from the region In the Work Area which was produced by the contouring algorithm In < Traverse.ASM >.

 It uses a Dialog Box to get the user-input parameters for defining the Resource Type, ID, and Name, reloading these DITLs from memory If a resource has already been written to disk this session.

 The program uses the _Pack3 SFPutFIle routine to get the name of the
file
 the user wishes to add the resource to.

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 91

 INCLUDE MacTraps.D

 XDEF Sav6_To_FI Ie, Hava Prior DHLs

 XDEF ItemHIt, PutFIla_Po8lt

 defined here but

 used In < RgnMaker.ASM >

 XREF Save.Image. Restore.Image, StopJMert. RgnHandle, UnHILIte

 SFPutFIle equ 1 ; selector for _Pack3

 PutFIle.ID

 Replace_DITL

 loNamePtr loVRefNum

 StrIngToNum

 ResJLOG.ID Cancel_Button Res_Type_DITL_Num Re8_ID_DITL_Num Res_Name_DITL_Num

 	
 equ

 	
 1

 	
 equ

 	
 -3999

 	
 equ

 	
 -3996

 	
 equ

 	
 18

 	
 equ

 	
 22

 	
 equ

 	
 1

 	
 equ

 	
 100

 	
 equ

 	
 2

 	
 equ

 	
 7

 	
 equ

 	
 8

 	
 equ

 	
 9

 Save_To_FIIe

 ..In I tCursor

 move #Res_DLOG.ID, d3

 move.I #*DLOG*. a3

 BSR Save_Image

 bsr Open^ResJLOG

 tst.b Have_PrIor_DITL8(a5)

 BEQ.s Get_User_ChoIce

 BSR Reload.Old.DITLs

 Get_User_ChoIce

 st Have_PrIor_DITLs(a5)

 BSR tst bml.s

 ModaULOG

 d4

 Save_To_FIIe

 pea Res_DLOG_Storage .CIoseDIalog

 BSR

 cmp beq

 BSR

 BRA

 Reload_OId.DITLs

 Restore_Image

 #Cancel_Button, d4 UnHILIte

 ResID of upcoming Dialog

 save Bits to be hidden by the DLOG

 did we do this before ? no - f Irst tIme

 ; get kbd-Input for Resource Type, ; ID, and Name

 ; Input param error - try again

 ; all done - dispose of Dialog ; (and erase from screen)

 ; redraw what was underneath

 User selected 'Cancel* everything OK - SFPutFIle

 Put«To.FIle UnHILIte

 ; restore Dialog Items saved In prior session

 move #Res_Type_DITL_Num, D4 BSR Get_Item_HandIe

 move.I ItemHandle, -(sp) peo Resource_Type_STR _SetIText

 move #Res_Id.DITL_Num, D4 BSR Get_Item_HandIe

 move.I ItemHandle, -(sp) pea Resource ID_Str

 .SetIText

 move #Res_Name_DITL_Num, D4 BSR Get_Item_HandIe

 move.I ItemHandle, -(sp) pea Resource_Name

 _SetIText

 92 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 RTS

 Table captionGet_Item_HandIe

 	
 pea

 	
 Res.DLOG.Storage

 	
 ; DLOG Ptr

 	
 move

 	
 d4, -(sp)

 	
 ; Item Number

 	
 pea

 	
 ItemType

 	
 ; not used

 	
 pea

 	
 ItemHand1e

 	
 ; passed to following ROM cal

 	
 pea

 	
 ItemBox

 	
 ; not used

 	
 .GetDIt

 	
 em

 	

 	
 RTS

 	

 	

 	
 Put.To.File

 	

 	

 ; The user has successfully specified the Resource TYPE and ID.

 ; Append it to an existing file, or create a new one if necessary

 ; The 1st piece of code replaces the message ’Replace Existing ... ; with an ’Are You Sure ?’, which makes more sense in the ; circumstances, as we’re not replacing anything.

 cir.l -(sp) move.I I’DITL’, -(sp) move jjlRepIace_DITL, -(sp) _GetResource move.I (sp)+,
00

 cmpo.I |0,
00 BEQ.s ©SFPutFile

 move.I (a0),
00 move -2(a0), d0

 ®Search_Length_Byte

 cmp.b #$17, (a0)+ dBEQ d0, @Search_Length_Byte cmp #-1, d0 BEQ.s ©SFPutFile

 cmp.b #*R*» (a0)

 BNE.s ©SFPutFile

 lea *Are You Sure ?

 move.b (a1)+, d1 ext.w d1 sub #1, d1

 @RepIace^Str

 move.b (a1)+» (a0)+

 DBRA d1, @Replace„Str

 ©SFPutFile

 move #PutFile_ID, d3 move.I #’DLOG’, a3 BSR Save_Image

 move.I PutFiIe_Posit, -(sp) ,

 pea ’Append Resource to File’ pea ’Resources’ move.I #0, -(sp) pea SFReply move #SFPutFile, -(sp)

 _Pack3

 BSR Restore_Image ;

 ; ’Replace Existing File’ DITL ; get the Handle

 ; couldn’t get DITL - forget it

 ; get the Ptr to DITL data ; Block size (in Block Header)

 ; look for matching String Length

 ; fell thru without finding match

 ; check for ’R’ of ’Replace’

 ; forget It

 a1

 ; save Length Byte ; get rid of what was in hi nibble

 ResID of upcoming Dialog

 save Bits to be hidden by the DLOG

 Global TopLeft of Dialog

 redraw what was underneath

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 93

 move.b good, d0 tst.b d0 beq ®Rt8

 BSR Creote^IoPB

 .GetVol

 : Did user ’Cancer out ? ; yes

 ; get Info on the Default Volume

 move

 move

 cmp

 beq.s

 lovRetNumfoB), lovRefNum(a0), vRefNum, d0

 01

 Default_Vol(a5) ; save the RefNum

 ; to restore It later ; Is
file
 we want to add resource to ; on the Default Volume ?

 ; yes

 cir.l
 loNamePtr(a0)

 move vRefNum. lovRefNum(a0)

 ^SetVol

 ; no

 ; make It the Default Volume

 ®1 odd.I d4, sp

 cir -(sp)

 _CurResFIl«

 movs (8p)+, CurResFIIe(a5)

 cIr -(sp)

 pea fName

 _OpenResFI Ie move (8p)+, <13

 cir -(sp)

 _ResError move (sp)+. d0

 tst d0

 beq.s

 pea fName

 .CreateResFIIe

 cir -(sp)

 _ResError

 move (sp)+, d0

 tst d0

 bne

 cir -(sp)

 pea fName

 .OpenResFIIe move (sp)+, d3

 cir -(sp)

 ..ResError move (sp)+, d0

 tst d0

 ; clear the loPB off the stack

 ; save the refNum for later

 ;
File
 Name that user entered ; try to open It ; save the refNum for later

 ; see If we could open It

 : we could

 ; we couldn’t ; so try to create It

 ; we couldn’t create It

 ; we created It ; now try to open It

 ; save the refNum for later

 ; check If we were able to open

 beq.s @2

 ; hunky-dory

 move #105, d3

 BSR Stop^Alert

 bra

 ’Can’t add to
file’
 message

 @2 move d3, -(sp)

 file

 .UseResFIle cir.l
 -(sp)

 move.I Resource_Type, -(sp) move.I Resource.ID, d0 move d0, -(sp) _GetResource

 ! we were able to open the specified

 ; make It the current Resource
File

 ; check to see If we have a duplicate ; push Type (w/out Length Byte)

 ; push low word of ID

 move.I (sp)+, d0 beq.s ®3

 : check the returned Handle ; NIL Handle ■ OK, no Duplicate

 cir -(sp)

 move,I d0, -(sp) _HomeResFIle move (sp)+, d0

 cmp d0, d3

 ; space for INT result ; push handle again

 ; get refNum

 l
 Is It In the currResFlle we’re using

 94 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 January

 @3

 @4

 ®9

 	
 bne. s

 	
 @3

 	
 ; no = OK

 	
 move

 	
 #104. d3

 	
 ; alertID for 'Duplicate Resource*

 	
 BSR

 	
 Stop_AIert

 	

 	
 bra

 	

 	
 ; detach the resource

 	
 move. I

 	
 RgnHand1e(a5), “(sp)

 	
 ; point to the Region (theData)

 	
 move.I

 	
 Resource_Type, -(sp)

 	

 	
 move.I

 	
 Resource_ID, d0

 	
 ; ID saved Initially as a LONG

 	
 move

 	
 dO, -(sp)

 	
 ; push low word only

 	
 pea

 	
 Resource_Name

 	

 	
 ^ddResource

 	

 	
 cl r

 	
 -(sp)

 	
 ; check for errors

 	
 _ResError

 	

 	
 move

 	
 (sp)+, d0

 	
 ; get the result

 	
 beq.s

 	
 «4

 	
 ; no error

 	
 move

 	
 #106, d3

 	
 ; *Can*t Add to File* AlertID

 	
 BSR

 	
 Stop_AIert

 	

 	
 bra

 	
 69

 	

 	
 move.I

 	
 RgnHand1e(a5), -(sp)

 	

 	
 Wr1teResource

 	

 	
 c 1 r

 	
 -(sp)

 	
 ; check for errors

 	
 ResError

 	

 	
 move

 	
 (sp)+, d0

 	

 	
 beq.s

 	
 65

 	
 ; no error

 	
 move

 	
 #105, d3

 	
 ; *Can*t Add to File* AlertID

 	
 BSR

 	
 Stop_AIert

 	

 	
 bra

 	
 69

 	

 	
 move.1

 	
 RgnHandle(o5), -(sp)

 	
 ; just a region again

 	
 JetachResource

 	
 ; (no longer a resource)

 	
 BSR

 	
 Create_loPB

 	
 : restore original Default Volume

 	
 move

 	
 Default_Vol(a5), lovRefNum(a0)

 	
 _SetVol

 	

 	

 	
 add. 1

 	
 d4, sp

 	
 ; clear loPB off the stack

 	
 move

 	
 CurResF11e(a5),

 	
 _UseResFI1e

 	
 @Rts RTS

 	

 	
 Create_loPB

 	

 	
 move.1

 	
 (sp)+, a1

 	
 move. 1

 	
 #100, d0 ;

 	
 move.1

 	
 d0, d4 ;

 	
 asr

 	
 #2, d0 ;

 	
 sub

 	
 #1. <10 :

 	
 QPush

 	

 	
 move.1

 	
 #0, -(sp)

 	
 dbra

 	
 d0, ©Push

 	
 move.1

 	
 sp,
00
 :

 (ol)

 	
 jmp

 Table caption; restore prior Resource File

 set up a temp loPB on the stock save for cleanup

 100 Bytes -> 25 Longs (more than we really need, actually)

 Table captionsp « addr of loParomBlock

 Open_Res_DLOG

 cir.l -(sp)

 move #Re8_DL0G_ID, -(sp)

 pea Res.DLOG.Storage

 move.I #-1. “(sp)

 _GetNewDlalog

 move.I (8p)+, d0

 RTS

 ; space for funct result ; In front of everything

 Modal_DL0G

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. I987 95

 ; no f M terProc

 cir.l -(sp)

 pea ItemHtt

 .ModalDiolog move ItemHIt, d4

 cmp #1. d4

 beq.8 ®OK_Button

 cmp #2. d4

 BNE ModaULOG

 RTS

 ®0K_Button

 Is It 'OK* ?

 yes - save DITL EdItText Items

 Is It ’Cancel * ?

 not yet - stick around

 	
 move

 	
 #Res.Type_DITL

 	
 _Num, d3

 	
 bsr

 	
 Save_Text

 	

 	
 1 ea

 	
 Resource^Type

 	
 Str, 00

 	
 move.b

 	
 (a0)+. d0

 	

 	
 1 ea

 	
 Resource.Type,

 	
 a1

 	
 move.b

 	
 (a0^+. (a1)+

 	

 	
 move.b

 	
 (a0)+, (al)+

 	

 	
 move.b

 	
 100
)+, Ca1)+

 	

 	
 move.b

 	
 (a0)+, (a1)+

 	

 	
 move

 	
 #Res_ID_DITL Num, d3

 	
 bsr

 	
 Save_Text

 	

 	
 move

 	
 #Re8_Name_DITL,

 	
 _Nuni, d3

 	
 bsr

 	
 Save_Text

 	

 	
 1 ea

 	
 Resource^Type :

 	
 STR. 00

 	
 move.b

 	
 (a0). d0

 	

 	
 cmp

 	
 #4, d0

 	

 	
 BEQ.s

 	
 ©Check.ID

 	

 	
 move

 	
 #103, d3

 	

 	
 BRA

 	
 Param.Err

 	

 Table caption©Check.ID

 	

 	
 move

 	
 #106, d3

 	

 	
 move.I cmp. I bis

 	
 Re
80
urce_ID, d0 #32767, d0 ei

 	

 	
 bra

 	
 Porain_Err

 	
 @1

 	
 I ea

 move.b

 cmp.b

 bne.s

 	
 Resource_ID Str (o0)+, d0 #0. d0 «2

 	

 	
 BRA

 	
 Param_Err

 	
 @2

 	
 move

 	
 #107, d3

 	

 	
 sub.b ext .w

 	
 #1. d0 d0

 	
 ©Loop

 	
 cmp.b bp I . 8

 	
 #•0'. (a0)

 @3

 	

 	
 BRA

 	
 Parom_Err

 	
 @3

 	
 cmp.b

 dbHI

 cmp

 bne

 	
 #‘9’. (o0)+ d0, ®Loop #-1. <10 Param_Err

 	

 	
 move

 	
 #0. d4

 	

 	
 RTS

 	

 ; also save the Resource Type ; w/o a Length Byte for _AddResource

 Table caption; save the ID Number ; (both as Str and INT) ; save the Resource Name

 Table caption; get the Length Byte

 ; length 4 ■ OK ; ’ResType must be 4 Chars’

 ; assume ’0 - 32767’ error ; get the INT form of the ResID ; OK so far

 ; whoops - larger than 32767

 ; String Length ; length « 0 ?

 ; no

 ; no ID entered

 ; assume ’Resource ID must be 0 ... 9* ; error

 ; check that each char Is digit

 ; OK so far

 ; did we exit on an error ? ; yes

 ; no error flag

 Param_Err

 ResID of Error String in d3

 96 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 pea Res_DLOG_Storage

 _CloseDlalog

 BSR

 BSR

 RTS

 Restore_Image

 Stop^lert

 Save_Text

 @1

 (62

 	
 pea

 	
 Res.DLOG.Storage

 	
 move

 	
 <13, -(sp)

 	
 pea

 	
 ItemType

 	
 pea

 	
 ItemHand1e

 	
 pea

 	
 ItemBox

 	
 _GetDItem

 	
 move.1

 	
 ItemHandle, -(sp)

 	
 cmp

 	
 #Res.Type.DITL.Num, <

 	
 bne.s

 	
 @1

 	
 pea

 	
 Resource.Type.STR

 	
 ^GetlText

 	
 RTS

 	

 	
 cmp

 	
 #Res_ID_OITL_Num. d3

 	
 bne.s

 	
 e2

 	
 pea

 	
 Re
80
urce_ID_Str

 	
 _GetIText

 	
 1 ea

 	
 Resource.ID.Str, a0

 	
 move

 	
 #StringToNum, -(sp)

 	
 .Pack?

 	

 	
 1 ea

 	
 Resource.ID, a0

 	
 move.1

 	
 d0, (a0)

 	
 RTS

 	

 	
 pea

 	
 Resource.Name

 	
 .GetIText

 	
 RTS

 	

 Item Number

 get the Handle, given the Item Number in D3

 first save the ID as a String

 then save it as an INTEGER (actually a LONG)

 Table captionCONSTs (PC-relative)

 	
 Re8_DL0G_Storoge

 	
 dcb.b

 	
 170, 0

 	
 PutFIle_Po8lt

 	
 dc.l

 	
 $003401

 	
 SFReply

 	
 good:

 	
 dc .b

 	
 0

 	
 copy:

 	
 dc.b

 	
 0

 	
 fTyp*:

 	
 dc. 1

 	
 0

 	
 vRefNum:

 	
 dc.w

 	
 0

 	
 version:

 	
 dc.w

 	
 0

 	
 fName:

 	
 dcb.b

 	
 64, 0

 	
 ItemHit

 	
 dc

 	
 0

 	
 ItemType

 	
 dc

 	
 0

 	
 ItemHand1e

 	
 dc. 1

 	
 0

 	
 ItemBox

 	
 deb. 1

 	
 2. 0

 	
 tempString

 	
 dcb.b

 	
 40, 0

 	
 Resource.Type.Str

 	
 dcb.b

 	
 10, 0

 	
 Resource.ID.Str

 	
 dcb.b

 	
 10, 0

 	
 Resource.Name

 	
 dcb.b

 	
 20, 0

 ; TopLeft - (52. 100)

 allow for overage resID as a String

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 97

 	
 Resource_Type

 	
 dc. 1

 	
 Resource^ID

 	
 dc. 1

 	

 	
 Have.Prlor.DITLs

 	
 ds. b

 	
 Defau1t_Vo1

 	
 ds

 	
 CurResFIle

 	
 ds

 ResType w/out Length Byte resID as a LONG (really INT)

 END

 TRAVERSE.ASM

 Contributed by: Howard Katz

 'Region Maker," by Howard Katz. January, page 145.

 : Traverse.ASM Abstracted from < RgnMaker.ASM >

 I 16 July *86 h. katz

 Include MacTraps.D

 Include QuIckEqu.D ; gives ScreenBIts. rowBytes, bounds for screen

 XDEF DoContour

 'ngRgn. StartCoords. Trov.Count, MyRowBytes CreateMenu. WMgrPort. ScratchSTR. PenPoint. WStoroge

 XREF Stop_Alert

 HIBItNum equ 7

 CopyReglonItem equ 4

 Max_Trav_Count equ 8000

 ; an arbitrary upper limit In case ; of an 'endless* loop

 DoContour

 »

 ®0

 ®1

 Jsr GetFIrstPIxel

 bml ®0

 RTS

 tst.b FormlngRgn(a5) beq.s (BlnItRegs

 tst.b IsReglon(a5) beq.s @1

 move.I a6, -(sp)

 _DIsposRgn

 cir.l -(sp)

 _NewRgn

 move.I (sp)+. a6

 .OpenRgn

 .HIdePen

 move.I StartCoords(a5), -(sp) _MoveTo

 ; returned -1 « got one ; anything else • no ; could we find a 1st Pixel ? ; guess not

 ; are we doing a Region Def ?

 ; guess not

 ; have we already formed one ? ; no

 ; yes - get rid of It

 ; save It for .CIoseRgn

 ; local Coords of 1st pt w/pixel on ; do we really have to do this for ; a Rgn ?? maybe not

 ®InItRegs

 ^HldeCursor

 move #0, Trav_Count(A5)

 move D7

 move #0, D5

 movea.l A3, A4

 move.w D3, D4

 move.I #64. MyRowBytes(a5)

 ; how many On Pixels we've traversed ; how many Pixels we've checked ; Current Direction » Up (North)

 ; Current Addr = StartPt Addr ; Current BItNum = StartPt BItNum ; setup rowBytes

 98 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 bra SeorchNext ; GO DO IT

 averse

 ®9

 ; beginning with the StartPt, do a clockwise traverse around the ; contour of the region under consideration, always bearing to ; the outside.

 	
 A1

 	
 Testing Addr

 	
 D1

 	
 Testing BltNum

 	

 	
 D2

 	
 Testing Direction

 	
 A3

 	
 Start Addr

 	
 D3

 	
 Start BltNum

 	
 A4

 	
 Current Addr

 	
 D4

 	
 Current BltNum

 	

 	

 	
 D5

 	
 Current Direct

 	
 A6

 	
 Rgn Handle

 	
 D6

 	
 Current Tries (3 Max)

 	

 	
 D7

 	
 Number of tested pixels

 cmp #Max_Trav_Count, d7 BHI No_Loop_Error

 cmpa.1 A4, A3

 bne SeorchNext

 cmp.b D4, D3

 bne SeorchNext

 an arbitrarily ’high* number a *just-ln-case* doublecheck

 have we completed the loop ? no

 back at the same BltNum ? no

 ; We’ve returned to our Starting Point

 _ShowCursor ; (blanked when we pointed to StartPt)

 tst.b FormlngRgn(a5) beq.s @9 ; no

 move.I StartCoords(a5). -(sp) ; close the loop

 _HoveTo

 move.I a6, -(sp)

 _Clo8eRgn

 St
IsReglon(a5) ; We can now do a Region ’Copy’

 move.I CreateMenu(A5), -(sp) move jJlCopyReglonltem, -(sp)

 Jnableltem

 _PenNormal

 _ShowPen

 move #2, -(sp)

 .SysBeep

 move.I WMgrPort. -(sp) ; so we draw In the MenuBar

 ^SetPort

 move.I (a5), a0 ; thePort

 pea bounds+ScreenBlts(a0) ; for CIlpRect

 _CIIpRect

 pea MenuRect

 _EraseRect

 lea MenuRect, a0 move.I Left(a0), d0 sub #3, d0 swop d0 move.I d0, -(sp)

 _MoveTo

 move Trav_Count(A5), d0 ext.I d0

 lea ScratchSTR, a0 move #0, -(sp)

 _Pack7

 pea ScratchSTR JrawStr Ing

 ; LeftBottom

 ; Bottom - 3 (move pen up a bit ; BottomLeft

 ; Num to String

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 99

 pea V ^DrowStrIng

 move d7, d0

 ext.I d0

 lea ScratchSTR. a0 move #0. -(sp)

 _Pock7

 pea ScratchSTR

 _DrawStrIng

 pea • pixels*

 JrawSt r I ng

 pea PenPoint

 _GetPen

 pea WStorage

 «SetPort

 RTS

 Table captionSearchNext

 	
 move

 	
 #2. DS

 	
 ; allow up to 3 tries / else ABORT

 	
 Try_S_MInus_1_NeIghbor

 	

 	
 move.b sub. b and

 	
 D5, 02 #1. D2 #7. 02

 	
 ; try the (S-1)-NeIghbor ; Direction to Try

 	
 jsr

 beq.s

 	
 Test_Blt ®Try_S_Ne1ghbor

 	
 ; locate and test apt pixel ; the pixel was off

 	
 sub.b and bra.8

 	
 #2. 05 #7. 05

 SPIxelWasOn

 	
 ; rotate search direction 3 CCW

 ; and search for next pixel In contour

 	
 ®Try_S_NeIghbor

 	

 	

 	
 move

 Jsr bne. s

 	
 05, 02

 Test_Bit

 ©PIxelWosOn

 	
 ; try the S-Nelghbor ; locate and test apt pixel ; ON - continue In same direction

 Table caption@Try_S_PIus_1_Neighbor

 ; save for Region Size display ; reset Port to our Window

 ; traverse ALL DONE

 move D5, D2

 add.b #1. D2

 and #7. D2

 Jsr Test_BIt

 beq.s Rotate_3_CW

 ©PIxelWasOn

 movea.l A1, A4

 move D1, D4

 move Trav_Count(A5). D0

 add #1, D0

 move D0, Trav^Count(A5)

 ; try the (S+1)-NeIghbor

 ; update BItNumber and (a3) to test ; not on

 : pixel GOOD — update address ; update bit number In current byte

 ; Inc Count of Pixels Traversed

 ; If we’re forming a Rgn, set up the appropriate coords (from D5) ; for a _Move command

 	
 tst .b

 	
 Form IngRgn(a5)

 	
 beq

 	
 Traverse

 	
 move

 	
 D2. d0

 	
 add

 	
 d0. d0

 	
 add

 	
 d0. d0

 	
 1 ea

 	
 Llne^Table, a0

 	
 move.1

 	
 0(a0. d0). d0

 ; are we building a region ?

 ; no - go find next point

 ; the Direction we successfully moved In

 ; X 4 (each entry Is 4 bytes)

 ; get the appropriate pair of coords

 Table caption100 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 	

 	
 move.1

 	
 d0, -(sp)

 	

 	

 	
 _Line

 	

 	
 ; the whole object of the exercise

 	

 	
 bra

 	
 Traverse

 	
 ; and look for next point

 	
 Line^Tab1e

 	

 	

 	
 ; dir

 	

 	
 <J_Y / d_X

 	

 	
 @0

 	
 dc. 1

 	
 $FFFF0000

 	

 	
 @1

 	
 dc. 1

 	
 $FFFF0001

 	

 	
 ®2

 	
 dc. 1

 	
 $00000001

 	

 	
 ®3

 	
 dc. 1

 	
 $00010001

 	

 	
 @4

 	
 dc. 1

 	
 $00010000

 	

 	
 @5

 	
 dc. 1

 	
 $0001FFFF

 	

 	

 	
 dc. 1

 	
 $0000FFFF

 	

 	
 ®7

 	
 dc. 1

 	
 $FFFFFFFF

 	

 	
 Rotate.

 	
 -3.CW

 	

 	

 	

 	
 add.b

 	
 #3, D5

 	
 ; rotate search direction 2 Clockwise

 	

 	
 and

 	
 #7. D5

 	

 	

 	
 DBRA

 	
 D6. Try_S_Ml

 	
 [nus_1_Neighbor

 ; if we*re here, we*ve exceeded 3 TRIES of the above loop ; or we*re stuck In some other sort of endless loop

 No_Loop_Error

 	
 _ShowCursor

 	

 	

 	
 move.I StartCoords(a5), _MoveTo

 	
 -(sp)

 	
 ; close the loop

 	
 tst.b FormingRgn(a5) beq.s

 	

 	

 	
 move.I a6, -(sp) _CloseRgn

 	

 	

 	
 _ShowPen

 	

 	

 	
 move #101. <13

 BSR Stop^Alert

 	
 ; ResID of upcoming Str message ; ’Couldn’t find a Closed Loop’

 	
 RTS

 	
 ; to Mai

 	
 1 nLoop

 Test_Blt

 ; depending on the Direction we’re Testing (D2), change ; the BitNumber (D1) and where A1 is pointing if necessary.

 ; D1 Testing BitNum A1 Testing Addr

 ; D2 Testing Direct

 movea.l A4. A1 ; setup Test Address

 move D4. D1 ; setup Test BitNum

 lea JTable, aO move D2, d0

 as I #1, d0

 adda.w 0(a0, d0), a0 Jmp (a0)

 RetAddr

 add #1. d7

 tst.b FormingRgn(A5)

 beq.s ®9

 btst.b D1. (A1)

 ; one more tested Pixel ; Test the Bit

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 101

 January

 bra.8 ®rt8

 ®9 bcir.b D1, (A1)

 ®rt8 RTS

 ; Te8t than Clear the Bit on8creen

 Table captionJTable:

 Table caption®6

 Table caption®7

 	
 dc

 	
 MovaVartleal

 	
 - JTobla

 	
 0

 	
 ■

 	
 N

 	
 do

 	
 MovaRIght

 	
 - JTabla

 	
 1

 	
 ■I

 	
 NE

 	
 dc

 	
 MovaRIght

 	
 - JTabla

 	
 2

 	
 ■

 	
 E

 	
 dc

 	
 MovaRIght

 	
 - JTabla

 	
 3

 	
 ■

 	
 SE

 	
 dc

 	
 MovaVartleal

 	
 - JTable

 	
 4

 	

 	
 S

 	
 dc

 	
 MoveLaft

 	
 - JTable

 	
 5

 	
 .

 	
 sw

 	
 dc

 	
 MoveLaft

 	
 - JTable

 	
 6

 	

 	
 w

 	
 dc

 	
 MoveLaft

 	
 - JTabla

 	
 7

 	
 ■

 	
 NW

 	
 leal

 	

 	

 	

 	

 	

 	
 emp

 	
 #0. 02

 	
 ; moving Up ?

 	

 	

 	

 	
 baq

 	
 MovaUp

 	
 : yes

 	

 	

 	

 MoveDown

 MovaUp

 adda.I BRA. 8

 8uba.I BRA. 8

 MyRowByta8(a5), A1 ; moving DOWN - A1 points to byte BELOW RatAddr

 MyRowBytas(a5), A1 RatAddr

 ; point to byte ABOVE

 Table caption©CkRIght

 Table captionMoveLaft

 Table caption@CkLeft

 	
 sub

 	
 #1, 01

 	
 »

 	
 point to next pixel to right

 	

 	
 emp

 	
 #0. 01

 	
 »

 	
 have wa possad bItNumbar 0 ?

 	

 	
 bpi

 	
 (SCkRIght

 	
 »

 	
 no

 	

 	
 move

 	
 #H!BItNum, 01

 	
 *

 	
 reset bItNumbar to 8

 	

 	
 adda.1

 	
 #1. A1

 	
 »

 	
 point to next higher Byte to

 	
 check

 	
 emp

 	
 #1. 02

 	
 •

 	
 moving NE ?

 	

 	
 baq

 	
 Movellp

 	
 »

 	
 yes

 	

 	
 emp

 	
 #2. D2

 	
 ;

 	
 moving E ?

 	

 	
 baq

 	
 RatAddr

 	
 !

 	
 no

 	

 	
 bra.8

 	
 MoveDown

 	
 »

 	
 must be SE

 	

 	
 add

 	
 #1. 01

 	
 »

 	
 BItNum points to next Leftmost pixel

 	
 emp

 	
 #HiB!tNum, 01

 	
 f

 	
 greater than 7 ?

 	

 	
 bl8

 	
 ©CkLeft

 	
 »

 	
 no / else

 	

 	
 move

 	
 #0. 01

 	
 ;

 	
 zero BItNum « Rightmost pixel

 	
 In next

 	
 8uba.1

 	
 #1. A1

 	
 •

 	
 point to byte to Left

 	

 	
 emp

 	
 #7. 02

 	
 •

 	
 moving NW ?

 	

 	
 baq

 	
 MoveUp

 	
 »

 	
 yes

 	

 	
 emp

 	
 #6. 02

 	
 •

 	
 moving W ?

 	

 	
 baq

 	
 RetAddr

 	

 	

 	

 	
 bra.8

 	
 MoveOown

 	
 ;

 	
 must be SW

 	

 ManuRact

 do

 0. 280, 18. 505

 END

 102 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 LIST.1

 Contributed by: Jon C. Snoder

 Programming Project: “Look it Up Faster with Hashing," by Jon C. Snader. January, page 128.

 50 •

 55 •

 60 ’Subroutine to hash a four character string 65 ’

 70 ’Enter with the string to be hashed in NA$

 75 ’

 80 ’On exit the hash value is in H 85 ’

 90 ’

 95 ’

 100 H - (CVI(MID$(NA$,1,2)) XOR CVI(MID$(NA$.3.2))) MOD 61 110 RETURN

 LIST.2

 Contributed by: Jon C. Snader

 Programming Project: "Look it Up Faster with Hashing," by Jon C. Snader. January, page 128.

 Function h(KEY: 8tring4): integer;

 Type

 KEY^types » (char^KEY, integer_KEY);

 KEY.overlay ■ record case KEY^types of

 char_KEY:
(
 KEY_in_characters: string4);

 integer_KEY; (dummy: byte; {takes up room for string size} integer_KEY_1: integer; {first 2 bytes of

 integer_KEY«2: integer; {last 2 bytes of KEY}

);

 end;

 Vor

 KEY.record: KEY_overlay; begin {hash} with KEY^record do begin

 KEY in characters ’ ’; {clean out In case KEY < 4 chars}

 KEYlinlcharacters KEY;

 h :■ (integer_KEY_1 xor integer_KEY_2) mod number_TAB_entrIes;

 end;

 end; {hash}

 LIST.3

 Contributed by: Jon C. Snader

 Programming Project: "Look it Up Foster with Hashing," by Jon C. Snader. January, page 128.

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 He Kent >K m ♦ ♦ ♦ ♦)|c)|e« « « * IK « 4(* 4c 4(♦ 4t ♦ 4c« 4t«IK «)K « * 4c * KC :(c He JlcXe 4e ♦ ♦ ♦ ♦ ♦ « « 4C« « 4c«

 s|c ^

 4. A SUBROUTINE TO CALCULATE A HASH VALUE BETWEEN 4c

 4C 0 AND 60 *

 4c ♦

 4C ♦

 4C
INPUT; KEY - FOUR BYTES OF CHARACTER DATA TO BE HASHED 4c

 4. *

 S|C ^

 4. OUTPUT: INDEX - AN INTEGER VALUE BETWEEN 0 AND 60 4c

 4C ♦

 4
c
4
«
4
c
4
c
4
c
4
c
4
c
4
c
4
c
4
c
4
c
4
c 4c
4
c 4c 4« 4c 4« 4c 4c 4c 4c 4c 4c 4c ♦ 4c 4« 4c 4« 4c 4c 4c 4< 4c 4c 4c

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 103

 January

 SUBROUTINE HASH(KEY.INDEX) CHARACTER KEY* *4.WKEY*4 INTEGER
*2
 INDEX,IKEY(
2
),EOR EQUIVALENCE (WKEY.IKEY) WKEY-KEY

 IKEY(1)-EOR(IKEY(
1
).IKEY(2)) INDEX-MOD(IKEY(1),61)

 RETURN

 END

 LIST.4

 Contributed by: Jon C. Snoder

 Programming Project: "Look It Up Faster with Hashing.*' by Jon C. Snoder January, page 128.

 HASH—Procedure to hash a four byte string

 Input: AX first two bytes of string BX :■ second two bytes of string

 Output: AL :- hash value (0-60)

 Registers destroyed: AX.BX

 TAB_s
2
 equ hash proc

 push xor xor mov div mov pop ret

 hash endp

 61

 near

 dx

 ox.bx dx.dx bx,TAB_
s
2 bx

 ax.dx

 dx

 ;deflne table si
2
e ;save DX

 ;combine Into 16 bits -.clear DX-dividend in DX AX ;table si
2
e to BX ;divide-remalnder Is in DX ;remainder to AX ;restore DX

 LIST.5

 Contributed by: Jon C. Snoder

 Programming Project: "Look It Up Faster with Hashing." by Jon C. Snoder. January, page 128.

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 270

 280

 290

 300

 310

 Note 1

 Note 2

 Note 3

 Note 4

 Note 5

 Note 6

 Note 7

 Note 8

 Note 9

 Note 10

 Note 11

 ~ enter KEY and return so and return

 320
|We found the end of the chain, so enter the key and return with
FD a 0

 340 OV - OV +
1
 ‘advonce to next empty overflow entry

 350 IF OV > MT THEN GOTO 2000 ‘goto the error routine ond never return

 360 TB(OV) - K$ 'enter KEY

 Note 12

 370 CH(IX) ■ OV *and add the new entry to the end of the chain 380 IX ■ OV ’set IX to tell the caller where we entered it 390 ’

 400 RETURN

 LIST.6

 Contributed by: Jon C. Snader

 Programming Project: "Look it Up Faster with Hashing," by Jon C. Snader. January, page 128.

 Program Search^With^Chaining;

 Const

 max_TAB_entry ■ 60; {last TAB entry number} number_TAB„entries - 61; jthe number of entries in TAB}

 Type

 tab_pointer ■ ^tab_entry; {define a pointer to tab_entry (below)} stringA « string[4];

 tab_entry ■ record {define an entry of TAB}

 KEY_field: string4; {holds KEY for this entry}

 CHAIN: tab^pointer; {pointer to next entry with same hash value} end;

 Var

 found: boolean; {set true by Search if KEY is found} index: tab_pointer; {pointer to the current TAB entry being examined} KEY: 8tring4; {name to be found or entered} i: integer; {for FOR loop use}

 node: array[0 .. max_TAB_entry] of tab_pointer; {heads for each chain} Procedure Search(KEY: string4);

 KEY}

 Function h(KEY: stringA): integer;

 Type

 KEY_types ■ (chor_KEY, Integer_KEY);

 KEY.overlay ■ record case KEY_types of

 char^KEY:
(
 KEY^in.characters: stringA);

 integer^KEY: (dummy: byte; {takes up room for string size} integer_KEY_1: integer; {first 2 bytes of

 integer_KEY_2: integer; {last 2 bytes of KEY}

);

 end;

 Var

 KEY_record: KEY.overlay; begin {hash} with KEY_record do begin

 KEY.in.characters * ’; {clean out in case KEY < 4 chars}

 KEY_in_characters :■ KEY;

 h :■ (integer_KEY_1 xor integer_KEY_2) mod number_TAB_entries;

 end;

 end; {hash}

 Var

 hash: integer; {holds the hash value the current KEY} last_index: tab_pointer; {points to the last entry examined}

 Begin {Search} found :■ false;

 hash :- h(KEY); {go hash KEY} index :> node[hash 1;

 if index ■ nil then {this is the first KEY with this hash value} begin

 new(index J; {create an entry for it}

 node[hash] :■ index; {and set node to point to it}

 index^.CHAIN :■
nil;
 {mark this entry as the end of the chain}

 Index^.KEY.field :- KEY; {enter KEY into TAB entry}

 end

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 105

 Chapter Notes

 	
 ^Routine to do a table look-up using chained hashing

 	
 •TB ■ table of names to be entered/looked up.

 	
 *CH ■ table of chain pointers

 	
 *IX « index to entry of TB where the name was entered or found *0V « pointer to the last entry used in the overflow table

 	
 *FD a flag reporting result of search: 0anot found. 1*found ’K$ - holds the current KEY being searched for |MT a maximum total table sl
2
e (primary and secondary)

 	
 FD a
0
 * Initiali
2
e result of search to "not found"

 	
 GOSUB 1000 'go hash the key In K$; the result is returned In IX

 	
 ’examine first entry with correct hash value »

 	
 IF TBfIXl - "" THEN TB(IX) - K$: RETURN ’It's empty IF TB(IX) - K$ THEN FD -
1
: RETURN ‘found it - soy

 	
 I the first entry hod some name other than KEY In It - step down the chain

 	
 IF CH(IX) <>
0
 THEN IX •• CH(IX): GOTO 260 'step down the chain

 	
 104 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 January •

 else {there are entries with this hash value - search them{ beg i n

 while (index <> nil) and not found do begin

 if index^.KEY.field - KEY then {found it} found ;■ true

 else {point to next entry with this hash value} begin

 last_index :■ index; {point to the LAST entry} index index^.CHAIN; end;

 end;

 if not found then {create a new entry} begin

 new(last^index'^.chain);

 index :» Iast_index^.chain; {and point to it with index} index^.CHAIN :■ nil; {mark this entry as end of chain} index^.KEY.field KEY; {enter KEY into TAB entry} end;

 end;

 end; {Search}

 Begin {Search.With_Chaining}

 for i;*0 to max_TAB_entry do node[i];»niI; {set nodes to point nowhere}

 {User Code Goes Here}

 End. {Search_With_Chaining}

 LIST.7

 Contributed by; Jon C. Snader

 Programming Project: "Look it Up Faster with Hashing," by Jon C. Snader. January, page 128.

 Program Search_With_DoubIe^Hashing;

 Const

 max_TAB_entry ■ 60; number_TAB_entries « 61; empty = ’ *;

 p_prime = 59;

 P « 61;

 i
last TAB entry} number of entries in TAB} what an empty entry looks like}

 !
 first twin prime-used to calculate increment} second twin prime-used to hash KEY}

 Typ«

 string4 » 8tring[4J;

 Var

 found: boolean; index: integer; KEY: 8tring4; i: Integer; n: integer;

 TAB: array[0 ..

 i
set true by search if KEY is found} pointer to the TAB entry being examined} name to found or entered} jfor FOR loop use}

 {number of entries currently in TAB} max_TAB_entry] of string4;

 Procedure Search(KEY: string4);

 Function h(KEY: string4; modulus: integer): integer;

 Type

 KEY.types » (char.KEY, integer.KEY);

 KEY_overlay • record case KEY^types of

 char_KEY:
(
 KEY_in^characters: 8tring4);

 integer_KEY: (dummy: byte; {takes up room for string

 size}

 integer_KEY_1: integer; jflrst 2 bytes} integerJ<EY_2: integer; {lost 2 bytes});

 end;

 Var

 KEY_record: KEY_overlay;

 106 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 begin {h{

 with KEY_record do begin

 KEY_in_characters * *; {in case KEY < 4 chars}

 KEY_in_characters :« KEY;

 h := (integer_KEY_l xor integer_KEY_2) mod modulus; end;

 end; {h}

 Procedure add_KEY_to_TAB; begin {add.KEY_to.TAB}

 n :■ n + 1; {one more entry in TAB} if n > max.TAB.entry then {table is full} begin

 writeln(’ ♦♦♦Fatal Error^^^*);

 writeInf’TabIe overflow in table TAB*); writeln(* program aborted*);

 halt; {stop with a fatal error}

 end

 else {there*8 still room, so add another entry}

 TAB[index] := KEY; end; {add.KEY.to.TAB}

 Var

 j: integer;

 {increment for current KEY}

 begin {search} found :« false;

 index :* h(KEY, p); {go hash KEY} if TAB[index] * KEY then {found it} found :* true

 else {we have to do some more looking} begin

 if TAB[index] ■ empty then {it*8 not there - enter it} add.KEY.to.TAB e I se begin

 j :■ h(KEY, p.prime) •»• 1; {calculate the increment repeat

 index :■ index + j; {step index to next entry}

 If index > max.TAB.entry then {off the end of TAB} index :■ index - number.TAB.entries; {make

 ci rcular}

 if TAB[index] * KEY then {we found it} found :* true; {so say so} until (TAB[index] ■ empty) or found; if not found then {we need to enter KEY} add.KEY_to.TAB; {so do to}

 end;

 end;

 end; {search}

 I

 Begin {Search.With.DoubIe.HashIng} n :■ 0; {no entries In TAB yet}

 for i :■ 0 to max.TAB.entry do TAB[i] empty; {all entries aval Iable}

 {user code goes here}

 End. {Search.With.DoubIe_Hashing}

 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987 107

 108 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987

 IFP.TXT

 Contributed by: Arch D. Robison

 "Illinois Functional Programming: A Tutorial" by Arch D. Robison, page 114.

 IFP Reference

 1

 1. Bu.i i t-lQ
Functions

’

 This section is a reference auide to the built-in functions in IFP. The following sets (types; are used in the definitions of functions:

 A atoms

 B boolean values

 0 objects

 R real numbers

 Z integers

 S strings

 T* sequences with element type T T+ non-empty sequences with element type T Tn sequences of length n with element type T A function returns •*?*• |f the argument is not in its domain. The notation xn denotes the nth element of a sequence X.

 For example, the domain of the addition function is [X,Y] in [R,R]. That is addition takes a pair of real numbers as its argument. We could also write this as [X,Y] In R2, since a pair is
0
 sequence of length two.

 December 5, 1985

 IFP Reference 2

 1.1. S.tructurql Functions (/s^)

 Structural functions are assemble, reorganize, and select data. The primitive structural functions are listed below:

 	
 iNoma

 	
 Domo11

 	
 n

 	

 	
 apnd 1

 	
 [X.Y]

 	
 i n

 	
 [O.On]

 	
 opndr

 	
 [X.Y]

 	
 i n

 	
 [Otn.O]

 	
 cat

 	
 X in (

 	

 	

 	
 dist 1

 	
 [X.Y]

 	
 in

 	
 [O.On]

 	
 di st r

 	
 [X.Y]

 	
 i n

 	
 [Om.O]

 	
 drop 1

 	
 [X.K]

 	
 in

 	
 [On, OiZin]

 	
 dropr

 	
 [X.K]

 	
 in

 	
 [On. OiZin]

 	
 iota

 	
 n in Z^0

 	

 	
 1ength

 	
 X in On

 	

 	
 p i ck

 	
 [X.K]

 	
 i n

 	
 [On, 0<Zin]

 	
 repeat

 	
 [X.K]

 	
 In

 	
 [O.OiZ]

 	
 reverse

 	
 X in On

 	

 	
 tokel

 	
 [X.K]

 	
 i n

 	
 [On, 0iZin]

 Definition

 <X, yl , y2 , ...yn>

 <xl, x2, ... xm, Y> catenote sequences «X,yl> <X,y2> ... <X,yn»

 «xl,Y> <x2,Y> ... <xm,Y»

 drop K elements from left end of X

 drop K elements from right end of X

 <l,2,...n>

 number of elements in X Kth element of X sequence <X,X...X> of length K reversal of X

 take K elements from left end of X

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 109

 	
 taker

 	
 [X.K] In [On. 0^Z^n]

 	
 take K elements from right end

 	
 of X

 	
 11

 	
 X In 0+

 	
 (tall) drop first element of X

 	

 	
 t Ir

 	
 X In 0+

 	
 (right toll) drop last element

 	
 of X

 	
 trans

 	
 X Is matrix

 	
 transpose X

 	

 December 5, 1985

 IFP Reference 3

 1.2.
Arithmetic
(/mgth/qrIth)

 Most IFP arithmetic functions are found here. Below Is a table of the existing functions. Some function’s domain may be further restricted due to range limitations.

 	
 Name

 	
 Doma1n

 	

 	
 Definition

 	
 +

 	
 [X.Y] in

 	
 [R.R]

 	
 X+Y

 	

 	
 . . .

 	

 	
 X-Y

 	

 	
 . . .

 	

 	
 XxY

 	
 %

 	
 [X.Y] in

 	
 [R.R/0]

 	
 X/Y

 	
 addi

 	
 X In R

 	

 	
 X+1

 	
 arcs 1n

 	
 X In R.

 	
 •1iXs1

 	
 arcsine X

 	
 arccos

 	
 X In R.

 	
 ■liXil

 	
 arccosine X

 	
 Cretan

 	
 X In R

 	

 	
 arctangent X

 	
 cos

 	
 X In R

 	

 	
 cosine X

 	
 dl V

 	
 [X.Y] In

 	
 [R.Rj<0]

 	
 floor (X/Y)

 	
 exp

 	
 X In R

 	

 	
 e to the Xth power

 	
 1 n

 	
 X In R>0

 	

 	
 natural logarithm of X

 	
 max

 	
 [X.Y] In

 	
 [R.R]

 	
 maximum of X and Y

 	
 min

 	
 [X.Y] In

 	
 [R.R]

 	
 minimum of X and Y

 	
 minus

 	
 X In R

 	

 	
 -X

 	
 mod

 	
 [X.Y] In

 	
 [R.R]

 	
 X modulo Y

 	
 power

 	
 [X.Y] In

 	
 [Ri0.R]

 	
 X to Yth power

 	
 s 1 n

 	
 X In R

 	

 	
 sine X

 	
 sqr t

 	
 X In R>0

 	

 	
 square root of X

 	
 subi

 	
 X In R

 	

 	
 X-1

 	
 sum

 	
 X In R*

 	

 	
 summation of X

 	
 tan

 	
 X In R

 	

 	
 tangent of X

 no BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 December 5, 1985

 IFP Reference 4

 l.i.
Logic
 (/
moth/loglc
^

 Most IFP primitive functions returning boolean values are found here. Below Is a table of the existing functions:

 	
 Name

 	
 Domain

 	

 	
 Definition

 	

 	

 	
 [X.Y] in

 	
 [0.0]

 	
 X-Y

 	

 	
 —

 	

 	

 	
 Xt^Y

 	

 	
 <

 	
 [X.Y] in

 	
 [R.R] u [S.S]

 	
 X<Y

 	

 	
 <«

 	

 	

 	
 X^Y

 	

 	
 >=

 	

 	

 	
 X^Y

 	

 	
 >

 	

 	

 	
 X>Y

 	

 	

 	
 X in B

 	

 	
 not X

 	

 	
 and

 	
 [X.Y] in

 	
 [B.B]

 	
 X AND Y

 	

 	
 al 1

 	
 X in B*

 	

 	
 all elements of

 	
 X are true

 	
 any

 	
 X i n B*

 	

 	
 at least one element of X is true

 	
 atom

 	
 X in 0

 	

 	
 X is an atom

 	

 	
 boo 1 eon

 	
 X in 0

 	

 	
 X is boolean

 	

 	
 fa 1 se

 	
 X in 0

 	

 	
 X is #f

 	

 	
 imply

 	
 [X.Y] in

 	
 [B.B]

 	
 -X OR Y

 	

 	
 longer

 	
 [X.Y] in

 	
 [Om.On]

 	
 m>n

 	

 	
 member

 	
 [X.Y] in

 	
 [o*.o]

 	
 Y is an element

 	
 of X

 	
 numeric

 	
 X in 0

 	

 	
 X is a number

 	

 	
 nu 1 1

 	
 X in 0*

 	

 	
 A

 V

 1

 X

 	

 	
 odd

 	
 X in Z

 	

 	
 X is odd

 	

 	
 or

 	
 [X.Y] In

 	
 [B.B]

 	
 X OR Y

 	

 	
 pa i r

 	
 X In 0

 	

 	
 X is a pair

 	

 	
 shorter

 	
 [X.Y] in

 	
 [Om. On]

 	
 m<n

 	

 	
 xor

 	
 [X.Y] In

 	
 [B.B]

 	
 X^

 	

 String inequalities are defined from the Iexigraphlea I (dictionary) ordering.

 December 5, 1985

 IFP Reference 5

 I.l. string Funetiona (/£^)

 The string functions are:

 	
 Name

 	
 Domai n

 	
 Definition

 	
 exp 1 ode

 	
 X

 	
 in

 	
 S

 	
 sequence of characters in X

 	
 implode

 	
 X

 	
 in

 	
 S*

 	
 string made by catenating strings In X

 	
 patom

 	
 X

 	
 i n

 	
 A

 	
 string representation of X

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 Ill

 February

 Miaftol lanaouB
 Functiont (/m)

 Th« mlscellonoous functions ore listed below. Each function description Is preceded by a title line of the form: function domain definition

 y [X,F] In [O.S*] apply F to X

 F Is a sequence of strings representing a path to a defined function. The result Is the function referenced by F appiled to X. Example:

 «3 4> <math arlth *'+''» : apply -> 7

 c [X»Y] In [(0+)*.0] associative lookup

 X Is an association sequence, which Is a sequence of non-empty subsequences. The first element of each subsequence Is the kAX subsequence. The result of as

 soc Is the first subsequence of X with a key equal to Y.

 If no matching key Is found, f Is returned. The key may be any type of object. Examples:

 «<a b c> <w X y z> <I j» w> -> <w x y z>

 «<a b c> <w X y z> <I J» U> -> f

 def

 December 5, 1985 IFP Reference X In S+

 6

 defInItIon

 The definition function returns the object representation of Its argument. The representation of a function Is a sequence of strings denoting Its absolute path. The representation of a PFO Is a sequence. The first element

 of the sequence Is a path to the PFO. The remaining elements of the sequence are parameters of the functional

 form. Suppose, for example, we define the Inner product

 functIon:

 DEF Inner AS trans
\
 EACH ♦ and ‘‘Inner’* Is defined with “/math/I Inear ” . Then “<math result In:

 <

 <sys compose>

 <sys trans>

 «sy8 each> <math arlth ♦»

 «8y8 Insertr> <math arlth +»

 >

 Currently, the representations of PFO are:

 END I INSERT 4 a module linear Inner>

 END with : def”

 path wl I I

 I f2 I

 f2

 fn

 . fn

]

 «8y8 constant> #c>

 «sy8 constant»

 «8y8 selectl> n>

 «8y8 8electr> n>

 «8y8 compose>, f1 , f2 , ... fn> «sy8 construct>, f1 , f2 , ... fn> «8ys fetch> c>

 «sys each> f>

 «8ys f 11 ter> p>

 «8ys Insertr> f>

 «sy8 If> p g h>

 K «8y8 whlle> p f>

 ELSIF clauses are always expanded Into equivalent nested IFTHEN-ELSE constructions. Note the special case for #?, the representation «sy8 constant> ?> would be useless due to the bottom-preserving property.

 #c #? n

 nr f 1

 [f1

 "^c

 EACH f END FILTER p END INSERT f END IF p THEN g ELSE h END WHILE p DO f END

 112 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 id

 X in 0

 i dentity

 February

 The identity function returns as a place holder In PFO. function can be written as:

 DEF Square AS [id,id]

 its argument. It is useful For example, the *'square**

 I

 December 5, 1985

 IFP Reference 7

 2. Ef-.oqrqm
Forming Operations

 Program forming operations combine functions and objects to create new functions.

 2.1.
Constant

 Constant functions always return the same result when applied to any value which is not **?**. Constant functions are written as:

 #C

 where c is the constant value to be returned. A constant function applied to **?»» results in **?**. Note that the function **#?** always returns *?*. Examples:

 923 : #<cat in hat> -> <cat in hat>

 <a b c d e f> : #427 -> 427 ? : #<q w er t y> -> ?

 5 : #? -> ?

 2.2. SgJ.ftct ion

 Selector functions return the nth element of a sequence and are written as n, where n is a positive integer. Note the distinction between #5, which returns the value 5, and 5, which returns the fifth element of its argument. There are also a corresponding set of seIect-from-rIght functions, written as nr. These select the nth element of a sequence, counting from the right. All selectors return **?*• |f the argument has no nth element or is not a sequence. Below are some examples of applying selector functions:

 <a b c d e> : 1 -> a

 <0
 b c d e> : 2 -> b

 <apple banana cherry> : 1r -> cherry

 <apple banana cherry> : 4 -> ?

 December 5, 1985

 IFP Reference 8

 hello : 1 -> ?

 2.3. Composition

 The function composition of two functions is written as:

 f I 9

 Applying the result function is the some os applying f and then g. E.g.: Function composition is defined by the equality:

 X : (f I g)
5
 (x : f) : g

 Since function composition is associative, the composition of more than two functions does not require parentheses. The composition of f1,f2,...fn is written:

 f1 I f2 I ...fn

 Composition syntax is identical to UNIX*s pipe notation for a reason: function composition is isomorphic to
a
 pipe between processes without side effects.

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 113

 2.1. Construction

 The construction of functions Is written as bracketed list of the functions. For example, the construction of functions fl Is wrItten:

 [f1,f2,...fn]

 Function construction Is defined by the equality:

 X : [f1.f2,...fn] ■ <x:f1,x:f2,...x:fn>

 2.S*
AppIV to Each

 The EACH functional form applys a function to each element of a sequence. It Is written as

 December 5, 1985 IFP Reference

 EACH f END

 It Is defined by the equality:

 <x1,x2,...xn> : EACH f END ■ <x1:f,x2:f,...xn:f>

 2.S.
If
~
Then
~
Else

 The IF functional form allows conditional function application. It Is wrItten as

 IF p THEN g ELSE h END

 and Is defined by the equality:

 x:g If p-#t

 X : IF p THEN g ELSE h END

 x:h if p-#f ? otherwise

 The level of nesting of conditional forms may be reduced by using ELSIF clauses:

 IF pi THEN fl ELSIF p2 THEN f2 ELSIF ... ELSE g END

 2.Z. EjJlfiL

 The FILTER functional form filters through elements of a sequence satisfying a predicate. It Is written as:

 FILTER p END

 where p Is the predicate. It Is defined by the functional equality:

 FILTER p END s EACH IF p THEN [Id] ELSE [] END END | cat

 For example, if you wish to find all numeric elements in a sequence, you could write:

 December 5, 1985

 IFP Reference 10

 FILTER numeric END

 The FILTER functional form Is an IFP extension to Backus* FP.

 2.^.
Right
 Insert

 The INSERT functional form Is defined by the recursion:

 INSERT f END - IF tllnull THEN 1 ELSE [1,tl [INSERT f END] | f END

 114 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Typically It Is used for crunching a sequence down. For example, INSERT + END

 returns the sum of a sequence.

 Unlike Backus* FP, functions formed with INSERT are always undefined for empty sequences. The reason Is that It Is Impractical for the Interpreter to know the Identity element of userdefined functions. The number of cases where the Interpreter could know the Identity element are so few that you might as well define special functions for those cases, e.g:

 DEF sum AS IF null THEN #0 ELSE INSERT + END END;

 Alternatively, you can append the Identity element to the end of the sequence before Inserting, e.g.:

 DEF sum AS [ld,#0] | apndr | INSERT + END;

 Currently there is no ‘‘left Insert** form.d The left Insertion of f can be written as:

 reverse | INSERT reverse|f END

 2.a. While

 The WHILE Is written as:

 December 5, 1985 IFP Reference

 functional form allows Indefinite composition.

 11

 It

 WHILE p DO f END;

 and Is defined by the recursive functional equality:

 WHILE p DO f END - IF p THEN f | WHILE p DO f END ELSE Id END 2.Jia.
Fetch

 The fetch functional form allows easy access to association sequences (see function /sys/assoc for a description of association sequences.) A fetch Is written os ^c, where c Is an object.

 The fetch form Is defined by the functional equality:

 ^c = IF EACH pair END | all THEN [Id.#c]I assoc12 ELSE #?

 END;

 Note that the Input Is restricted to a sequence of pairs. Comments

 Comments are delimited by matching pairs of
(♦*• and **♦).
 Comments may be Inserted anywhere not adjacent to a token. For example:

 DEF foo AS bar; (♦ This is a comment. DEF foo AS bar Is not a comment ♦) 1. Syntax
Summary

 Below Is an EBNF grammar for IFP:

 December 5, 1985

 IFP Reference 12

 Def -> *DEF String *AS* Comp *;* '

 Comp -> Simp Ie j * I * Simp Ie }

 Simple -> Conditional | Constant | Construction | Each |
Filter |

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 115

 Conditional ->

 While ->

 Insert ->

 Each ->

 Filter ->

 Fetch -> Constant -> Debug -> Construction -> Path ->

 Object ->

 Bottom ->

 Atom ->

 Boo I eon ->

 Insert | Path | While | Fetch | Debug

 'IF* Comp 'THEN' Comp | 'ELSIF' Comp 'THEN' Comp |

 'ELSE' Comp 'END'

 'WHILE' Comp 'DO' Comp 'end'

 'INSERT' Comp 'END'

 'EACH' Comp 'END'

 'FILTER' Comp 'END'

 '^' String '#' Object '«' Object

 *[' [Comp J'.' Comp}] ']'

 [’/’] String JV* String}

 Bottom I Atom | *<* [Atom {’.’Atom}] *>*

 Number | String | Boolean

 LJdl

 Strings may be In single or double quotes. The strings ‘‘t** and **f’* must be quoted to distinguish them from boolean atoms. Strings of digits must also bo quoted to distinguish them from numeric atoms.

 S.
Runn
1ng IFP wlth
 MS-
DOS

 £.1. Prerequisite HardWALA

 The MS-DOS version needs at least a 256K system. Extra memory for a RAM-dlsk Is convenient but not necessary.

 g.2.
Prerequisite
 Softwarfl

 There are three programs you will need: the IFP Interpreter (IFP.EXE).
0
 text editor, and a directory lister. You must supply the text editor and directory lister. (The **PC-Wrlte** editor works with IFP under DOS 2.0 and 3.0; “ediln** only works under DOS 3.0; I haven’t tried any others). All three of these programs must reside on a different disk drive than your IFP functions. If you have enough memory, It Is advantageous to put these on a RAM-dlsk. The IFP function files should be kept on a floppy or hard disk, just In case your machine crashes.

 RunnlM 1££

 December 5, 1985 IFP Reference

 13

 Before Invoking IFP, two environment variables should be set. The “EDITOR” variable should be set to the name of your favorite editor. The default editor Is “cied.exe*’. The “FPDIR** variable should be set to the name of your favorite directory listing program. Normally these variables should be set by the autoexec.bat file. Below Is an example autoexec.bat file:

 set EDITOR - A:edlln.com set IFPDIR - A:sd2.com

 S.l. Storting I£E

 To start an IFP session, change your current working directory to a directory on the IFP functions disk. Then execute the “Ifp.exe’’ program. Your current working directory becomes your current working IFP module. (There Is no way to change your current working directory from within IFP. To change It, leave the Interpreter and change It within DOS.) When IFP Is ready. It will respond with the prompt “lfp> **. To end the IFP session, enter the command
“exit**.

All
 function definitions are kept In disk
files,
 so you can’t lose anything when you
exit
 or the computer crashes.

 To edit an IFP definition
file,
 type the command: ed name

 116 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 where
name
 Is the name of the function to be edited. (Since all IFP reserved words are upper case, it is a good practice to use lower or mixed case for function names.) The function may be one local to the current working module, or one that is imported into the current working module. If the function name is neither

 December 5, 1985

 IFP Reference 14 defined locally nor imported, then it is assumed to be a new local function. The function definition file must be of the form:

 DEF name AS f;

 Definitions are in free format, line breaks are treated as spaces. Matching pairs of **(♦*• and **♦)** delimit comments as in Pascal. Note: Do not switch to another file from within the editor. Always exit the editor to return to the IFP command interpreter first and then edit the next file. Otherwise interpreter won’t know that its internal copy of a function is invalid.

 To apply an IFP function, type the command: show object : function;

 The interpreter evaluates the result of applying the function to the object. The result is then pretty-printed at the terminal. Listing 1 shows a sample session.

 To list your functions, type the command:

 di r

 The directory listing program specified by IFPDIR will be invoked.
Note
: my directory lister won’t work unless I type a trailing slash, l.e. **dir/". I have not tried any other directory listing programs.

 To delete a function, type the command:

 del f

 The function definition file (along with the memory copy) will be deleted. Wildcards are not permitted in the function name.

 December 5, 1985

 IFP Reference 15

 Warning
: do not try to delete files with extensions (e.g.

 **.bak’’) from within IFP, since
file
 names are truncated to 8 characters, IFP may delete the wrong
file.

 Tracing Functions

 Currently, IFP has simple program trace mechanism. To trace a function, respond to the IFP prompt with:

 trace on f ,f
,...
 f ;

 1 2 n

 where the f’s are functions to be traced. Whenever a traced function Is Invoked, its argument and result are shown. Also, the argument and result of all called functions are shown. To stop tracing functions, respond to the IFP prompt with:

 trace off f ,f
,...
 f ;

 1 2 n

 When tracing, the Interpreter ellipses ore used to abbreviate functions. You con set the depth at which ellipses occur with the
depth
 command:

 depth n

 where n is a non-negative integer. The default depth is two.

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 117

 There is also a functional form for creating trace functions. Its form Is

 <gstr ing

 The function formed always returns Its argument unchanged, and It prints *‘string: ‘‘ followed by Its argument. For example,

 <1 3 5> : EACH ©banana END

 will
 print the messages:

 December 5, 1985 IFP Reference

 16

 banana: 1 banana: 2 banana: 3

 This tracing functional form Is for debugging only, since It creates a side effect (the message!). It Is not truly functional.

 Program execution can be aborted at any time by pressing control-C. A trace of where the function was
will
 be shown.

 Pressing control-C again
will
 abort the trace. December 5, 1985

 POLY.BAS

 Contributed by Rene Stolk and George Ettershank

 "Calculating the Area of an Irregular Shape," by Rene Stolk and George Ettershank, page 135.

 10 DIM X(50),Y(50)

 20 READ N 30 FOR K-1 TO N 40 READ X(K),Y(K)

 50 NEXT K 60 X(0)-X(N)

 70 Y(0)»Y(N)

 80 AREA-0

 90 FOR K-0 TO N-1

 100 AREA-AREA + X(K) ♦ Y(K+1) - X(K+1) ♦ Y(K) 110 NEXT K

 120 AREA - .5 ♦ ABS(AREA)

 130 PRINT "Enclosed area Is AREA 140 END 150 DATA 4

 160 DATA 4.3,4,1,1,4,3,4

 LISTING1

 Contributed by Robert J. Sclomanda

 "Another Approach to Data Compression," by Robert J. Sciamanda, page 137.

 10 OPEN "0",#1,"DATA" :REM Make a test data
file
 by taking 20 PRINT#1,50 :REM 51 samples from a Gaussian curve 30 D-.2 :REM centered at 1=25.

 40 FOR 1-0 TO 50 50 A=10*EXP(-(5-D*I)"2)

 60 PRINT#1,A 70 NEXT I 80 CLOSE

 118 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 LISTING2

 Contributed by Robert J. Sclamonda

 "Another Approach to Data Compression," by Robert J. Sclamonda, page 137.

 10 OPEN "I",#1,"DATA"

 20 INPUT#1,N :REM Get data count.

 30 DIM A(N)

 40 FOR 1*0 TO N :REM Get original data set.

 50 INPUT#1,A(I)

 60 NEXT I 70 CLOSE

 80 INPUT "Enter desired accuracy ";E 90 FOR L-2 TO INT(N/2-.5)

 100 W*3.141593/L

 110 FOR 1*1 TO N :REM Reconstruct missing values.

 120 IF I MOD L*0 THEN 190 :REM Branch at sampled values.

 130 G*0

 140 FOR J*0 TO N STEP L :REM The Nyquist sum.

 150 M*W^(I-J)

 160 G*G+A(J)*SIN(M)/M 170 NEXT J

 180 IF ABS(G-A(I))>E THEN 210 :REM Sum done; test accuracy.

 190 NEXT I :REM If ok, reconstruct next value.

 200 NEXT L :REM Increment sampling interval.

 210 L*L~1 :REM Highest successful sampling Interval.

 220 IF L>1 THEN 260 :REM L*1 means no compression possible. 230 PRINT "For an accuracy of +/-";E;"all of this data must be kept."

 240 PRINT "No compressed data file (CDATA) will be generated." 250 END :REM Exit.

 260 OPEN "o",#1,"CDATA" :REM Create compressed data file.

 270 PRINT#1,N,L :REM Write data count, sampling Interval.

 280 FOR J*0 TO N STEP L :REM Write compressed data set.

 290 PRINT#1,A(J)

 300 NEXT J 310 CLOSE 320 L$*"th"

 330 IF L»2 THEN L$-"nd" :REM Tell what you did.

 340 IF L*3 THEN L$-"rd"

 350 PRINT "Every ";L;L$;" data value has been kept In the compressed data Hie (CDATA)."

 360 PRINT "The original data set can be reconstructed to an accuracy of

 LISTING3

 Contributed by Robert J. Sclamonda

 "Another Approoch to Data Compression," by Robert J. Sclamonda, page 137.

 10 OPEN "I",#1,"CDATA" :REM Compressed data.

 20 INPUT#1,N,L :REM Get count, sampling Inverval.

 30 K*INT(N/L);DIM B(K)

 40 FOR 1*0 TO K ;REM Get compressed data.

 50 INPUT#1,B(I)

 60 NEXT I 70 CLOSE

 80 OPEN "0",#1,"RDATA" :REM Create reconstructed data.

 90 PRINT#1,N :REM Write data count.

 100 W*3.141593/L

 110 FOR 1-0 TO N :REM Reconstruction

 120 IF I MOD L « 0 GOTO 190 :REM Branch at sampled values.

 130 G-0

 140 FOR J*0 TO K ;REM The Nyquist sum.

 150 M*W*(I-J*L)

 160 G-G+B(J)*SIN(M)/M 170 NEXT J

 180 GOTO 200 :REM Sum done; store this value.

 190 G-B(I/L)

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 119

 200 PRINT#1.G 210 NEXT I 220 CLOSE 230 PRINT "The r

 :REM Write reconstructed value to file. :REM Go reconstruct next value.

 :REM Done

 econstructed data file Is RDATA"

 LISTING4

 Contributed by Robert J. Sclomanda

 "Another Approach to Data Compression," by Robert J. Sclomanda, page 137.

 10 OPEN "I",#1,"DATA" :REM Original data file.

 20 OPEN "I",#2,"RDATA" :REM Reconstructed data file.

 30 PRINT " DATA RDATA Error"

 40 IF E0F(1) THEN CLOSE: END

 50 INPUT#1.A :REM Get original data value.

 60 INPUT#2,B :REM Get reconstructed value.

 70 ER»AB$(B-A) :REM Calculate error.

 80 PRINT USING "#.#####— #.#####"""- #.####";A.B,ER

 90 GOTO 40

 LISTINGS

 Contributed by Robert J. Sclomanda

 "Another Approach to Data Compression," by Robert J. Sclomanda, page 137.

 10 SCREEN 0,0,0 :REM Text screen

 20 SZ-4-INT(-(640+7)*200/32) :REM Size of graphics array. 30 DIM SC(SZ) :REM To hold graphics screen.

 40 VRES-200: HRES-640

 50 MIDY-INT((VRES-1)/2) :REM Vertical offset for X-axIs 60 YES«(1=1)

 70 NO»(1-0)

 80 SS*NO : REM Screen not saved yet

 90 FILES

 100 LINE INPUT "Name the Input file ";FI$

 110 IF FI$-NU$ THEN END 120 OPEN FI$ FOR INPUT AS 1 130 INPUT #1,N

 140 PRINT FI$; " contains ":N+1; "values"

 150 INPUT #1.Y

 160 MINY=Y: MAXY-Y

 170 FOR K»1 TO N

 180 INPUT #1.Y

 190 IF Y>MAXY THEN MAXY«Y

 200 IF Y<MINY THEN MINY»Y

 210 NEXT K

 220 CLOSE

 230 PRINT "Values range from ";MINY; "to MAXY 240 PRINT "Press any key to continue";

 250 WHILE INKEY$*NU$: WEND

 260 YSCALE=(VRES-1)/ABS(MAXY-MINY)

 270 XSCALE=(HRES-1)/N 280 CLS

 290 SCREEN 2 :REM Graphics screen

 300 IF SS THEN PUT (0,0),SC :REM Restore screen If it has been saved previously.

 310 LINE (0,MIDY)-(HRES-1,MIDY),1 :REM Draw X-axIs

 320 OPEN FI$ FOR INPUT AS 1 330 INPUT #1.N 340 INPUT#1,Y

 350 PSET (0,(Y-MINY)>icYSCALE) :REM Plot first point.

 360 FOR X«1 TO N 370 INPUT #1.Y

 380 LINE -(X*XSCALE,(Y-MINY)*YSCALE) :REM Connect points 390 NEXT X 400 CLOSE

 410 GET (0.0)-(639.199),SC

 420 WHILE INKEY$»NU$: WEND :REM Hold til key pressed.

 430 SS«YES :REM Screen has been saved.

 440 SCREEN 0,0,0 :REM Go back to text screen.

 120 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 February

 450 GOTO 90 5000 DEF SEG«0

 5010 PRINT “Color or mono display (c/m)?

 5020 CM$=INPUT$(1)

 5030 PRINT CM$

 5040 WHICH*INSTR(1."CcMm".CM$)

 5050 ON WHICH+1 GOTO 5010.5070,5070.5130,5130 5060 END

 5070 POKE &H410.(PEEK(&H410) AND &HCF) OR &H10

 5080 SCREEN 1.0.0.0

 5090 SCREEN 0

 5100 WIDTH 40: WIDTH 80

 5110 LOCATE ,.1.6,7

 5120 STOP

 5130 POKE &H410.(PEEK(&H410) OR &H30)

 5140 SCREEN
0

 5150 WIDTH 40

 5160 WIDTH 80

 5170 LOCATE ..1,12,13

 IFP TXT...

 LISTING1

 LISTING2

 LISTING3

 LISTING4

 LISTING5

 POLY BAS.. .

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987 121

 122 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 LIST1.TXT

 Contributed by: Brian Edginton

 "Intailing Memory-Resident Programs with C", by Brian Edginton, March 1987, page 129.

 ^include <dos.h> main()

 I

 extern int _TSIZE; /* size

 union REGSS input,output;

 input.X.ax = 0x3112; input.x.dx = _TSIZE; intdoss(&input,&output) ;

 of program in paragraphs */

 /* 31 -> AH and Return Code ♦/ /* program size (Lattice) ♦/ /♦ function call 31 ♦/

 LIST2.TXT

 Contributed by: Brian Edginton

 "Intailing Memory-Resident Programs with C", by Brian Edginton, March 1987, page 129.

 This project started as a challenge to make a friend’s calculator program load and remain resident in memory on an IBM PC. Making a program written in assembly langauge stay resident has been presented in many articles and books, but writing the tools to moke a C program resident was a new adventure. I developed all the examples in this article with Lattice’s C Compiler version 3.0 and Microsoft’s Macro Assembler 4.0. I hove tried to make everything as portable as possible, but I’m sure that some modification will have to be made for different compilers and languages. In the listings, I have noted ony compiler-dependent variables. (Editor’s note: William Claff’s article, "xxxxxx" on page ?? contains additional information on the topic of DOS extension via memory-resident programs.)

 WHAT IS A RESIDENT PROGRAM?

 DOS uses a set of pointers called Storage Blocks to keep track of allocated and unallocated memory in the system. For eoch loaded program, these pointers Indicate the address its PSP (Program Segment Prefix) the program’s length in segments. There is also a flag that indicates whether or not the memory pointed to by the Storage Block is allocated. When a program module is loaded and executes an INT 27H (terminate but stay resident) or DOS function 31H (keep process), COMMAND.COM makes sure that this program becomes a part of DOS. This means that the Storage Block, PSP, and the program module remain In memory and are not reaI Iocoted.

 The principles behind making a program resident seems to be straightforward, just find the length of the program, shove it into a register and call a documented function. DOS Function 31H requests the program size In paragraphs be placed in DX and the return code if any in AL.

 As demonstrated by the program shown In listing 1, it is a simple matter to make a program resident. If you hove a utility like Norton’s SI or SMAP you con verify that the program is indeed resident by looking at the location of the next program to be loaded address. You con also exomine the amount of free memory displayed by the CHKDSK utility before and after running the program.

 Usually, we want to write a program that is more helpful than just taking up memory. Specifically, we want to write a program

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 123

 that responds to a system Interrupt, ond In doing so, supplies us with some sort of Information. It should also be "well behaved" and operate within the constraints of DOS.

 The design of this Installation system hod several primary goa I s:

 ♦ Modular design for universal application.

 ♦ Optimum memory usage.

 ♦ Correct processing of Interrupts.

 Modular design means that I can, with minor revision, make this program load any module that meets with the requirements for a resident. Interrupt processing program. To determine these requirements, I made a careful analysis of what my compiler did to a program, and what my linker did to the object modules supplied to it. If you ore using a compiler and/or linker other than the ones I used, these requirements may be different. Listing 2 Is on example of a completed sample system. Since we have little control right now over anything that happens obove main(), we * I I stort there ond analyze what hoppens. Refer to listing 3, which is a dissasembled version of the top-level code in listing 2.

 Cpush() ond cpop() ore two routines we * I I create later to help us get Into and return from the Interrupts. Since main() is really just onother function colled by the compiler's entry module which is what is really loaded by EXEC, the BP register is saved and then set to the new SP. This Is a requirement of any functions colled from another routine that might pass any information on the stock; it allows the functions to reference thot information on the stack via the BP register while still permitting new data to be pushed on the stack as required.

 Entry into a resident progrom should be designed so ony porometers ore passed in the DOS communications area or in registers, and not on the stack. Also, once a program module is installed in memory, we wont to ignore the call to install(). Although this uses six bytes of memory, passing the address of the coll to cpushO to the interrupt vector is the most efficient way to install the module. All function names ore made common In a C compiler so we con create the new vector IP by:

 nu_entry « (short)main + 6;

 Casting main to a short keeps it consistent with the woy the rest of the register structures are typed, nu.entry now points to the desired entry point In the program. Since we did not need to use the compiler-generated PUSH BP, and we are returning from an Interrupt we can Ignore the POP BP and the RET that the compiler put at the end of main.

 The installO function Is straightforward. In this example I borrowed an unused function call's vector to leave a signature or message to the calling program that we are already installed. To increase the safety of this routine, you could verify that the interrupt vector is filled with zeros first. If it is not, check onother vector until one is found with no vector already installed. Alternately, you could indicate that the module is already installed by setting a flag in memory, but you would have to choose a byte that you are certain would not be used by some other routine.

 Another method for routines that handle passed values (i.e. video calls, put and get char and string calls) would be to detect a certain value, and return an 'already installed' message to the installation program. Listing 4 shows a segment of code thot you could modify to perform this method of signature detection.

 The next task Is to decide how to best utilize the memory taken up by the program. Since I used function coll 31h Instead of int 21h to terminate the program, loaded programs can exceed the 64k limit imposed by the latter. I can use .EXE programs with stack and data segments defined — not just .COM programs. A .COM program uses as much memory os the machine has left when it is loaded; if the program is going to stoy resident, it has to return its unused memory to the system.

 124 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987

 I release the memory that contains the program’s copy of the environment using routine d_env(). On entry, the ES and DS (and SS and CS for a .COM program) segment registers point to the PSP at offset 0. Listing 5 shows the code for d_env(). I load ES with the address of the segment containing the copy of the environment and call DOS function 49H (free ollocated memory).

 If the program is a .COM file, you can reduce its size using routine shrink() (see listing 6). This function sets the memory used by a program to the size of the program module in paragraphs.

 If you write .COM programs, be sure that you allocote stack area before calling this function. If you use shrink(), you should call it before calling d_env() so that the ES register contains the correct information for the cali to function 4AH (modify allocated memory blocks). (You could modify the code to perform both operations with one call to Increase the speed and reduce the size of the program.)

 The last area I wiI I cover concerning memory management is one that is heavily influenced with my familiarity with the Lattice compiler. This compiler uses a file to set up the segment registers, handle stack and memory allocotions, report errors such os stack overflows, 'handle command line arguments to change the stack size, redirect I/O, and some other incidental operations.

 The code for all this is found in the c.osm file — its object module Is in c.obj. This code is loaded before main() and cannot be efficiently deallocoted by any means other than octuolly editing out unused portions of c.asm and recompiling the file. A knowledgeobIe programmer should be able to remove lorge portions of c.osm for many applications; I have reduced consideroble space in mine.

 INTERRUPTS

 Now that I’ve shown how to load programs into memory ond keep them resident, let’s examine the ovoilable methods of processing the interrupts (keyboord, clock, etc.) ond determine the best possible way to maintoin ’nice’ programs. My moln concern is with the saving of registers ond flags becouse of the amount of calls ond subroutines normally found in a program written in C. (You can see an exomple of this in listing 1.)

 Since we passed the address of cpush() to the interrupt vector, the first thing the program does when it is entered is o coll to cpush(). This call pushes a return address on the stack, one that would not be there if the code was being generated in assembly language. This problem is repeoted throughout the program so it must be handled very early on.

 The three modules in listing 7 show one of the fastest ond most efficient solutions I found. Upon entry into the progrom I call cpush(). This routine stores the short coll return oddress, the Interrupting program’s return CS and IP, and the FLAGS thot are pushed on the stack. It then stores the registers and segment registers in its own allocated memory. The short return address is then pushed back onto the stack ond the function returns to the body of the program.

 After the interrupt routine does its work (in the example given in listing 2, it prints "Hello world"), it calls cpop() to return to the Interrupted program. The cpop() routine emulates a pop of oil the registers that should hove been pushed onto the stock upon entry into the interrupt handler, ond then does an IRET. (For debugging purposes, I have also included the code for cpopt(), which is similar to cpop() except that cpopt() exits via a RET instruction.)

 SUMMARY

 This article demonstrates a very simple interrupt processing program that remains resident in memory. I plan to do more work in writing progroms that process the keyboard and video interrupts. Any programs written that use these techniques should be written with proper attention to good program structure, and correct monipulatlon of pointers and addresses. This project

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 125

 March

 turned out to be a lot more ambitious than I originally thought. The entry and exit routines posed the most problem, testing and debugging sometimes left the machine In a very corrupted state. Be certain that your C programs can pass lint before using them; remember, you ore creating a extension of DOS. I did notice that Including structures In a program compiled with Lattice Increased the address of the entry point by three. It mokes a call after moln() to set up the memory for the structs and/or unions. I wlI I be Interested In feedback about Improving any of these algorithms and techniques.

 LIST3.TXT

 Contributed by: Brian Edginton

 "Intalllng Memory-Resident Programs with C". by Brian Edginton. March 1987. page 129.

 	
 mo 1 n 1

 0000

 	
 0

 	
 PUSH

 	
 BP

 	
 0001

 	

 	
 MOV

 	
 BP.SP

 	
 0003

 	
 Instal1();

 	
 CALL

 	
 1nsta11

 	
 0006

 	
 cpush();

 	
 CALL

 	
 cpush

 	

 	
 pr 1 ntf("He 11
0
 world\n");

 	
 0012

 	
 cpopO:

 	
 CALL

 	
 cpop

 	
 0015

 	

 	
 POP

 	
 BP

 	
 0016

 1

 	

 	
 RET

 	

 LIST4.TXT

 Contributed by: Brian Edginton

 "Intalllng Memory-Resident Programs with C". by Brian Edginton, Morch 1987. page 129.

 colling(program)

 union REGSS In,out;

 In.x.ax = 0x0088; lntdoss(lnt_num.&ln.&out);

 Int_num

 switch((int)in.x.ox)} cose 0x88:

 return InstaI Ied cose 0xXX

 do something else

 LIST5.TXT

 Contributed by: Brian Edginton

 "Intolling Memory-Resident Programs with C", by Brion Edginton, March 1987. page 129

 ; d_env Is used to deallocate the memory used ; by a program's copy of the environment.

 	
 TITLE

 	
 ENVIRONMENT DEALLOCATION

 	
 SUBTTL

 	
 Copyright 1986 Brion Edgi

 	
 NAME

 	
 D_ENV

 	
 INCLUDE

 	
 DOS.MAC

 	
 PSEG

 	
 PUBLIC

 	
 D_ENV

 	
 IF

 	
 LPROG

 	
 PROC

 ELSE

 	
 FAR

 	
 PROC

 ENDIF

 	
 NEAR

 	
 PUSH

 	
 BP

 	
 MOV

 	
 BP.SP

 	
 MOV

 	
 ES.[DI+2CH]

 	
 MOV

 	
 AX.4900H

 	
 INT

 	
 21H

 	
 POP

 RET

 ENDP

 ENDPS

 END

 	
 BP

 126 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 LIST6.TXT

 Contributed by: Brian Edginton

 "Intailing Memory-Resident Programs with C", by Brian Edginton. March 1987, page 129.

 I

 	

 	
 TITLE

 	
 PROGRAM SHRINKER

 	
 PUSH

 	
 BP

 	

 	

 	
 SUBTTL

 	
 Copyright 1986 Brian Edginton

 	
 MOV

 	
 BP,SP

 	

 	

 	
 NAME

 	
 SHRINK

 	
 MOV

 	
 BX, ????

 	
 PROGRAM SIZE + ANY

 	

 	
 INCLUDE

 	
 DOS.MAC

 	

 	

 	
 STACK YOU NEED.

 	

 	

 	

 	
 MOV

 	
 AX.0X4A00

 	
 CALL MODIFY

 	

 	
 PSEG

 	

 	

 	

 	
 ALLOCATED MEMORY

 	

 	
 PUBLIC

 	
 SHRINK

 	
 INT

 	
 21H

 	
 BLOCKS ROUTINE.

 	

 	
 IF

 	
 LPROG

 	
 POP

 	
 BP

 	

 	
 SHRINK

 	
 PROC

 	
 FAR

 	
 RET

 	

 	

 	

 	
 ELSE

 	

 	
 SHRINK ENDP

 	

 	

 	
 SHRINK

 	
 PROC

 	
 NEAR

 	
 ENDPS

 	

 	

 	

 	
 ENDIF

 	

 	
 END

 	

 	

 LIST7.TXT

 Contributed by: Brian Edginton

 "Intailing Memory-Resident Programs with C". by Brian Edginton, March 1987, page 129.

 Table captionCPUSH

 	
 routines

 	
 emu 1 ate

 	
 a push-a11 of the

 	
 CPUSH

 	
 PROC

 	
 NEAR

 	

 	
 ers and

 	
 segregs

 	
 before an interrupt

 	

 	
 ENDIF

 	

 	

 	
 cuted. and then

 	
 pop them in the

 	

 	

 	

 	

 	
 rder.

 	

 	

 	

 	
 POP

 	
 STORAGE.RRT

 	

 	
 cpopt is

 	
 used for testing so we use

 	

 	
 POP

 	
 STORAGE.RIP

 	
 SAVE RETI IP.

 	
 instead

 	
 of a iret.

 	

 	
 POP

 	
 STORAGE.RCS

 	
 SAVE RETI CS,

 	

 	

 	

 	

 	
 POP

 	
 STORAGE.RFL

 	
 SAVE THE FLAGS,

 	

 	

 	

 	

 	
 MOV

 	
 STORAGE.RAX.AX

 	
 AND TUCK AWAY

 	
 TITLE

 	
 REGISTER MANIPULATION ROUTINES

 	

 	
 MOV

 	
 STORAGE.RBX.BX

 	
 ALL REGISTERS.

 	
 SUBTTL

 	
 Copyright 1986 by Brian Edginton

 	

 	
 MOV

 	
 STORAGE.RCX,CX

 	

 	
 NAME

 	
 STORE

 	

 	

 	
 MOV

 	
 STORAGE.RDX,DX

 	

 	
 INCLUDE

 	
 DOS.MAC

 	

 	

 	
 MOV

 	
 STORAGE.RDI,DI

 	

 	

 	

 	

 	

 	
 MOV

 	
 STORAGE.RSI,SI

 	

 	
 DSEG

 	

 	

 	

 	
 MOV

 	
 STORAGE.RDS.DS ;

 	
 GET THE SEGMENT

 	
 ter and stack storage structure follows.

 	

 	
 MOV

 	
 STORAGE.RSS.SS ;

 	
 REGISTERS.

 	
 STRUC

 	

 	

 	

 	
 MOV

 	
 STORAGE.RES,ES

 	

 	
 RAX

 	
 DW

 	
 ?

 	

 	
 PUSH

 	
 STORAGE.RRT ;

 	
 PUT CALL RETURN

 	
 RBX

 	
 DW

 	
 ?

 	

 	

 	

 	
 : ADDRESS ON STACK

 	
 RCX

 	
 DW

 	
 ?

 	

 	
 RET

 	

 	

 	
 RDX

 	
 DW

 	
 ?

 	
 CPUSH

 	
 ENDP

 	

 	

 	
 RSI

 	
 DW

 	
 ?

 	

 	

 	

 	

 	
 RDI

 	
 DW

 	
 7

 	

 	
 PUBLIC

 	
 CPOP

 	

 	
 RDS

 	
 DW

 	
 7

 	

 	
 IF

 	
 LPROG

 	

 	
 RCS

 	
 DW

 	
 7

 	
 CPOP

 	
 PROC

 	
 FAR

 	

 	
 RSS

 	
 DW

 	
 7

 	

 	
 ELSE

 	

 	

 	
 RES

 	
 DW

 	
 ?

 	
 CPOP

 	
 PROC

 	
 NEAR

 	

 	
 RIP

 	
 DW

 	
 ? ; Storage for 2 words

 	

 	
 ENDIF

 	

 	

 	
 RBP

 	
 DW

 	
 ? ; pushed for iret

 	

 	

 	

 	

 	
 RFL

 	
 DW

 	
 ? ; and flags.

 	

 	
 PUSH

 	
 STORAGE.RFL

 	
 RESTORE FLAGS.

 	
 RRT

 	
 DW

 	
 ? ; Return address

 	

 	
 PUSH

 	
 STORAGE.RCS

 	
 RESTORE CS,

 	

 	

 	
 ; pushed for call.

 	

 	
 PUSH

 	
 STORAGE.RIP

 	
 THEN IP.

 	
 ENDS

 	

 	

 	

 	
 MOV

 	
 ES.STORAGE.RES

 	

 	
 S

 	
 <0.e.0.0.0.0.0,0.0.0,0.0>

 	

 	
 MOV

 	
 DS,STORAGE.RDS

 	

 	
 ENDDS

 	

 	

 	

 	
 MOV

 	
 SI,STORAGE.RSI

 	

 	

 	

 	

 	

 	
 MOV

 	
 DI .STORAGE.RDI

 	

 	

 	

 	

 	

 	
 MOV

 	
 DX.STORAGE.RDX

 	

 	
 PSEG

 	

 	

 	

 	
 MOV

 	
 CX,STORAGE.RCX

 	

 	

 	

 	

 	

 	
 MOV

 	
 BX.STORAGE.RBX

 	
 ; READY FOR IRET

 	
 ; name

 	
 - cpushO

 	

 	
 MOV

 	
 AX.STORAGE.RAX

 	
 ; WITH OLD IP AND

 	
 : Pushes all the registers and segregs

 	

 	
 IRET

 	

 	
 ; STUFF ON STACK.

 	
 ; and

 	
 flags onto the stack. Use with

 	
 CPOP

 	
 ENDP

 	

 	

 	
 ; cpopO to restore in correct order.

 	

 	

 	

 	

 	

 	

 	

 	

 	
 PUBLIC

 	
 CPOPT

 	

 	
 PUBLIC

 	
 CPUSH

 	

 	

 	
 IF

 	
 LPROG

 	

 	
 IF

 	
 LPROG

 	

 	
 CPOPT

 	
 PROC

 	
 FAR

 	

 	
 PROC

 	
 FAR

 	

 	

 	
 ELSE

 	

 	

 Table captionELSE

 Table captioncontinued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 127

 March

 CPOPT PROC END IF PUSH PUSH PUSH MOV MOV MOV MOV MOV MOV MOV MOV RET

 NEAR

 STORAGE.RFL STORAGE.RCS STORAGE.RIP ES,STORAGE.RES DS.STORAGE.RDS SI.STORAGE.RSI DI,STORAGE.roI DX,STORAGE.RDX CX,STORAGE.RCX BX,STORAGE.RBX AX.STORAGE.RAX

 RESTORE FLAGS. RESTORE CS, THEN IP.

 READY FOR IRET WITH OLD IP AND STUFF ON STACK.

 CPOPT ENDP ENDPS . END

 BIXMODEM.INC

 Contributed by Borry Nonce

 "Best of BIX." PC.BIX/SOURCE.CODE #28 from borryn (Borry Nonce). Morch 1987.

 page 311

 ago
\
 n

 barryn. 9661 chars, Thu Jun 26 19:48:15 1986

 TITLE: BIXMODEM.INC

 BIXMODEM.INC Ymodem procedures for use with BIX.PAS

 Program and all Supporting Materials Copyright (c) 1985 Borry R. Nonce 17 Pease Street

 Wllbraham. Massachusetts 01095 (413) 596-4031

 Var CRCWork : Integer; CRC : Integer;

 Function PortiolCrc (01dCRC:Integer; C:Chor) : Integer;

 {done In 80x8x ossembler for soeedi Begin ’

 CRCWork OldCRC;

 INLINE($8A / $46 / $04 / (* Mov

 $8B / $1E / CRCWork / (• Mov

 {Oloop:} $D0 / $E0 /
(♦Shi

 |D1 / $03 / (* Rci

 $73 / $04 / (* jnc

 JTI
 . ^ ^21 / $10 / (* Xor

 II loop:} $E2 / $F4 /
(♦Loop

 $89 / $1E / CRCWork) (♦ Mov

 Al.[Bp+4] Bx.CRCWork Cx.8 Al .1 Bx,1 11 oop Bx.$
1021 01 oop

 CRCWork.BX

 PortiolCRC CRCWork; End;

 :!

 :i

 :!

 :

 Procedure ReceiveXMODEM (XNome : Str20)Const

 	
 SON

 	
 - #$01

 	
 STX

 	
 - #$02

 	
 EOT

 	
 “ #$04

 	
 ACK

 	
 « #$06

 	
 NAK

 	
 = #$15

 	
 C_Ch

 	
 -
’C’;

 128 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Type

 YrecDef « Array ri..1024] of Char;

 XrecDef « Array [1..128] of Char;

 Xrec Yrec XFi le

 XrecDef;

 YrecDef;

 File of XrecDef;

 XSub ErrCnt BlockError CurrBlock EOTdetected BlockLength DupI I cate GetOutFIag FIrstNAK

 Integer; Integer; Boo Iean; Integer; Boo I eon; Integer; Boo I eon; Boo Iean; Boo Iean;

 Function Abort : Boolean;

 Beg I n

 Abort :* False;

 If ErrCnt > 10 then Begin

 HIghVIdeo;

 Write ("G);

 Write (

 *Ten errors have occurred on this block. Continue (Y/N)? *); LowVIdeo;

 Repeat Read(kbd. Key) Until UpCase(Key) in ['N*, *Y*J; Writein (Key);

 If UpCase(Key) ■ then Begin

 Abort :* True;

 GetOutFlag :* True;

 End

 Else

 ErrCnt :■ 0;

 End;

 End;

 Procedure SendNAK;

 Begin

 PurgeBuf fer;

 If Duplicate then Exit;

 SendChar(NAK); . x

 Writein (’Requesting re-transmission of block # *, CurrBlock); ErrCnt :■ Succ(ErrCnt);

 BlockError ;■ True;

 End;

 Procedure SendACK; Begin

 SendChar(ACK); ErrCnt 0;

 End;

 Procedure RecelveSOH;

 Begin

 RecelveChar (10. Ch. TImedOut);

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 129

 March

 If Ch - EOT then Begin

 EOTdetected :■ True;

 SendACK;

 Exit;

 End;

 If Ch - C_Ch then

 If CurrBlock ■ 1 then

 ReceiveChar (10, Ch. TImedOut);

 If TimedOut then

 If CurrBlock ■ 1 then If FIrstNAK then Beg f n

 FirstNAK False;

 SendChar (NAK);

 ReceiveChar (10. Ch, TimedOut); End;

 If (TimedOut) or

 ((-Ch <> SOH) And (Ch <> STX)) then Beg I n

 If TimedOut then

 Writein ('Timed out on SOH/STX.*) EI se

 Writein ('1st char not SOH/STX.'); SendNAK;

 End

 Else

 If Ch - STX then

 BlockLength :* 1024 Else

 BlockLength :* 128;

 End;

 Procedure ReceIveBIockNum;

 Var BIk ; Byte;

 PrevBIk : Byte;

 FirstCh ; Char;

 Beg i n

 If BlockError then Exit;

 Duplicate :■ False;

 BIk := CurrBlock Mod 256;

 PrevBIk := (CurrBlock - 1) Mod 256;

 ReceiveChar (1, Ch. TimedOut);

 FirstCh :« Ch;

 If (TimedOut) or (Ord(Ch) <> BIk) then If Ord(Ch) <> PrevBIk then Begin SendNAK;

 If TimedOut then

 Writein ('Timed out on block number.')

 Else

 Writein ('Block number error (calcd * ', BIk, ').'); Exit;

 End;

 ReceiveChar (1, Ch, TimedOut);

 BIk 255 - BIk;

 PrevBIk 255 - PrevBIk;

 If (TimedOut) or (Ord(Ch) <> BIk) then If Ord(Ch) <> PrevBIk then Beg i n SendNAK;

 If TimedOut then

 Writein ('Timed out on complement.')

 Else

 Writein ('Complement error (calcd = BIk,
').’): Exit;

 End;

 If Ord(Ch) « PrevBIk then

 If Ord(FlrstCh) = CurrBlock Mod 256 then DupI I cate :* True;

 End;

 Procedure ReceiveDataBlock; Begin

 If BIockError then Exit; OverrunError :■ False;

 Repeat

 XSub Succ(XSub);

 RecelveChar (1, Ch, TImedOut);

 If Not TImedOut then Beg I n

 Yrec [XSub] := Ch;

 If BlockLength « 1024 then

 CRC :« PartlalCRC (CRC, Ch);

 End;

 Until (TImedOut) or (XSub * BlockLength) or (OverrunError);

 If (TImedOut) or (OverrunError) then Begin SendNAK;

 If TImedOut then

 WrIteIn (’Timed out waiting for data.*) Else

 WrIteIn ('Overrun error occurred.*); OverrunError False;

 End;

 End;

 Procedure ReceIveCheckSum;

 Var ChkSum ; Byte;

 Beg I n

 If BIockError then Exit;

 RecelveChar (1, Ch, TImedOut);

 ChkSum :• 0;

 For XSub 1 to 128 Do

 ChkSum ;■ ChkSum + Ord(Yrec[XSub]);

 If (TImedOut) or (ChkSum <> Ord(Ch)) then Begin SendNak;

 If TImedOut then

 WrIteIn (’Timed out on checksum.*)

 Else

 WrIteIn (

 ’Checksum error (Is *, Ord(Ch). *; should be *, ChkSum, *).’); End;

 End;

 Procedure RecelveCRC;

 Var

 CRCIn : Integer;

 Begin

 If BIockError then Exit;

 RecelveChar (1, Ch, TImedOut);

 If Not TImedOut then Begin

 CRC PartlalCRC (CRC. Ch);

 CRCIn ordfCh) ♦ 256;

 RecelveChar (1, Ch, TImedOut); If Not TImedOut then

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987 131

 March

 Beg I n

 CRC PartlolCRC (CRC, Ch);

 CRCln CRCIn + ord(Ch);

 End;

 End;

 If (TImedOut) or (CRC <> 0) then Beg I n SendNAK;

 If TImedOut then

 Writein ('Timed out on CRC.*)

 EI se

 WrIteIn (

 *CRC error (Is *, CRCIn. *; should be *. CRC, *).*); End;

 End;

 Procedure GetXMODEMBIock;

 • eg i n

 If Keypressed then Beg I n

 GetKey (Key, Extended);

 If Key - Chr(27) then Beg I n

 GetOutFlog :■ True;

 Exit;

 End;

 End;

 BlockError :■ Folse;

 ReceIveSOH;

 If EOTdetected then Exit;

 ReceIveBlockNum;

 XSub := 0; CRC 0;

 ReceIveDotoBlock;

 If BlockLength ■ 1024 then ReceIveCRC Else

 ReceIveCheckSum;

 If Not BlockError then Beg I n SendACK;

 If Not Duplicate then Beg I n

 Writein (’Block
§
 , CurrBlock, ’ received.);

 If BlockLength = 128 then Beg I n

 Move (Yrec[l], Xrec[l], 128);

 WrIte (XFlie, Xrec);

 End

 Else

 Begin

 For XSub :« 1 to 8 Do Beg I n

 Move (Yrec[((X$ub - 1) * 128) + 1], Xrecfl], 128) Wr I te (XF Me, Xrec) ;

 End;

 End;

 CurrBlock ;* $ucc(CurrBlock);

 End;

 End;

 End;

 Begin }of ReceiveXMODEMf

 If XNome * ** then Exit;

 Assign (XFIle, XNome);

 Rewrite (XFIle);

 132 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Writeln (TMe XName, * Is being received.*);

 Wr i teIn;

 UpdateUART (8. *N*. 1);

 PurgeBuffer;

 $endChar(C_Ch);

 FirstNAK OverrunError DoingXMODEM XSub ErrCnt CurrBIock BlockError EOTdetected DupIicate GetOutFIag

 Repeat

 GetXMODEMBIock;

 Until (Abort) or (EOTdetected) or (GetOutFIag);

 If GetOutFlag then Beg I n

 Close (XFiIe);

 Erase (XFiIe);

 Writein ('ERROR—reception of XName, * cancelled. File erased.); End

 Else

 Beg I n

 CIose (XFlie);

 Writein;

 WrIteIn (XName, ’ successfully received.’);

 End;

 DoingXMODEM:* False;

 UpdateUART (7, *E’, 1);

 End;

 Read:

 True; False; True; 0
:

 0
;

 1
;

 False;

 False;

 False;

 False;

 IMAGEIO.C

 Contributed by: Chuck McManis

 "Low-Cost Image Processing," by Chuck McManis, March 1987, page 191

 /*

 ♦ imageio.c

 ♦

 ♦ These routines provide the base level image I/O routines. There is a

 ♦ readimageQ and writeimage() routine. Both require only a pointer to

 ♦ a memory array and a pointer to a
file
 name.

 ♦

 ♦/

 #include <exec/types.h> /♦ The UBYTE and USHORT types are here */

 #incluc)e <stdio.h> /* The standard C I/O functions */

 #include <fcntl.h> /* The Level 1
file
 I/O constants ♦/

 ♦ Function : SetPixel

 ♦ This function
will
 set a pixel in the image to the given value.

 ♦ It is passed four values; the
first

is
 a pointer to the

 ♦ image array, the second through fourth are the row, column and value

 ♦ of the
pixel,
 which are all integers,

 ♦/

 void

 SetPixel(image,col,row,val)

 conthuded

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 133

 March
	UBYTE
	image[];
	/♦
	An array of pixels

	int
	CO
1
.
	/♦
	The pixel x coordinote or column

	
	row.
	/*
	The pixel y coordinate or row

	
	val;
	/♦
	a value between 0 and 15 for the

	1
int
	temp.
	/♦
	0
 temporary value

	
	index.
	/*
	The index into the array

	
	shift;
	/♦
	shift factor (4 if pixel even. 0

Table caption*/
Table caption•/
Table caption*/
Table captionpixel ♦/
Table caption*/
Table caption•/
Table captionif it is odd) ♦/
/* since two pixels ore contained In o byte the 640 pixel line Is reolly
♦ 320 bytes wide, ond the column value divided by two Is the byte containing
♦ the pixel we wont. If column Is even the pixel Is In the left half of the
♦ byte and If column Is odd the pixel Is In the right half.
*/
shift - fcol % 2) ? 0 : 4 ;
Index ■ (row * 320) + (col / 2); temp ■ vol « shift;
If ((Index < 0) II (Index > 127999)) /♦ Index checking ♦/ prlntf("Errorl Bad row and column passed to SetPlxeI.\n"); else
lmage[lndex] - (lmage[index] & (0x0f0 » shift)) + temp;
/*
* Function : Pixel
* This function will return the value of the pixel in the Image. It is
* possed four values; the first is o pointer to the imoge orroy, the
* second through fourth ore the row, column ond value of the pixel, which
* are all integers.
*
♦/
int
PixeI(image.
CO
I,row)
	UBYTE
	image[];
	/♦
	An array of pixels

	int
	CO
I
.
	/♦
	The pixel x coordinate or column

	
	row;
	/♦
	The pixel y coordinate or row

	i
int
	temp.
	/*
	a temporary value

	
	index.
	/*
	The index into the array

	
	shift;
	/♦
	shift factor (4 if pixel even. 0 if

♦/
♦/
*/
V
V
is odd) ♦/
Table caption/* This is the same calculation as in SetPixel above */
temp » 0;
shift - fcol % 2) ? 0 : 4 ; index * (row ♦ 320) + (col / 2);
if ((index < 0) || (index > 127999)) /* Index checking ♦/ printfC'ErrorI Illegal values passed to PixeI(%d.%d)An".col.row); e I se
temp = (image[index] » shift)
k
 0x0f; return(temp);
/*
* Function : Readimage
* This function
will
 read in the 4 bitplanes from the
file
 specified and
* store them as 4 bit pixels in the image array. It returns zero if it
* was successful, and a negative number if it detected an error.
* Errors include :
	♦
	-1
	Cou1dn'
	't open ’fi1ename’

	♦
	-2
	Didn’t
	read enough pixel data.

	♦
	-3
	Didn’t
	read enough colormap data

int
Readlmage(fiIename. image, colormap)
*/ */ V
char *filename; UBYTE * image; USHORT ♦colormap;
/♦ A pointer to a filename string /♦ A pointer to a 128000 byte array /♦ An array of color map entries
134 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
short I,j,k ; int n.fh, error,
ishft,pshft; UBYTE pixels[80];
/♦ Byte count, File Handle ♦/ /♦ Indicator that an error occurred during read ♦/ /* Some shift factors for manipulating bits. ♦/ /♦ 640 bits worth (one line) of pixel data. ♦/
/♦ Open the input file */ fh * open(fiIename,0_RD0NLY);
if (fh == -1) return(-1); /* Return error if it couldn’t be opened */ error = 0;
printf("Reading in source image from file %s for (i=0; *++)
\ /*
 planes ♦/
for (k*0; k<400; k++) } /* 400 lines ♦/
".fiIename);

 [image: Picture #7]

 in a row of pixels ♦/
/♦ Unpack the pixels /♦ the image’s byte shift /♦ The pixel’s byte shift « ishft); /* Clear old bit
V
V
*/
, . .
*/ ((pixels[j»3] » pshft) & 1) « ishft;
factor
factor
/* If we didn’t get enough data It is an error ♦/
i f (error « 0) {
j » read(fh,(UBYTE ♦)coIormap,32); /♦ Read in the color map ♦/ if (j !■ 32) error = -1;
pr Intf("Done.\n"); c lose(fh); return(error);
/*
♦ Function : Writelmage
♦ This function will write out the image array to the specified file. It
♦ converts the 4 bit/plxel format of the Image array to the bit plane
♦ format used by the iff conversion programs. It returns zero if it was
♦ successful and a negative number If it detected an error.
♦ Errors include :
♦ -1 CouIdn’t open file
♦ -2 Unexpected EOF (probably the disk was full)
♦ -3 Unexpected EOF while writing colormap
♦/
int
Writelmage(fI Iename, image, colormap)
char ♦fiIename; UBYTE ♦image; USHORT colormap[];
{
short I,j,k ; int n,fh, error,
ishft,pshft; UBYTE pixels[80];
/♦ A pointer to a filename string ♦/ /♦ A pointer to a 128000 byte array ♦/ /♦ An array of color map entries ♦/
/♦ byte count, File Handle */ /♦ indicator that an error occurred during read ♦/ /♦ Some shift factors for manipulating bits. ♦/ /♦ 640 bits worth (one line) of pixel data. ♦/
/♦ First we open the file ♦/
fh ■ open(fi
lename,0_WR0NLY+0_CREAT); /♦ Write only, and create it ♦/ if (fh
— -1) return(-l); error ■ 0;
/♦ Now write out the Image ♦/
printf("WrItIng the processed for (1-0; l<4; i++) | for (k-0; k<400; k++) j for (J-0; J<640; J++)
\
image to
file
 %s
...
 ",filename); /♦ Four bit planes /♦ 400 Iines /♦ Unpack the pixels
♦/
*/
♦/
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 135

 March

 Ishft ■ (J % 2) ? 4+1 : I; /♦ The bit number In the Image byte ♦/ pshft - 7 - (j % 8); /♦ Pixel shift value for pixels array ♦/

 plxel8rj»3l
* *^(1

 plxels[j»3j I* ((*

 « pshft); /♦ clear previous bit ♦/

 *(lmage+(j/2)+(k*320)) » Ishft)
k
 1) « pshft;

 \

 n * wrlte(fh.pixels,80); /♦ Write out this line of bits ♦/

 If (n < 80) error ■ -2;

 i f (error *■ 0) j

 j ■ wrIte(fh,(UBYTE ♦)colormap,32); /★ write out the color map ♦/ If (J < 32) error = -3;

 pr int f ("Done An") ;

 close(fh); /* Cleon up after ourselves ♦/

 return(error); /♦ And return */

 EDGE.C

 Contributed by: Chuck McManIs

 "Low-Cost Image Processing," by Chuck McMonis, March 1987, page 191

 Note 1

 Note 2

 Note 3

 Note 4

 Note 5

 Note 6

 Note 7

 Note 8

 Note 9

 Note 10

 Note 11

 Note 12

 Note 13

 Note 14

 Note 15

 Note 16

 Note 17

 Note 18

 Note 19

 Note 20

 Note 21

 Note 22

 Note 23

 Note 24

 Note 25

 Note 26

 Note 27

 Note 28

 Note 29

 Note 30

 Note 31

 Note 32

 Note 33

 Note 34

 Note 35

 Note 36

 Note 37

 Note 38

 Note 39

 Note 40

 Note 41

 Note 42

 Note 43

 a b c d e f g h I

 Note 44

 	
 -1,

 	
 1.

 	
 1.-1.

 	
 /•

 	
 9

 	
 and

 	
 c */

 	
 -1,

 	
 0.

 	
 1,

 	
 0.

 	
 /*

 	
 d

 	
 and

 	
 f */

 	
 -1.-1.

 	
 1,

 	
 1.

 	
 /*

 	
 a

 	
 and

 	
 i */

 	
 0.-1.

 	
 0,

 	
 1

 	
 /•

 	
 b

 	
 and

 	
 h ♦/

 Table caption>

 void maln(argc,argv) Int argc; char ♦argv[];

 	
 UBYTE

 	
 * i mage, >tcs image;

 	
 /*

 	
 An array for our image

 	
 USHORT colors[16];

 	
 /*

 	
 The color map

 	
 int

 	
 i . i i. j.

 	
 /*

 	
 Some counters

 	

 	
 thresh,

 	
 /*

 	
 The edge threshold

 	

 	
 edgepixe1s,

 	
 /♦

 	
 The number of edge pixels found

 	

 	
 x,y,m,p1,p2.

 	
 /*

 	
 Image coordinates

 	

 	
 x1,x2,y1,y2;

 	
 /♦

 	
 Edge boundary coordinates

 */

 */

 */

 */

 ♦/

 */

 printf("Simple edge analysis program.\n"); i f (argc I« 4) }

 prIntf("usage is Edge infile outfile threshoId\n"); exlt(10);

 thresh = atoi(argv[3]); if ((thresh < 0) || (thresh > 15)) | printf("I I legal threshold value, use a number between 0 and 15\n"); exit(10);

 printf("Using Threshold value %d.\n",thresh);

 /♦ Buffer for one image + 4 lines. The algorithm below will store the

 ♦ resulting image into the image buffer - 4 lines. That way we do not

 ♦ need to allocate two complete image buffers. The allocate call will

 ♦ also set the array to zero.

 ♦/

 image « (UBYTE ♦)AIIocMem(129280.MEMF.CLEAR); i f (image «- NULL) j

 printf("Sorry couldn’t allocate the image bufferl \n"); exit(10);

 simage « image + 1280; /♦ Source image resides four lines below image ♦/

 /♦ First we read in the source image ★/ i * Readlmage(argv[l],simage,colors); if (i I- 0) I

 printf("Error readina in the source image.\n");

 FreeMem(image,129280); exit(10);

 /« Now do what ever Image processing we wish on the image data «/

 printf("Processing the source Image \n"); edgepixels - 0;

 /* First copy the first row of pixels to the destination ♦/ for (i-0; i<640; i++) } j ■ Pixel(simage,i,0) - 1;

 if ((j < 0)
II
(J > U)) j - 0;

 SetPixel(image,I,0,J);

 for (y-1; y<399; y++) { prIntf("Line %d\x0d",y);

 /« Move a line from the Source Image to the Destination Image >o/ for (i-0; i<640; I++) { j - PlxeI(simage,i,y) - 1;

 if ((J < 0)
II
(J > 14)) j - 0;

 SetPixeI(Image,I,y,j);

 /* Now onalyze each pixel In this line */ for (x-1; x<639; x++) j

 /♦ (x,y) is the center pixel In a 3X3 square ♦/

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 137

 Chapter Notes

 	
 /*

 	
 « edge.c

 	
 ♦

 	
 ♦ This progrom will read In an Image file, apply a simple edge detection

 	
 ♦ algorithm to It and then write out the resulting file. It demonstrates

 	
 ♦ the use of color on the output file to Indicate edges.

 	
 ♦

 	
 * Usage edge Input.Image output.Image threshold

 	
 ♦

 	
 ♦ At all pixels where there Is a difference equal to or greater than

 	
 ♦ "threshold" that pixel will be set to red. Other pixels left Intact.

 	
 ♦

 	
 ♦ This program Is based on the Sobel edge detection algorithm. It uses the

 	
 ♦ fact that objects In an Image are usually delineated by sharp changes In

 	
 ♦
 Intensity. The Image Is processed by picking 8 adjacent pixels and treating

 	
 ♦ them as a 3 X 3 array. The array can be represented as follows ;

 	
 ♦

 	
 ♦

 	
 *

 	
 *

 	
 ♦

 	
 ♦ And there are four unique stralghtllne paths through this array which pass

 	
 ♦ through the center pixel. They can be represented as :

 	
 ♦

 	
 ♦ g -> e -> c

 	
 ♦ d -> e -> f

 	
 ♦ a -> e -> I

 	
 ♦ b -> e -> h

 	
 Xc

 	
 ♦ The algorithm treats the three pixels as points on a line described by the

 	
 ♦ function ; Intensity «* M ♦ x + C. The parameter of Interest Is the slope

 	
 ♦ of the function M. The sharper the transition In Intensity, the larger the

 	
 ♦ value of the slope. This Is compared to the threshold and If It exceeds It

 	
 ♦ the pixel e Is considered to Me on an edge and Is marked as such.

 	
 ♦

 	
 */

 	
 ^Include <exec/types.h>

 	
 ^Include <exec/memory.h>

 	
 #lnclude <stdlo.h>

 	
 #lnclude <fcntI.h>

 	
 /*
 This array describes the relative offsets of adjacent pixels that make up * the edge of Interest.

 	
 */

 	
 static Int edges[] « |

 	
 136 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 March

 }

 chkobortO; /* Added In cose the user wonts to obort ♦/

 for (j-0; j<4; J++) | /♦ Check for four types of edges ♦/

 /♦ Note the Indirection through the color mop since Pixel returns

 ♦ the colormop entry this pixel uses, the colormop octuolly

 ♦ contolns Its Intensity. Also since oil color mop entries ore

 ♦ shodes of groy R - G - B ond the Intensity Is logicolly ANDed ond G components leoving only the B volue be between 0 ond 15.

 ♦ to mosk off the R

 ♦ which will
0
1woys

 edges

 edges

 edges

 edoes

 j*4];

 J>*«4+1

 j*4+2

 J*4+3

 V

 x1 ' y1 > x2 > y2 » pi > p2 .

 m ■ obs(p1 - p2);

 I f (m > thresh) } edgeplxels4+;

 SetPIxel(Imoge.x.y,15); breok;

 colors[PixelfsImoge,x2,y2)J colors[Pixel(simoge.xl,y1)j

 k
 0xf; k
 0xf;

 { /♦ If we crossed the threshold ♦/ j /★ for eoch volue of j */

 } /♦ For X ♦/

 } /* for y */ prlntff"\n Done.\n");

 prlntf(" Set the volue for %d edge plxels\n'',edgeplxels);

 /♦ Now we fix up the color mop becouse we hove shifted oil of the pixels ♦ down by one In the color mop to moke room for our edge color (red)

 */

 for (I«1; I<15; I++) colors[I-1] « colors[I]; colors[15] * 0x0f00; /* Set edge pixels to red ♦/

 /* Then we write out the Imoge */

 I « WrIteImoge(orgv[2],Imoge,colors);

 If (I l» 0) prIntf("Error writing the output fllel\n");

 FreeMem(Imoge,129280);

 exlt(l);

 BASIC.LST

 Contributed by: Brion WIchmonn ond Dovid HI I I

 "Building
0
 Rondom-Number Generotor," by Brian WIchmonn and David Hill, March 1987, page 127

 10 PRINT "whbosic - 840930"

 20 PRINT "basic version of WIchmonn HI I I generator"

 30 REM J C Nosh

 40 REM
X,
y and z must be seeded os per orticle 50 PRINT "provide 3 integers os seeds to the generator" 60 PRINT "seed x»";

 70 INPUT X

 80 REM odjuust to be In range [0, 30269]

 90 IF X = 0 THEN 120 100 LET X-X+30269 110 GOTO 90

 120 IF X-30269 THEN 160 130 LET X=INT (X-30269)

 140 GOTO 120

 150 REM note use of Int to ensure integer seed 160 PRINT "seed y«";

 170 INPUT Y

 180 REM adjust to be In range [0, 30307]

 190 IF Y * 0 THEN 220 200 LET Y = Y+30307 210 GOTO 190 220 IF Y*30307 THEN 260 230 LET Y = INT (Y-30307)

 240 GOTO 220

 250 REM note use of Int to ensure Integer seed 260 PRINT "seed z=";

 270 REM ADJUST TO BE IN RANGE [0. 30323]

 280 IF Z = 0 THEN 310 290 LET Z=Z+30323 300 IF Z»30323 THEN 350 320 LET Z=INT (Z-30323)

 138 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 330 GOTO 310

 340 REM note use of Int to ensure integer seed 350 INPUT Z 360 PRINT

 370 PRINT "how many numbers are to be generated";

 380 INPUT N 390 FOR I = 1 TO N 400 GOSUB 1000 410 PRINT

 420 PRINT "current values — x=";X;" y«";Y;" x«";Z 430 PRINT " random fraction *";R 440 NEXT I 450 STOP

 1000 REM comput next member of pseudo-random sequence 1010 LET X1=INT(X/177)

 1020 LET X2-X-177*X1

 1030 LET X-171*X2-2*X1

 1040 IF X < 0 THEN LET X*X+30269

 1050 LET Y1=INT (Y/176)

 1060 LET Y2*Y-176>kY1

 1070 LET Y»172>i«Y2-35*Y1

 1080 IF Y < 0 THEN LET Y =Y+30307

 1090 LET Z1=INT(Z/178)

 1100 LET Z2=Z-178*Z1

 1110 LET Z=170*Z2-63*Z1

 1120 IF Z < 0 THEN LET Z=Z+30323

 1130 REM combine generators to give function

 1140 LET T=X/30269+Y/30307+Z/30323

 1150 LET R=T-INT(T)

 1160 REM get fractional part of t only 1170 RETURN

 RANDOM.LST

 Contributed by; Brian Wichmann and David Hill

 "Building a Random-Number Generator," by Brian Wichmann and David Hill, March 1987, page 127

 program... var

 X,
y, z: integer; } global seeds {

 funtion random: reaI; var

 temp: reaI; beg i n

 { first generator }

 X
:« 171 ♦ (x mod 177) - 2 ★ (x div 177); if
X
< 0 then

 X
:■
X
+ 30269;

 } second generator {

 y :*172 (y mod 176) - 35* (y div 176);

 If y < 0 then y :-y + 30307 { third generator {

 z :» 170 * (z mod 178) - 63* (z div 178); if z <0 then z :- z + 30323

 j combine to give function value } temp :- x/30269.0 + y/30307.0 + z/30323.0; random :■ temp - trunc(temp) end;

 beg i n

 j initializse seeds. For production runs, different values (between 1 and 30000) should be used each time, preferably by some automatic method such as from date and time readings if available
\

 X
:«1; y :■ 10000; z:« 3000;

 end

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 139

 March
LISPTEST.DOC
Contributed by William G. Wong
"PC Scheme: A Lexical LISP." by William G. Wong, March 1987, page 223
)
;; BYTE TI Scheme Benchmark Source 5-20-86 WGW ;; Time Test
(define ftIme-functIon function)
igc) make sure system Is consistent
0«t f(start-tlme (runtime))) ifunctIon)
(/ (" (runtime) start-time) 100.0)
) ^
(define ftime-test function)
(gc) make sure system Is consistent
0«t f(start-tlme (runtime)))
(loop-test function 5000)
(/ (- (runtime) start-time) 100.0)
) ^
;; Loop (defIne
)
test to get function time loop-test function limit)
do
;o 1 (1+ 0)
;(>-? I IIml [function)
)
Into timable range
;; Dummy function to test LOOP-TEST (define (dummy))
;; List construction test (define cons-var nil)
(define (cons-test) (cons cons-var cons-var))
;; Integer addition test (define add-a 1)
(define add-b 2)
(define (add-test) (+ add-a add-b))
Integer multiplication test (define mu It-a 1)
(define mu It-b 2)
(define (mult-test) (♦ mu It-a mult-b))
;; Floating point addition test (define fadd-a 1.2)
(define fadd-b 234324.3)
(define (fadd-test) (+ fadd-a fadd-b))
;; Floating point multiplication test (define fmult-a 1.2)
(define fmult-b 234324.3)
(define (fmult-test) (♦ fmult-a fmult-b))
;; Assignment Test (Load from variable and set global variable) (define assign-a *(1 2 3))
(define (assign-test) (set! assIgn-a asslgn-a))
;; Local Assignment Test
(define (local-assign) (let ((x ’())) (set! x *(1 2 3))))
;; List Indexing Test (define (bulld-llst length)
(If (zero? length)
’()
(cons length (bulId-1 1st (subi length)))
140 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987
fdefine Iist-a)
(set! Iist-a (bulId-1 1st 128))
(define (list-index) (llst-ref llst-a 120))
;; Vector Index Test (define vect-a)
(set! vect-a (make-vector 128 1))
(define (vector-index) (vector-ref vect-a 120))
;; String Index Test (define string-a)
(set! strIng-a (make-string 128 #\X))
(define (string-index) (strIng-ref strIng-a 120))
;; The good old Prime Number Sieve Test (Test on only 1 Iteration) (define (sieve)
(letrec ((count 0) ;; number of primes found
(size 7000) ;; size of sieve array
(flags (make-vector (addi size) 0))
(do
:n 0 (addi I))) f(> I size) count)
scan array from start , to finish and return primes found [if
 (zero? (vector-ref flags I))
(let ((prime (+ I I 3)))
(do ((k (+ I prime) (+ k pr Ime)))
((> k size) (set! count (oddI count))) (vector-set! flags k 1)
;; reset non-prime flags
)
)
)
)
;; BYTE Calculation Test (Time only 1 Iteration, looping Is done Internally) (define (calc)
(do ((a 2.71828)
(b 3.14159)
(c 1.0)
(l 1 (addi I))
((-? I 5000) ((set! c '
(set! c (set! c (set! c

 [image: Picture #8]

 setup parameters
exit when end of test with error perform calculations
End of BYTE TI Scheme Benchmark Source
"BYSO Lisp Benchmark 1-4-86 WGW "Test Loop"
(defun loop-test (fn limit)
(do (f i 1 (+ I 1)))
(- I limit))
, fn)))
(defun dummy ())
"CONS Test"
(setq cons-a
nil)
(defun cons-test () (cons cons-a cons-a))
"Integer Addition Test"
(setq add-a 1 add-b 2)
(defun add-test () (+ add-a add-b))
"Integer Multiplication Test"
(setq multiply-a 1 multiply-b 2)
(defun multiply-test () (♦ multiply-a multiply-b))
"Assignment Test"
(setq assign-a *(1 2 3))
(defun assign-test () (setq assIgn-a assIgn-a))
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 I4I
March
Indexing Test" Met-Index-Ilet ’()) (+ II)))
128))
(setq Iist-Index-lIst (defun list-index () (nth'

 [image: Picture #9]

 (cons I IIst-lndex-l1st)) 120 IIst-Index-Iist))
"Vector Index Test"
fsetq vector-test-orray (array *sexpr 128))
(defun vector-index () (aref vector-test-array 120))
"String Index Test"
fsetq string-test-array (array 'char 128))
(defun string-index () (aref string-test-array 120))
"Write test creates a new file and writes 64 kbytes to It." (defun wrIte-test ()
(do-wrIte-test (open *b:test)
512
(array ’char 128)
(defun do-wrIte-test (file records buffer)
(do 0
f(zerop (setq records (- records 1))) (close file)) (prInc buffer
file)
Waltz Lisp Benchmark 1-4-86 WGW
; Test Loop
(def loop-test (lambda (do
(def dummy (lambda ()))
(fn limit)
p 1 (+ I 1)
(equal I limit fn))))
; CONS Test petq cons-a nil)
(def cons-test (lambda () (cons cons-a cons-a)))
; Integer Addition Test
S
setq add-a 1) setq add-b 2)
(def add-test (lambda () (+ add-a add-b)))
; Integer Multiplication Test (setq multiply-a 1) petq multiply-b 2)
(def multiply-test (lambda () (♦ multiply-a mu 11Iply-b)))
; Assignment Test petq assign-a ’(1 2 3))
(def assign-test (lambda () (setq assIgn-a assIgn-a)))
; List Indexing Test (setq IIst-Index-IIst *())
(do ((I 0 (+ I 1))) pequal I 128))
(setq IIst-Index-IIst (cons I IIst-Index-I1st)))
(def list-index (lambdo () (nth 120 IIst-Index-I1st)))
: Vector Index Test (Arroys Not Supported)
; String Index Test
(setq string-test-array "")
(do
((\
 0 (+ I 1)))
Uequal I 128))
(setq string-test-array (cat "1" string-test-array)))
(def String-Index (lambda () (substring string-test-array 120 120)))
142 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987
; Write test creates a new file and writes 64 kbytes to It. (def wrIte-test (lambda ()
(do-wrIte-test (outflle "bitest")
512
string-test-array)))
(def do-write-test (lambda (file records buffer)
(do
zerop (setq records (- records 1))) (close file)) (princ buffer file))))
;; Golden Common Lisp Benchmark 1-4-86 WGW ;; Test Loop
(defun loop-test (fn limit)
(do ((i 1 (+ i 1)))
((« i limit))
(apply fn nil)))
(defun dummy ())
;; CONS Test (setq cons-a nil)
(defun cons-test () (cons cons-a cons-a))
;; Integer Addition Test (setq add-a 1 add-b 2)
(defun add-test () (+ add-a add-b))
;; Integer Multiplication Test (setq multiply-a 1 multiply-b 2)
(defun mu 11iply-test () (♦ multiply-a multiply-b))
;; Floating Point Addition Test (setq fp-add-o 1.2 fp-add-b 234324.3)
(defun fp-add-test () (+ fp-add-o fp-add-b))
;; Floating Point Multiplication Test
(setq fp-multiply-a 1.2 fp-muItiply-b 234324.3)
(defun fp-multiply-test () (♦ fp-muItiply-a fp-muItiply-b))
;; Assignment Test (setq assign-a *(1 2 3))
(defun assign-test () (setq assign-a assIgn-a))
:: List Indexing Test (setq IIst-index-list *())
(do ((i 1 (+ i 1)))
((- i 128))
(setq list-index-list (cons i list-index-list)))
(defun list-index () (nth 120 list-index-list))
;; Vector Index Test
(setq vector-test-array (make-array 128 :initial-element nil))
(defun vector-index () (aref vector-test-array 120))
;; String Index Test (setq string-test-array
(make-array 128 ;eIement-type *string-char :initial-eIement 32))
(defun string-index () (aref string-test-array 120))
"Write test creates a new
file
 and writes 64 kbytes to
it."
(defun write-test ()
(do-write-test (open "brtest" rdirection *:output)
512
^ (make-array 128 :eIement-type *strIng-char)
(defun do-write-test (
file
 records buffer)
(do O
((zerop (setq records (- records 1))) (close
file

)) (princ buffer
file)
)
)
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 143

 March

 IPLIST.C

 Contributed by Benjamin M. Dawson

 "An Introduction to Image Processing Algorithms, March 1987, page 169

 listing 1

 /♦ Point process area starting at x,y ■ 0,0 and of size ♦

 ♦ X$IZE,YSIZE. ♦/

 for (y - 0 ; y < YSIZE ; y++) j

 for (x - 0 ; X < XSIZE ; x++) j

 wrIte_plxeI(x,y, pfun(read_plxeI(x,y),x,y));

 listing 2

 /♦ Use long values as sum could be over 16 bits «/ long h[256];

 /♦ zero histogram array ♦/

 for (I « 0 ; I < 256 ; I++) h[l] - 0L;

 /♦ Scan area and count pixel values ♦/ for (y - 0 ; y < YSIZE ; y++) }

 for (x « 0 ;
X
< XSIZE ; x++) J

 h[read_plxel(x,y)] « h[read_plxeI(x,y)] + 1L;

 listing 3 long h[256];

 /♦ Histogram area, result Into array h */

 hlstogram(x,y,dx,dy,h); /♦ SIMPP routine ♦/

 /♦ Find the low and high bins based on minimum count of 30 ♦/ cllp_hlsto(h,30,&low_bln,&hlgh_bln); /♦ SIMPP routine */

 /♦ Compute the factor for stretching the In between values ♦/ step « 256.0/(double)(hlgh_bln-low_bln+1); /♦ step delta ♦/ step_value = 0.0; /★ Step value */

 /♦ Form a translation table (LUT), tran[] for enhancing contrast ♦/

 /♦ Values below low^bln are set to minimum pixel value */ for (I * 0 ; I < low_bln ; I++) tran[i] » 0;

 /♦ Values between low_bln and hlgh_bin are stretched to range from 0 to 255 ♦/

 for (I = low_bln ; I <» hlgh_bln ; 1++) { tran[l] * step_value; step.value +» step;

 /* Values above hlgh_bln are set to maximum pixel value */ for (I = hlgh_bln+1 ; I < 256 ; I++) tran[l] = 255;

 /♦ Now point process area using the translation table, tran[] ♦/ while (dy—) {

 for
(I «
x;
I <
X
+
dx;
I++)
j

 wrlte_plxel(I,y, tran[read„plxeI(I,y)]);

 listing 4

 /♦ Change the output LUTs to display the pixel values ♦

 ♦ ranging from v_begin to v_end In red. ♦/

 LUT.hIghIlght(v_begin,v_end)

 Int I ;

 /♦ Set output tables to "linear". This
will
 display the image In normal, monochrome fashion */

 144 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 for (i » 0 : i < 256 : i++) { write_LUT(RED.i.i); wr Ite_LUT(GREEN.1,1); wrIte.LUT(BLUE,I,i);

 /♦ Set the desired range so that ONLY red Is displayed ♦/ for (I = v_begin ; i <* v_end ; i++) j

 write_LUT(RED,i.255); /♦ Full red ♦/

 write.LUT(GREEN,1.0); /♦ No green ★/

 wrlte_LUT(BLUE.i.0); /♦ No blue ♦/

 listing 5

 /* Set up kernel for "sharpening" (high-frequency boosting) the image ♦/ static int kernel[9] *

 -1. 9.-1.

 -1.-1.-1.h

 /* Increment starting position and decrement image size to accommodate the convolution edge effects ♦/

 X++;
y++; dx—; dy—;

 /♦ Set up address offsets for the output ♦/

 XX = 0; yy « 0;

 /♦ Scon through source image, output to destination ♦/ for (i a y ; I < y+dy ; i++)
{

 XX = 0; /♦ Reset x output index ★/

 for (j - X ; j < x+dx ; j++)
{

 sum « 0; /♦ Zero convolution sum */

 k.pointer « kernel; /♦ Pointer to kernel values ♦/

 /♦ Inner loop to do convolution (correlation!) ♦/ for (n « -1 ; n <■ 1 ; n++) } for (m « -1 ; m <■ 1 ; m++)

 ^ sum ■ sum + read^pixel(j+m.i+n)*(*k_polnter++);

 /♦ Output processing ♦/

 if (sum < 0) sum « 0;

 write_pixeI(x.out + xx, y.out + yy, sum);

 XX++;
/♦ Increment output X address offset ♦/

 }
yy++;
/* increment output
Y
address offset ♦/

 listing 6

 /♦ Variables used in labeling ♦/ static int count; static int newval ■ 1;

 /♦ Search image area for target values =» 255 ♦/ for (y « 0 ; y < YSIZE ; y++) { for (x - 0 ; X < XSIZE ; x++) |

 /♦ If we find a target value, recursively label

 the connected pixels with a new value (newval) */ if (read_pixel(x.y) ■« 255) j

 count * 0; /♦ Zero pixel count ♦/

 recursive_lobe I(x.y); newval ++j

 recursive_labeI(x.y)

 write_pixeI(x,y.newvaI); count++;

 /♦ Replace with newval ♦/ /♦ Increment count ♦/

 /*
 Recurse left ♦/

 if (read^pixel(x.y) ■■ 255) recursive_labeI(x,y); /♦ Recurse right ★/

 X +- 2;

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 145

 March

 If (read_plxeI(x,y) ■■ X—;

 /♦ Recurse up (remember: video

 If (read_plxel(x,y) -■ /♦ Recurse down ♦/ y +- 2;

 If (reod.pIxeI(x.y) ■■

 \

 255) recurs Ive_lobeI(x,y); coordinates!) ♦/

 255) recurslve^lobel(x,y);

 255) recurs Ive_lobeI(x,y);

 listing 7

 Int xs,ys; Int x,y;

 Int dx,dy; double a,b; xo.yo;

 /♦ Start of source ♦/

 /* Start of destination ★/

 /* Size of destination area ♦/

 /♦ x,y scale factors ♦/

 /*
X
and y addresses for source ♦/

 for (I « 0 ; I < dy ; I++) } for (j - 0 ; J < dx ; j++) |

 xo = xs + nnt^ffdoubIe)j/a^; /♦ x address ♦/

 ya ■ ys + (Int)((doubIe)l/b;; /♦ y address */

 /* Write out new value to destination ♦/

 wrIte_pIxeI(x+j, y+l, read_pIxeI(xa,ya));

 MAKEFILE

 Contributed by Benjamin M. Dawson

 "An Introduction to Image Processing Algorithms, March 1987, page 169

 cat makefI Ie

 # Make file for SIMPP

 # Requires moth library (-Im) only for the gausslon burn function. CFLAGS »

 simtest: simtest.o siminter.o simprim.o slmgeo.o simpoint.o \

 slmoreo.o simutll.o simsubs.o

 cc -o simtest simtest.o siminter.o simprim.o slmgeo.o \ simpoint.o simarea.o simutll.o simsubs.o -Im

 %

 README

 Contributed by Benjamin M. Dawson

 "An Introduction to Image Processing Algorithms, March 1987, page 169

 readme =» Introductory file for SIMPP

 This directory/distribution contains the source code for SIMPP: Simple Image Processing Package. It was written by Benj. Dawson to accompany the article entitled "An Introduction to Image Processing Algorithms" In the March, 1987 edition of BYTE magazine.

 All material Is Copyright (c) 1987 by Benajmln M. Dawson.

 The complete set of SIMPP files Includes the following 13 files: makefI Ie

 readme (ThIs
file)

 1 simarea.c

 sImgeo.c sImlnter.c simpoint.c slmpp.doc sImpp.h sImprIm.c sImsubs.c

 146 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 simtest.c simutiI.c

 See "slmpp.doc" for details on use. See the BYTE article for details on the algorithms. The listings from the article are contained in the file:

 ipalg.doc

 SIMAREA.C

 Contributed by Benjamin M. Dawson

 "An Introduction to Image Processing Algorithms, March 1987, page 169

 ♦ *

 ♦ simarea.c = Area operations for SIMPP: ♦

 ♦ Simple IMage Processing Package. ♦

 ♦ Copyright (c) 1987, Benjamin M. Dawson ♦

 ♦ Edit Version: 1.1 : Jan-29-87 ♦

 ♦

*

 \
9te
♦♦♦♦♦♦♦♦♦
)|c
i|c«
)|c
«)|t ♦
He
)tc>ie
9|e
4c
]K Xt
/

 ^include "simpp.h"

 extern char ♦malloc();

 /♦ convolve « Convolve the image area starting at x,y and of size dx,dy

 ♦ with the kernel of size m,n. Scale (divide) the output by scaie, and

 * change the sign of the output values according to the output flag.

 ♦/

 int convolve(x,y,dx,dy,m,n,kernel,sea Ie,output)

 int x,y; /♦ Start of area to convolve */

 Int dx,dy: /♦ Size of area to convolve */

 int m,n; /♦ Kernel (x,y) size ♦/

 int ♦kernel; /♦ Pointer to kernel array ♦/

 int scale; /♦ Amount to right shift results

 int output; /♦ Output flag ♦/

 PIXEL ♦bp[MAX_KERNEL.SIZE];

 PIXEL ♦ptemp;

 register int
i,j;

 int x_out,y_out;

 int xx;

 int xend;

 long sum;

 long max_pos;

 long maxs^pos;

 long maxs^neg;

 int ♦kp;

 /♦ Input pointers ♦/

 /♦ Temporary pointer ♦/

 /* Loop variables ♦/

 /♦ output x,y index ♦/

 /♦ Offset X address ♦/

 /★ Reduced x size ♦/

 /♦ Convolution sum ♦/

 /* Maximum + pixel value ♦/ /♦ Maximum signed + value ♦/ /♦ Maximum signed - value ♦/ /♦ Pointer to kernel ♦/

 #ifdef CHECK

 /♦ Check source and destination ranges ♦/

 if (check_area(x,y,dx.dy,"<convolve>") =* ERROR) return(ERROR);

 /♦ Check kernel size ♦/

 if ((m > MAX.KERNEL.SIZE) || (m < 1) ||

 (n > MAX_KERNEL_SIZE) 11 (n < 1)) |

 printf("<convolution> Kernel size out of range!\n"); return(ERROR);

 /♦ Special check against kernel size ♦/ if ((dx < m) II (dy < n)) }

 printff"<convolution> Area too smalll\n"); return(ERROR);

 #endif

 /♦ Set up long values for output value checking ♦/ max^pos « (long)MAXPIX; maxs_po$ ■ max_pos/2L; maxs.neg - -((Iong)(PIXEL_SIZE/2));

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 147

 /♦ Allocate line buffers for input ♦/ for (i - 0 ; i < n ; i++)

 bp[>] ® (PIXEL *)malloc(dx*si
2
eof(PIXEL));

 /x* Set up addresses and indices x_out ■ X + (m/2);

 ♦/

 y.out - y + (n/2); dy — (n-1); xend ■ dx - m;

 */

 /♦ These factors correct for the convolution

 /♦ edge effects (see BYTE article) */

 /♦ Reduce area to account for edge effects ♦/

 /* Read first n lines into the input buffers */

 for (i a 0 ; i < n ; i++) read_hIine(x,y++,dx,bp[i]);

 /♦ Main convolution loop ♦/

 while (dy—) } /♦ Scon down the image ♦/

 for (xx * 0 ;
XX
<* xend ; xx++) J /♦ Scan across the image */

 /♦ Inner loop ♦/

 sum * 0L; /♦ 0 out convolution sum */

 kp * kernel; /♦ Set up pointer to kernel */

 for (j a 0 ; j < n ; j++) }

 ptemp a bp[j] + xx; /* Point to line area with pixels ♦/

 for
(i a 0 ; I < m ; i++)

 sum +a ((Iong)*ptemp++)*((Iong)*kp++);

 /♦ Scale the output sum quickly with a shift right operation. Unfortunately, a shift right some machines fills 0*s rather than the sign bit. A ifdef selects for these unfortunate machines ♦/

 #lfdef NO_SIGN.FILL

 i f (sum < 0)
\

 sum a -sum;

 sum »■ (long)scale;

 sum a -sum;

 § else #endif

 else sum »a (long)scale; sum »a (long)scale;

 /♦ Output value modified according to output flag ♦/ switch(output) j

 case SIGNED; /♦ Clip values to range from ♦/

 if (sum < maxs^neg) sum a maxs_neg; /♦ maxs_neg to */

 if (sum > max
8
_pos) sum a maxs_po
8
; /* max
8
_po
8
 ♦/

 break;

 case POSITIVE: /♦ Positive values only. - set to 0 ♦/

 if (sum < 0L) sum a
0
L; if (sum > max_pos) sum = max.pos; break;

 case NEGATIVE: /♦ Negative only. Sign inverted. ♦/

 if (sum > 0L) sum = 0L; sum a - sum;

 if (sum > max_pos) sum = max_pos; break;

 case ABSOLUTE: /♦ Absolute value ♦/

 if (sum < 0L) sum = -sum; if (sum > max_pos) sum « max_pos; break;

 I

 write.pixeI(x_out+xx,y_out,(PIXEL)sum); /♦ Write out value */

 /♦ Shuffle pointers so that all is In order ♦/ ptemp a bp[
0
];

 for (i a
0
 ;
\ <
 n-1 ; i++) /★ Shift buffer pointers */

 bp[l] a bp[i+
1
]; bp[n-
1
] a ptemp;

 /♦ Replace oldest line with new line, and move down a line ♦/ read_hline(x,y++,dx,bp[n-
1
]); y_out++;

 /♦ Free buffers */

 for
(1=0;
 i < n ; i++) free(bp[i]); return(OK);

 }

 148 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 /*

 /♦ label » Label an area. The pixels In the area must be binary with target

 ♦ value == bln1 and background value of bln0. The area Is scanned for

 ♦ connected groups of pixels (blobs). If a connected area has more

 * than minplx pixels, It's values are changed to a label. Labels

 ♦ are chosen sequentially starting at blabel and going to elabel, then

 * the label values repeat. The binary values, bln0 and bln1, must NOT

 * be part of the label setNI Areas less than minplx are "killed” by setting them to bln0. This Improves processing speed.

 */

 /♦ Static variables to save stack space ♦/ static Int count » 0; static PIXEL oldcolor * 0; static PIXEL newcolor * 0; statIc Int
X
I eft « 0; static Int ytop = 0; static Int xright » XSIZE-1; static Int ybottom = YSIZE-1;

 /♦ Count of pixels In area ♦/

 /* Target color ♦/

 /* Label color ♦/

 /♦ Boundary values ♦/

 /♦ For checking recursion area */

 Int label(x,y,dx,dy,bln0,bln1,mlnplx,blabel,elabel)

 Int X,y;

 Int dx,dy;

 PIXEL bln0;

 PIXEL bln1;

 Int minplx;

 PIXEL blabel; PIXEL elabel:

 regIster PIXEL Iv;

 /* Start of area to label ♦/

 /* Size of area to label ♦/

 /* Binary 0 value */

 /* Binary 1 value */

 /* Minimum number of connected pixels for label ♦/ /* Begining value to label with ♦/

 /♦ End value to label with */

 Int I

 #lfdef CHECK

 /♦ Check area to scan ♦/

 If (check_area(x,y,dx,dy,"<label>") == ERROR) return(ERROR);

 /♦ Check that the specified labels are not the same as binary values ♦/

 If ((blabel «= bln0) M (blabel -« blnl) ||

 (elabel ** bln0)
j|
(elabel == bln1)) j

 prIntf("<label> Labels cannot ■■ binary vaIues!l\n"); return(ERROR);

 #endlf

 /♦ Set up boundary values ♦/

 Xleft « x; ytop « y; xrIght « x+dx-1; ybottom « y+dy-1;

 /♦ Set up label value */

 IV * bIabeI;

 /♦ Search area */

 while (dy—) }

 for (I ■ X ; I < dx+x ; I++) }

 /* If there Is a target pixel,
fill

It
 ♦/

 If
 (read_plxeI(I,y) blnl) {

 count * 0; /♦ Count of pixels */

 oldcolor » bln1;/* Target color ♦/ newcolor = Iv; /♦ Color to
fill
 with */ fI Il_horIz(I,y); /♦
Fill
 with value ♦/

 If (count < minplx) { /♦ Erase If < minplx */

 oldcolor ■ Iv; newcolor - bln0; fI Il_horlz(l,y);

 else I {

 /*
Bump
 color ♦/

 If (++lv > elabel) Iv ■ blabel;

 y++;

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 149

 return(OK);

 I

 /* ... */
/* Recurslon/iterotIon routines for finding ond filling connected oreos */ stotIc Int XI,xr;
/♦ Horizontal
fill
 recursion. Does most of the work... ♦/ static VOID fI Il_horl
2
(x,y)
Int x,y;
/♦ Is this
a
 hit?
*/
If (reod^plxeI(x,y) ■■ oldcolor) j
/♦ Change os long a horizontal line as you can. Keep track of x, dx ♦/ xr ■ x;
while (xr <« xrIght) j
If (read^plxeI(xr,y) ■■ oldcolor) j
wrIte_pIxeI(xr++,y,newcolor); count++;
1
else break;
X
I » x-1;
while (xI >■ XI
eft)
 }
If
 (read^plxeI(xI,y) »= oldcolor) j
wrIte_plxeI(xI — ,y,newcolor); count++;
}
else break;
X
I ++;
If ((xr-xl) > 0) fI I Invert(xI.y,xr-xI);
/♦ vertical
fill
 recursion ♦/ static VOID fI I Invert(x,y,dx)
Int x.y,dx;
whI Ie(dx—) {
/♦ Boundary check and recurse up
*/
If (—y >« ytop) fI Il«horIz(x.y); y++;
/* Boundary check and recurse down (Remember: "Video coordinates")
*/
If (++y <« ybottom) fI Il.horIz(x,y); y—;
X++;
/*
 =======ss=«=s==a= End of simarea.c ===============3 ♦/
/*
 <— FILE BREAK —> ♦/
SIMINTER.C
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms, March 1987, page 169
cat siminter.c
♦
*
♦
 siminter.c = Sample Interface routines for SIMPP; ♦
♦ Simple IMage Processing Package. ♦
♦ Copyright (c) 1987, Benjamin M. Dawson *
♦ Edit Version: 1.1 : Jan-29-87 ♦
♦

♦
\)ltJtc)lcJtc*>tc]tcilc:tc)lt******************************>lf ******** 4(3*1
/* NOTE: THESE ARE DUMMY ROUTINES. THEY PROVIDE A TEMPLATE FOR WRITING ♦ YOUR OWN ROUTINES. YOU MUST WRITE ROUTINES SPECIFIC TO YOUR IMAGE
150 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
♦ PROCESSING HARDWARE and FRAME MEMORY to USE SIMPP.
*/
#include <stdio.h>
#include "slmpp.h”
/* sim_open = Open and initialize image processing hardware ♦/ int slm_open()
return(OK);
/* sim_close = Close image processing hardware ♦/ int sim.closeO
I
return(OK);
/* Acquire » Acquire a single image into the image memory */ VOID acquire()
/♦ read_pixel * Read a single pixel from image memory location x,y */ PIXEL read_pixeI(x,y) int x.y;
return((PIXEL)0); /♦ Change to return pixel value ! ♦/
/♦ write_pixel » Write a single pixel value to image memory location x,y ♦/ VOID wrIte_plxel(x,y,z) int x,y;
PIXEL z;
}
I
/♦ wrlte_LUT « Set a LUT location, loc, to value value in the LUT specified
♦ by color (RED, GREEN, or BLUE. Note: If you don't have LUTS, it is best
♦ to leave this as it is — a dummy routine.
♦/
VOID write_LUT(color,loc,
VO
Iue) int
CO
lor,loc;
PIXEL value;
I
#ifdef LUTS
#endif
\
/* End of siminter.c ■*■«=»«»»*===««* ♦/
/♦ <— FILE BREAK —> ♦/
%
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 151
SIMPOINT.C
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms, March 1987, page 169
cat simpoint.c
♦ ♦
♦ simpoint.c - Point operations for SIMPP: ♦
♦ Simple IMaqe Processing Package. ♦
♦ Copyright (c) 1987, Benjamin M. Dawson ♦
♦ Edit Version: 1.1 : Jan-29-87 *
♦

★
^Include "simpp.h" extern char ♦malloc();
/♦ ptransform « transform the Image according to a function table (LUT) ♦/ Int ptransform(x,y,dx,dy,table)
[nt x,y; /♦ Start of area to transform ★/
Int dx,dy; /♦ Size of area to transform ♦/
PIXEL ♦table; /♦ Transformation table ♦/
register Int I;
#lfdef CHECK
If (check_area(x,y,dx,dy,"<ptransform>") return(ERROR);
ERROR)
#endlf
\
/♦
while (dy—) j
for (I » x ; I < dx+x ; I++)
wrIte_pIxe1(I, y, table[read_plxel(I,y)]);
return(OK);
♦/
/♦ histogram « histogram the pixel values In the area starting at x,y ♦ and of size dx,dy. The histogram Is returned In the long array h. ♦/
Int hlstogram(x,y,dx,dy,h)
Int x,y; /♦ Start of area to histogram ♦/
Int dx,dy; /♦ Size of area to histogram ♦/
long ♦h; /♦ Array of histogram values ♦/
regIster
Inti; long ♦ph;
#lfdef CHECK
if (check.area(x,y ,dx,dy,''<histogram>") == ERROR) return(ERROR);
#endIf
ph = h;
/♦ Pointer to histogram array ♦/
/♦ Clear the histogram array ♦/
for (I a 0 ; I < PIXEL.SIZE ; i++) ♦ph++ = 0L; /♦ Compute the histogram ♦/ while (dy—) }
for (I = X ; I < X + dx ; i++)
h[read_plxel(I,y)] += IL;
\
 y++:
return(OK);
/ XC SSSSSSSSSSSaBSSSSSSSSSSSBSSSSSSSSnaSSBSSSBBSSSSSSasaSBSSSBSSSSSBS ♦/
/♦ cllp_hlsto = Measure the histogram, h, and return minbln, the first ♦ bln above threshold thresh going from bln 0 upwards, and maxbln, the
152 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
♦ first bin above thrshold thresh going from bin MAXPIX downwards */
int clip_histo(h.thresh,minbin.maxbin)
long ♦h; /♦ Pointer to histogram array */
int thresh; /♦ Threshold for histogram counts */
int ♦minbin,♦maxbin; /♦ Returned minimum and maximum bins ♦/
{
register int i; register m;
/♦ Go from the bottom bin up. looking for a bin above threshold */ for (i - 0; i < PIXEL.SIZE ; i++)
\
if (h[i] > (Iong)thresh) break;
I
m = ★minbin = i;
/* Go from the top bin down, looking for a bin above threshold */ for (i = (int)MAXPIX ; i > m ; i —)
\
if (h[i] > (long)thresh) break;
I
♦maxbin = i;
#ifdef CHECK
if (♦maxbin «» ♦minbin) }
printf("<cIip_histo> Histogram has only 1 or no bins above threshold!\n"); return(ERROR);
}
#endif
return(OK);
/♦ ♦/
/♦ plot^histo « Plot the histogram, h, in the image area starting at
♦ x.y and of size dx.dy. The histogram is seal led to fit into this
♦ oreo. It is plotted with pixel value (intensity) z.
	int plot_histo(x,y.dx,
	,dy,h,z)
	

	int x.y;
	/♦ Start of area to plot
	in ♦/

	int dx.dy;
	/♦ Size of to plot in ♦/
	

	long h[];
	/♦ Histogram array ♦/
	for plot ♦/

	PIXEL z;
	/♦ Inensity value to use

PIXEL ♦bp, ♦buf; register int i ; int length;
Iong maxvaI;
double xsf.ysf; /♦ X and Y scale factors ♦/ double xf;
/♦ Find the moxlmum histogram value ♦/ maxvaI ■ 0L;
for (i - 0 ; i < PIXEL.SIZE ; i++) {
if (h[i] > maxval) maxval » h[i];
\
/♦ Best to include this check to prevent division by 0 ♦/
#ifdef CHECK
if (maxvaI «■ 0L) }
printf("<plot_histo> No values in histogram!\n"); return(ERROR);
I
if (PIXEL.SIZE — 0)
\
pr intf (''<plot_histo> PIXEL.SIZE — 0!\n'‘); return(ERROR);
\
#endif
/♦ Check plotting areo ♦/
#ifdef CHECK
if (check_areafx,y.dx,dy,’'<plot_histo>") -■ ERROR) return(ERROR);
#endif
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, I987 153
/♦ Compute scale factors ♦/
xsf - (double)dx/(double)PIXEL.SIZE; ysf ■ (doubIe)dy/(doubIe)maxvaI;
/♦ Allocate a buffer for drawing ♦/
bp - buf « (PIXEL ♦)malloc(dy»sl
2
eof(PIXEL));
/♦ Fill It with the drawing color ♦/
for (I ■ 0 ; I < dy ; I++) ★bp++ -
2
;
/♦ Drew histogram. REMEMBER: Video coordinates! (y Increases DOWN) ♦/ xf - (double)x;
^ '
for (I -
0
 ; I < PIXEL.SIZE ; I++) |
length « (lnt)((double)h[I]*ysf);
wrIte.vllne((lnt)xf.y+(dy-length).length.buf);
xf +* xsf;
free(buf); return(OK);
/♦ HMssasaassssss End of simpoint.c ««»=**==««■■■»== ♦/ /♦ <— FILE BREAK —> ♦/
SIMPP.DOC
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms. March 1987. page 169
SIMPP « Simple IMage Processing Package.
Copyright (c) 1987. Benjamin M. Dawson Edit 1.2 : Jan. 30. 1987
This package may be freely copied, modified, and used for noncommercial purposes. No guarantee Is made that this code Is correct or suitable for any purpose. This notice. Including the copyright notice, must appear In all copies and modifications.
I. Introduction
SIMPP (Simple IMoge Processing Package) Is a model Image processing package that demonstrate some Important and basic algorithms In Image processing.
It Is written In "standard" (K&R) C and has been compiled and tested on:
(1) an IBM Personal Computer/AT using the Computer Innovations Inc. C compiler (Big model) and an Imaging Technology Inc. Series 100 frame memory.
(2) A DEC VAX 11/750 computer using the Berkeley Unix (4.2) C compiler an Adage 3000 (Ikonas) Image processor.
Please see my article In the March. 1987 edition of BYTE maga
2
lne ("An Introduction to Image Processing Algorithms") for details on the package and algorithms.
II. Hardware Requirements
SIMPP assumes that you have simple Image processing hardware on your computer that can acquire, store, access, and display Images with 8 bits of grey-level Intensity. In particular, this hardware must be able to:
1. Acquire and store a single picture (a "frame") from an Image source (e.g. TV camera, disk. etc.), with an Intensity resolution of 8 bits. This will
 give a pixel values ranging from 0 to 255. Intensities above 255 are clipped to 255. and Intensities below 0 are clipped to 0. These data are put Into the "Image memory".
154 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
2. Access (read and write) this image memory on a pixel-by-pixel basis, as if the picture values were stored in a large matrix of XSIZE columns by YSIZE rows. I suggest a minimum size of YSIZE = 256 rows and XSIZE = 256 CO
Iumns.
The pixels are organized by "video" coordinates: x values increase from left to right, and y values increase from top to bottom. Thus coordinate (0,0) is at the top,left of the image and (XSIZE-1,YSI2E-1) is the bottom,right point in the image. The image points must be in normal order rather than in interlace or any other order.
3. Display the pixel values on an RGB or monochrome television monitor or other display device (e.g., EGA, printer, etc.).
If your hardware has transformation tables ("Look-Up Tables" or LUTs) for transforming the output pixel values before they are displayed, the SIMPP package can use these tables. Normally these LUTs map a single (monochrome) pixel value to a red, green, blue triple of values. This allows image memory values to be displayed as arbitrary colors (pseudo-color)
III. Software Setup
In order to use SIMPP, you will need to:
1. Modify the "simpp.h" header to define your hardware to the software.
2. Write a set of interface routines that access your hardware.
3. Deal with porting the software to your machine.
4. Compile and link the software.
1. Values in the header "simpp.h" specify the hardware you are using to the SIMPP software. Here is an annotated copy of the header, showing items you may want to modify (Set off by !I at the beginning of the line):
♦ ♦
♦ simpp.h =* Include file for SIMPP *
♦ For Simple IMage Processing Package. *
♦ Copyright (c) 1987, Benjomin M. Dawson. *
♦ Edit Version: 1.1 : Jan-29-87 ♦
♦

♦
II (1) The VOID definition indicates that no useful value is returned from II by the function. This helps document the function and mollifies some II automatic code checkers.
/♦ Type definitions ♦/
#ifndef VOID /* VOID: No useful return from function */
#define VOID
#endif
II (2) These definitions specify image memory size and structure.
/♦ Storage definitions. May need to be changed for your hardware!I ♦/
II Each pixel (individual image point) is stored in a 8-bit byte,
II even if the hardware acquires fewer bits. For example, if you I! have 6-bit pixels, they still must occupy a byte. A pixel can II occupy more than a byte (a short, for example), but you might II run out of heop space (internal buffers) on a "small" machine.
II Try not to change this item.
^define PIXEL unsigned char /♦ Pixel type must be an 8-bit valuel
*/
II The size of pixel. This is for 8-bit values. If your pixels have II fewer bits, change accordingly. For example, for 6-bit pixels,
II define PIXEL.SIZE to be 64.
#define PIXEL.SIZE 256 /♦ Size of pixel */
II The minimum pixel value. Leave this at 0, if you can.
#define MINPIX (PIXEL)0 /♦ Minimum pixel value ♦/
II The maximum pixel value is automatically computed. DON'T CHANGE THIS! #define MAXPIX (PIXEL)(PIXEL_SIZE-1) /♦ Maximum pixel value */
II Starting index for the image memory. Leave these at 0, if you can. ^define XSTART 0 /* Starting image memory X address ♦/
jjidefine YSTART 0 /♦ Starting image memory Y address ♦/
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 155
!! Change this to indicote the horizontal size of your image memory. #defln6 XSIZE 512 /♦ Horizontal (row) size of Image memory ♦/
li Change this to Indicate #deflne YSIZE 480
the vertical size of your Image memory.
/♦ Vertical (column) size of Image memory ♦/
I! Automatic definitions. #deflne XEND XSIZE-1 #deflne VEND YSIZE-1
DON'T CHANGE THESE!
/♦ Last horizontal pixel address */ /♦ Last vertical pixel address ♦/
11 (3) Define CHECK If you want software checking of arguments ranges. 11 A good Idea for debuggingl /♦ Option switches ♦/
Idefine CHECK /♦ Define CHECK for bounds checking */
!! (4) These define return volues for error reporting.
/* Return values ♦/
^define ERROR -1 /♦ Error return ♦/
#deflne OK 0 /♦ Return OK ♦/
the convolution, and values will be processed.
1! (5) These define the maximum kernel size for 11 specifying how the output of the convolution /♦ Convolution switches */
i: the maximum kernel size. Used for checking arguments #deflne MAX_KERNEL_$IZE 8 /♦ Maximum size of kernel ♦/
1! These specify how to #deflne SIGNED 0 #deflne POSITIVE 1 #deflne NEGATIVE 2 #deflne ABSOLUTE 3
process the result of the convolution.
/♦ Don't change convolution output */
/* Output + values only. - set to 0 */
/★ Set + values to 0, output - of - values /* Output absolute values ♦/
*/
1! (6) External procedure declarations. Don't change. /* External declarations ♦/ extern PIXEL read^plxe1(); extern PIXEL read_LUT();
11 (7) Change these values to specify the hardware you are using.
/♦ CPU and Image memory (Image processor) specific definitions ♦/
11 MEMSIZE Is the largest possible buffer you can allocate In your
1! CPU. This size limits the size of the geometric transformations
II and some other operations. For the IBM AT or PC. with CII Big this 11 Is 2 16—20, as shown below. Other CPUs and operating systems may 1! allow a larger value.
#deflne MEMSIZE 65516L /♦ Size of largest buffer for CII Big model */
11 The output values from the convolution routine are scaled (divided
1! by using a shift function. Some machines
fill
 with the sign bit on
11 a right shift (divide by 2) and others don't. Define this If your 1! machine does NOT sign
fill
 on right shift.
#undef NO_SIGN_FILL /♦ Define If CPU does NOT
fill
 with sign */
/♦ bits on a right shift (see convolution) ♦/
11 If your Image memory (Image processing board) has output LUTs that allow 11 a pixel to be transformed Into a red,green,blue triple of values for 11 display on a color monitor, then define LUTS to use these LUTs. If you II define this and don't have LUTs, the only damage Is larger code, fdefino LUTS /★ Define LUTS If you have output LUTS */
fifdef LUTS '
11 These select an output LUT for modification.
#deflne RED 1 /♦ Select RED LUT ★/
#deflne GREEN 2 /♦ Select GREEN LUT ♦/
#deflne BLUE 3 /★ Select BLUE LUT ♦/
fendlf
/♦ End of simpp.h «««=***«««*=*«
2. You must write a set of "Interface" routines that link the SIMPP package with your Image memory or Image processing hardware. These routines are gathered In the "sIminter.c" module.
The Interface routines are specified below, but not given In this package, as they
will
 be machine specific. A "dummy" version of "siminter.c" Is provided to help you write a version specific to your hardware.
156 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
Primitives: int sim_open()
Opens and Initializes the imaging hardware. Returns ERROR or OK. int sim_close()
Closes the imaging hardware. Returns ERROR or OK.
VOID acquireO
Acquires one image into the image memory and returns when done.
PIXEL read_pixeI(x,y) int x,y;
Returns the value of the pixel in location (x,y) of the image memory.
VOID write_pixel(x,y,
2
) int x,y;
PIXEL z;
Writes a new pixel value, z, to location (x,y) in the image memory.
VOID write_LUT(color,loc,value) int
CO
I or,Ioc;
PIXEL value;
Set the location specified by loc in the look-up table specified by color to value. If you don’t have (or use) LUTs, this should be a dummy routine.
3. Porting the software to your machine.
I have tried to make the SIMPP package as portable as possible, sometimes at the expense of performance. Hopefully this will make it easy to port to your particular compiler, CPU, and image processing hardware.
Some notes:
— Differences in image processing hardware and host CPU are indicated by #define*s in "simpp.h”, as noted above. You might have to add some #defines for your hardware and compiler.
— You will probably have
a
 lot of trouble if your machine does not have an 8-bit byte (e.g. a PDP-8). Then again, you probably don’t have a C compiIer1
— Your C compiler must be reasonably complete. It if follows the K&R standard, you should have no problems. Data types used include: unsigned char char
int fassumed to be short where necessary)
long (cast to long where necessary)
doub I e
— Elements of the "standard” C I/O library used include:
"stdio.h"
maI IocQ and f ree(^
pr*intf(). fpr?ntf(), and scanf()
open(), read(). write()
exitO
You may have to change these calls to use your compiler’s versions.
For example, under some versions of Whitesmiths’ C on the PDP-11, printfO becomes putfmt(), and the %d field specifier becomes %i.
malloc:
It is assumed that malloc() takes an argument of type: unsigned int.
If your C library requires this argument to be a long and your type int is not equal to a long, then calls to malloc must be changed.
If you don’t have malloc() and free(). then you can change the code to use static buffers. You may not be able to use the geometric transforms, as they malloc large buffers.
open:
The arguments to open vary from library to library. This distribution shows them as appropriate for Berkeley 4.2 Unix. You may have to
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 157
Change the READ-ONLY and WRITE.ONLY definitions, and reduce the number of arguments to open() from 3 to 2 (drop the 0777 argument).
exit:
The argument to exit Indicates what kind of error Is returned to the system. The arguments are defined for Berkeley 4.2 Unix In this distribution. You may have to change them to something appropriate for your system.
“ If your compiler does not use ASCII to encode characters, you may have to modify the matches() routine In "slmtest.c"
— All routine names are different In the first 8 characters. You may have to these and/or Internal variable names to meet the requirements of your compiler. If your compiler only has 6 character names, you may have to change the subroutine names.
4. Compiling and linking the software.
This SIMPP distribution files:
mokef I 1 e readme sImarea.c sImgeo.c sIminter.c sImmeas.c sImpoint.c sImpp.doc s Impp.h sImsubs.c sImtest.c sImutI I .c
(version 1.1 — January 1987) consists of the followl
* A Unix—style file for making the test program.
* A short note as to the contents of the directory.
■ Area Image processing functions.
* Geometric Image processing functions.
* Model hardware Interface routines.
* Image measurement functions.
■ Point Image processing routines.
■This document.
« Hardware definition header file.
■ Subroutines for test program.
■ Test program.
■ Utility programs.
The C modules (.c) are complied In the normal fashion and linked with your main program. The test program ("sImtest.c") contains a maln() call, so you can link with this for a executable program. The "makefile" can be used or modified to automatically build the software and test program.
If you use the test program (simtest.c). the gausslan burn function (In simsubs.c) requires the calculation of an exponential. This Is usually covered by the Inclusion of a math library.
Table 1 In the BYTE article contains a list of functions In each module, except for simtest.c and simutll.c.
IV. Testing the software.
A rather extensive test program, "simtest.c" Is Included. This uses a menu to select operations and also has an automatic test sequence. You may want to use this program as a starting point for your program, and you certainly should use It to see that you have ported and complied everything correctly.
The test program was used to process some of the Images In the BYTE article.
V. Notes
The Individual flies In this package are separated by the special character sequence:
/* <~ FILE BREAK —> ♦/
This helps separate the flies If they are concatenated during distribution.
I am delighted to hear from you by letter or electronic mall about the plusses and problems of SIMPP. and any corrections and additions. I cannot be your telephone consultant — I*m hard to reach and very busy (who Isn’t!).
If you wish to use this package In a product, reprint, distribute, or use It In a some commercial way. please contact me about licensing.
Happy Image processing!
158 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
Dr. Ben Dawson E10-120 M.I.T.
79 Amherst St.
Cambridge MA, 02139
Tel. (617) 253-5700 ARPA net: BMD@OZ.Al.MIT.EDU
/* .■.»..=====.—— End of simpp.doc —«««««*««—«=== */ /♦ <~ FILE BREAK —> */
home: 89 Overbrook Drive.
Weilesley, MA 02181
SIMPP.H
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms, March 1987, page 169
/H.****1|C******)|1*1****!|1**#*************»*********\
simpp.h « Include file for SIMPP: *
For Simple IMage Processing Pockage. * Copyright (c) 1987, Benjamin M. Dawson. * Edit Version: 1.2 : Jon-30-87 *
\in^m*********************»‘********************/
/* Type definitions ♦/
(jlifndef VOID /* VOID: No useful return from function ♦/
#define VOID iendif
/* Storoge definitions. May need to be changed for your hordwarei! */ #define PIXEL unsigned char /♦ Pixel type must be an 8-bit value! */ #define PIXEL_SIZE 256
/*
 Size of pixel
*/
idefine MINPIX (PIXEL)0 /* Minimum pixel value */
#define MAXPIX (PIXEL)(PIXEL_SIZE-1)
/*
 Maximum pixel value */
idefine XSTART 0 (jldefine YSTART 0 Idefine XSIZE 512 Idefine YSIZE 480 Idefine XEND XSIZE-1 Idefine YEND YSIZE-1
/♦ Starting image memory X address ♦/
/♦ Starting Image memory Y address ♦/
/♦ Horizontal (row) size of Image memory */ /♦ Vertical (column) size of Image memory */ /♦ Last horizontal pixel address ♦/
/♦ Last vertical pixel address */
/♦ Option switches ♦/
.
#deflne CHECK /♦ Define CHECK for bounds checking ♦/
/♦ Return values */
#deflne ERROR -1 #deflne OK 0
/♦ Convolution switches ♦/ #deflne MAX_KERNEL_SIZE 8 #deflne SIGNED 0 #deflne POSITIVE 1 #deflne NEGATIVE 2 Idefine ABSOLUTE 3
/♦ External declarations ♦/ extern PIXEL reod.plxeI(); extern PIXEL read_LUT();
/♦ Error return */ /* Return OK ♦/
/♦ Maximum size of kernel */
/♦ Don't change convolution output ♦/
/♦ Output + values only. - set to 0 ♦/
/♦ Set + values to 0, output - of - values ♦/ /* Output absolute values ♦/
/♦ CPU and Image memory Idefine MEMSIZE 65516L lundef NO_SIGN.FILL
Idefine LUTS llfdef LUTS Idefine RED 1 Idefine GREEN 2
(Image processor) specific definitions ★/
/♦ Size of largest buffer for CII Big model ♦/ /♦ Define If CPU does NOT
fill
 with ♦/
/♦ bits on a right shift (see convolution) ♦/ /♦ Define LUTS If you have output LUTS ★/
/♦ Select RED LUT ♦/
/♦ Select GREEN LUT ♦/
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 159
#deflne BLUE 3 /♦ Select BLUE LUT ♦/
#endlf
/♦ ■■«■■■■■■■«»■»»* End of
simpp.h «■**=»■■■■«=»«»*■
*/ A <— FILE BREAK —> ♦/
SIMPRIM.C
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms, March 1987, page 169
cat simprin.cmic
/«♦♦♦♦♦♦♦
)(C))C 9K 4e«)(C)|C)|C 4(4()K
He««\
♦ ♦
♦ simprim.c - Image processing primitives. ♦
♦ For Simple IMage Processing Package. ♦
♦ Copyright (c) 1987, Benjamin M. Dawson ♦
♦ Edit Version: 1.1 : Jan-29-87 ♦
♦ ♦ \ « 4c * « « 4c« « « «]4c«« He«)K)|c)|()ic 4e« He« «)|e)K 4c4(3|c 4(«)K « « 4e ♦ iK ♦ ♦ /
#lnclude "simpp.h"
extern char ♦malloc();
/♦ read.hllne « Read horizontal line of pixels, starting at x,y and ♦ length n Into the buffer pointed to by bp */
Int read_hI Ine(x,y,n,bp) Int x,y; register Int n; register PIXEL ♦bp;
/♦ Screen starting location ♦/ /♦ Number of pixels to read ♦/ /♦ Pointer to pixel buffer ♦/
of
#lfdef CHECK
If ((x < XSTART) I I (x > XEND)) {
prIntf("<read_hI Ine> X address out of rangel\n"); return(ERROR);
If ((y < YSTART) || (y > VEND)) {
prIntff"<read^hI Ine> Y address out of range !\n"); return(ERROR);
if ((n < 0) II (n > XSIZE-x)) {
prIntf("<read_hIlne> Wrong number of plxels!\n"); return(ERROR);
#end I f
while (n—) ♦bp++ » read_plxel(x++,y);
return(OK);
/♦ wrlte_hllne = Write a buffer, bp into a horizontal line of image memory ♦ memory pixels, starting at x,y and of length n.
*/
wrIte_hIlne(x,y,n,bp) Int x,y; register Int n; register PIXEL ♦bp;
/♦ Screen starting location ♦/ /♦ Number of pixels to write ♦/ /♦ Pointer to pixel buffer ♦/
#lfdef CHECK
if ((x < XSTART) I I (x > XEND)) |
prIntf("<write_hline> X address out of range!\n"); return(ERROR);
If ((y < YSTART) || (y > YEND)) {
prlntf("<wrlte_hllne> Y address out of rangel\n"); return(ERROR);
160 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
if ((n < 0) II (n > XSIZE-x))
\
printf("<write_hline> Wrong number of pixels!\n"): return(ERROR);
#end!f
while Tn—) write_pixel(x++,y.*bp++): return(OK);
/♦ read.vline = Read vertical line of pixels starting at location x.y ♦ and of length n into buffer bp */
int read_vline(x,y,n,bp)
int x.y; /* Screen starting location ♦/
register int n; /* Number of pixels to read ♦/
♦bp; /♦ Pointer to pixel buffer */
< XSTART) I
1

(x > XEND))
\ printff"<read«vline> X address out of range!\n"); return^ERROR);
< YSTART)
1

I (y > VEND))
\ pr intf ("<read_vl ine> Y address out of range!\n''); return(ERROR);
< 0) II (n > YSIZE-y)) {
printfr"<read_vline> Wrong number of pixels!\n"); return(ERROR);
#endif
while (n—) ♦bp++ - read^pixel(x,y++); return(OK);
I
register PIXEL {
iifdef CHECK
If ((X
if ((y
if ((n
/* write.vline - Write a vertical line of pixels from buffer bp into ♦ frame"memory starting at location x,y and of lenght n.
*/
write.vline(x.y,n.bp) int x,y; register int n; register PIXEL ♦bp;
{
/♦ Screen starting location ♦/ /♦ Number of pixels to write ♦/ /♦ Pointer to pixel buffer ♦/
#ifdef
#endif
CHECK
if ((x < XSTART) II (x > XEND)) }
printff"<write_vline> X address out of range!\n"); return(ERROR);
if ((y < YSTART) || (y > YEND)) {
printff“<write_vline> Y address out of range!\n"); return(ERROR);
if ((n < 0) II (n > YSIZE-y)) j
pr intf ('•<wr ite.vl ine> Wrong number of pixeI s !\n'‘) ; return(ERROR);
while (n—) write_pixeI(x,y++,♦bp++); return(OK);
♦/
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 I6I
/• read.oreo - Reod on oreo of pixels into buffer bp. starting ot ♦ location x,y ond of length n.
♦/
Int read_area(x,y,dx,dy,bp)
A Screen starting location ♦/
A Size of area ♦/
register PIXEL ♦bp; /♦ Pointer to pixel buffer */
#lfdef CHECK
If (check_area(x.y,dx.dy."<read_area>") -« ERROR) return(ERROR);
#endlf
while (dy—) {
read_hIlne(x,y++,dx,bp);
^ bp +* dx;
^ return(OK);
/*
*/
/* write oreo - Write the contents of buffer bp into the image areo ♦ starting at x.y and of size dx.dy.
*/
write_oreo(x,y,dx,dy,bp)
/*
 Screen starting locotion ♦/
/♦ Size of oreo */
register PIXEL *bp: /* Pointer to pixel buffper */
#ifdef CHECK
i f (check_oreo(x,y.dx.dy,"<write_areo>") return(ERROR);
ERROR)
fend i f
/*
while (dy—) j
write.hline(x.y++,dx,bp): bp +- dx;
I
return(OK);
*/
- copy the image memory area starting at x.y and of size ♦ dx,dy Into the area starting at xd,yd and of size dxd,dyd.
*/
copy_area(x.y.dx.dy.xd.yd.dxd.dyd)
int x.y; Start of source */
int dx.dy: /* Size of copy
*/
int xd.yd; /* Destination start */
int dxd,dyd; /♦ Destination size */
PIXEL *bp, ♦buf;
#lfdef CHECK
If (check_areafx,y,dx,dy,"<copy_area> Source") == ERROR) return(ERROR); ^
I f "<copy_area> Dest inot ion")=-ERROR)
#endlf
/*
 Select the smaller of the two area sizes ♦/ If (dxd < dx) dx * dxd;
If (dyd < dy) dy • dyd;
/*
 Check that you won't run off the frame memory •/ f ((yd + dy) > YSI2E) dy - YSIZE - yd; if ((xd + dx) > XSIZE) dx - XSIZE - xd;
/*
 Allocate a buffer */
bp = buf =
(PIXEL *)malloc(dx*slzeof(PIXEL));
/*
If
the source Is above the destination, copy top down */ •My >» yd) ^ ^
whlle(dy—)
\
162 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
read_hlIne(x,y++.dx.bp); write_hline(xd.yd++,dx.bp);
/♦ Else If destination is above source, copy bottom up */ else {
y +« dy-1; yd +* dy-1; whiIe(dy—) |
read.hIine(x,y—,dx,bp); write.hline(x.yd—,dx,bp);
free(buf); return(OK);
/♦
ss=ssss=ss«==ssa:==s====as
ERROR CHECKING *===««==****======**=*»«*»»= ♦/
/♦ check^area = Checks that area starting at x.y and of size dx.dy will fit
* into the image memory size, as defined by XSTART. YSTART, XSIZE, YSIZE
♦ in simpp.h Check all values before returning.
*/
#ifdef CHECK
int check_area(x.y,dx,dy,s)
int x,y; /* Start of area ♦/
int dx.dy; /♦ Size of area ★/
char *s; /* String to prepend to error statements ♦/
I
int flag; flag « OK;
/♦ Starting X ♦/
if ((x < XSTART) I I (x > XEND))
\
printf("%s area X address out of flag * ERROR;
range !\n*' ,s);
/*
 Starting Y ♦/
if ((y < YSTART) |I (y > YEND)) {
printf("%s area Y address out of rangel\n",s); flag » ERROR;
/♦ X size ♦/
if ((dx < 0) II (dx > XSIZE-x)) j
printf("%s area X size out of range!\n",s); flag « ERROR;
I
/♦ Y size ★/
if ((dy < 0) II (dy > YSIZE-y)) {
printf(''%s area Y size out of range l\n", s); flag « ERROR;
return(fIag);
#endif
/♦ ssBssBsssBssssss End of sImprIm.c «*=«»*««««»»»*** ♦/
/♦ <— FILE BREAK —> ♦/
%
SIMSUBS.C
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms, March 1987, page 169
cat simsubs.c
/♦♦♦♦♦♦♦♦♦♦♦★♦♦♦♦♦♦♦♦lit
♦ simsubs.c ■ Subroutines for simtest.c program for testing SIMPP: ♦
♦ For Simple IMage Processing Package. ♦
♦ Copyright (c) 1987, Benjamin M. Dawson. ♦
♦ Edit Version; 1.1 : Jan-29-87 ♦
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 163
♦
#lnclude <stdio.h> #lnclude "simpp.h"
extern double exp();
static PIXEL tran[PIXEL_SIZE] - 0;
/* REQUIRES MATH LIBRARY! ♦/
Additional Point routines

 [image: Picture #10]

 VOID negate(x,y,dx»dy) int x.y.dx.dy;
register int I;
/♦ Negate an area ♦/ /♦ Area to negate ♦/
for (i « 0 ; i < PIXEL.SIZE ; i++) tran[i] » MAXPIX - (PIXEL)i;
ptransform(x,y.dx.dy.tran);
/♦ Set up transformation * /* Apply it */
.. • ' » T^TTT--rT-r-rxTT*rTTTTrri'i' >•«/
/* brighten on area. Dim if vaI < 0 ♦/ A area to brighten ★/
A
Value to add to area ♦/
(
if (val > 0) j A BRIGHTENl! */
‘ '**}
 ^ /* Set up tronsform */
If ((I+vol) > (unsigned lnt)MAXPIX) tron[l] -MAXPIX;
^ else tran[l] - (PIXEL)(l+vol);
«lse { /* DIM !! ♦/
^ /* Set up tronsform */
if ((i+vol) < (Int)MINPIX) tron[i] - MINPIX;
^ else tron[l] - (PIXEL)(i+voI);
I
ptronsform(x,y,dx.dy,tron):
/* Apply it
*/
/*
 Burning Is o photogrophic technique to enhonce the exposure ond ! in selective imoge oreos. This is done by moving
*
0
 mask with o cutout (usually o circle) oround the area while it ^
* is being enlarged. We opproxlmote this procedure using o guossion
* shaped enhancement of the controst.
*/
VOID gauss_burn(x,y.dx,dy.k,l.m) /• Gaussion "Burn" an oreo */
int x.y.dx.dy: A Area to burn */
double k; /♦ Exponslon (burn) factor */
double I; /★ X and Y space constants ♦/
double m; /♦ Offset factor */
register int i; double XX. yy. z;
yy « -(double)dy/2.0;
while (dy—) }
XX
* -(double)dx/2.0; for (I = X : i < x+dx
i++) }
z - (doubielread_pixel(i,y)»k*exp(-((xx*xx + yy*yy)/l)) If
(z < 0.0) write_plxel0.y.MINPIX);
''
else If (z > (double)MAXPIX) write_pIxeI(I,y.MAXPIX); else write_pixel(i.y. (PIXEL)z);
^
yy +■
XX
+- 1.0;
1
.
0
:
164 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH, 1987
y++:
VOID binorize(x,y,dx,dy,threshold) /* Binarize oreo */
Int x.y.dx.dy: /* Area to binarize */
int threshold: /* Threshold value ♦/
I
regI star Int I;
for
(1*0;
 i <* threshold ; i++) tran[I] * MINPIX;
for (I * threshold ; I < PIXEL_SIZE ; i++) tran[i] = MAXPIX;
ptransform(x,y,dx,dy,tran);
++
VOID cstretch(x,y.dx,dy,clip) int x,y,dx,dy; int clip;
/♦ Stretch contrast in area * /♦ Area to enhance ♦/
/♦ Minimum bin count */
/
/
register int i; int low_bin,high_bin; double step,step_vaIue; long h[PIXEL_SIZE];
histogram(x,y,dx,dy,h);
/♦ Histogram high, low bins ♦/
/♦ For histogram equalization */ /♦ Histogram array */
/♦ Histogram area */
clip_histo(h.clip,&low_bin.&high_bin); /♦ get min,max histo bins */ pr intf ("cstretch: Minumum bin * %d, maximum * %d\n*', Iow_bin,h igh_bin) ;
step * (double)PIXEL_SIZE/(double)(high_bin-low_bin+1);/* step size */ step_value * 0.0; /♦ Step value */
/♦ Values below low^bin are set to minimum pixel value ♦/ for
(1*0;
 I < low.bin ; i++) tran[i] * MINPIX;
/♦ Values between low.bin and high_bin are stretched to range from MINPIX to MAXPIX ♦/
for (i « low_bin ; i <* high_bin ; i++) j tran[i] * (PIXEL)step_vaIue; step_value +* step;
/♦ Values above high_bin are set to MAXPIX ♦/
for (i - high_bin+1 ; i < PIXEL.SIZE ; i++) tron[i] = MAXPIX;
/♦ Transform area by stretched values ♦/ ptransform(x,y,dx,dy,tran);
{
+
4
+++++^.++ ♦/
VOID print_histogram(h) /♦ Print histogram h */
long ♦h;
register int I,count;
printf("Histogram values:\n"); count - 0;
for (i * 0 ; I < PIXEL^SIZE ; i-i-+) } printf("%6ld ",*h++); if (I((++count)%8)) printf("\n");
I
{
/* .««««>«« Subroutines for setting up LUTS, if you have them ==*==! VOID I in luts() /* Set LUTS to linear (grey-scale) ♦/
I
#ifdef LUTS
register int I;
printf("— Liniarize output LUTS —\n"); for (i - 0 ; i < PIXEL^SIZE ; i-»-+)
\ write_LUT(RED,i,(PIXEL)i); write.LUTfGREEN,I,(PIXEL)I); write«LUT(BLUE,i,(PIXEL)i);
♦/
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 165
#«ndlf
VOID p_
8
p©ctrum()
#Ifdef LUTS
register int i; PIXEL j.k;
Int q1.q2,q3.q4:
/* Set LUTS to a spectrum (pseudo-color) ■»/
/* Quortiles of LUT range •/
printf("— Set output LUTs to o spectrum —\n"):
/• Divide LUT range by
4
 */ /• Set up quart!les */
qi
q2
q3
q4
PIXEL_SIZE»2: q
1
 + q
1
; q
2
 + q
1
: PIXEL.SIZE;
/* First quart!le of LUT ronge. Red increases only •/ for (I - 0 : I < qi : i++) j
write.LUTfRED,
i
,(PIXEL)(i«2)):
/* Red romp up */ write_LUT(GREEN.
i.MINPIX):
/♦
0
 green */
^
write_LUT(BLUE.i.MINPIX):
/*0blue*/
/• Second quart!le of LUT range. Red decreases, green Increases */ j - MINPIX; k - MAXPIX;
'
for (i » qi ; i < q
2
 : i++) |
write_LUT(RED.i.k); k -■ 4;
write.LUT(GREEN.i.j); j +* 4;
^ wrIte_LUT(BLUE.!.MINPIX); /♦
0
 blue */
/♦ Third quartile of LUT range. Green decreases. Blue increases */ j - MINPIX; k - MAXPIX; for (i » q
2
 ; i < q
3
 ; i++) {
write.LUTfRED.i.MINPIX); /♦
0
 red */
^ . i .k); /♦ Green decreases ♦/
/♦ Blue increases ♦/
/♦ Red decreases ♦/ /♦ Green incrases */
I
k — 4; write_LUT(BLUE.i.j); j +- 4;
/♦ Forth quartile of LUT range. Blue decreases ♦/ k - MAXPIX;
for (i « q3 ; i < q4 ; i++) j
write_LUT(RED.i.MINPIX); write_LUT(GREEN.i.MINPIX); write_LUT(BLUE.i.k); k — 4;
/♦
0
 red ♦/
/♦
0
 green ♦/
#endif /♦
“*=*==* End of simsubs.c ====
«= ♦/
A <— FILE BREAK —> ♦/ %
SIMTEST.C
Contributed by Benjamin M. Dawson
"An Introduction to Image Processing Algorithms. March 1987. page 169

 [image: Picture #11]

 * simtest.c = Test program for SIMPP: ★
* Simpie IMage Processing Package. ♦
* Copyright (c) 1987. Benjamin M. Dawson ♦
* Edit Version:
1.1
 ; Jan-29-87 «
*j»t*************„«*„e:,c.,c****************:^.^.^.,c***/
166 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
#include <std!o.h> iinclude "slmpp.h"
/* These error flags are returned by the exit() routine. I have used the
♦ values appropriate for UNIX. These values may not give the desired
♦ results under VMS. RT-11, etc., so you may have to change them to
♦ values appropriate for your system.
♦/
#define ERROR_EXIT 1 /♦ Signol ERROR exit */
#define OK_EXIT 0 /* Signal no error exit ♦/
	/:((]|c>|c«)|c
	Kernels ♦♦*♦*/
	
	
	
	
	
	/♦
	
	for
	sharpening */

	static
	int
	I<ersh1[]
	= 1-1
	, -1.
	-1
	
	
	Kerne 1

	
	
	-1
	. 9.
	-1
	
	
	
	
	
	

	
	
	
	-1
	. -1.
	-1
	
	
	
	
	
	

	static
	i nt
	kersh2[] *
	1-1
	. -1.
	-1
	•
	
	/♦
	Kerne 1
	for
	sharpening */

	
	
	-1
	. 10.
	-1
	»
	
	/♦
	Not as
	strong as #1 */

	
	
	
	-1
	. -1.
	-1
	.1:
	
	/*
	Use scale
	factor of 1 ★/

	stat i c
	int
	kersh3[] ■
	1-1
	. -1.
	-1
	»
	
	/♦
	Kerne 1
	for
	sharpening */

	
	
	-1
	, 12.
	-1
	»
	
	/*
	Not as
	strong as #1 or #2 */

	
	
	
	-1
	. -1.
	-1
	.h
	
	/*
	Use a
	sea I
	e of 2 */

	static
	int
	kerhori
2
[] *
	1 -1
	. -1.
	-1
	. -i»
	-1.
	/♦
	Kerne 1
	for
	horiz. edges */

	
	
	0
	. 0.
	0
	. 0.
	0.
	
	
	
	

	
	
	
	1
	. 1.
	1
	. 1,
	1.1
	
	
	
	

	static
	int
	kervert[] ■
	1 -1.
	0. 1
	>
	
	
	/*
	Kerne 1
	for
	vertical edges */

	
	
	/
	-1.
	0. 1
	
	
	
	
	
	
	

	
	
	
	-1.
	0. 1
	
	
	
	
	
	
	

	
	
	
	-1.
	0. 1
	
	
	
	
	
	
	

	
	
	
	-1.
	0. 1
	
	
	
	
	
	
	

	stat i c
	int
	kerIapIa[] *
	1-1.
	-1.
	-1.
	
	
	/♦
	Kerne 1
	for
	laplacian ♦/

	
	
	-1.
	8.
	-1.
	
	
	
	
	
	

	
	
	
	-1.
	-1.
	-1.
	};
	
	
	
	
	

	stat i c
	int
	kerblur[]
	1 1.
	1. 1.
	1.
	1, 1
	. 1.
	1.
	
	
	

	
	
	1.
	1. 1.
	1.
	1. 1
	. 1.
	1.
	
	
	

	
	
	
	1.
	1. 1.
	1.
	1. 1
	. 1.
	1.
	
	
	

	
	
	
	1.
	1. 1.
	1.
	1. 1
	. 1.
	1.
	
	
	

	
	
	
	1.
	1. 1.
	1,
	1. 1
	. 1.
	1.
	
	
	

	
	
	
	1.
	1. 1.
	1.
	1. 1
	. 1.
	1 .
	
	
	

	
	
	
	1.
	1. 1.
	1.
	1. 1
	. 1.
	1 .
	
	
	

	
	
	
	1.
	1. 1.
	1.
	1. 1
	. 1.
	1.
	
	
	

	stat i c
	long hfPIXEL.SIZE]
	0L:
	
	
	
	/♦
	Histos
	iram
	array */

	stat i c
	cha
	r name[80] ■
	0;
	
	
	
	
	/*
	File name
	♦/

Table captionjjfdefine MAX_QUAD 5
Table caption/♦ Maximum quadrant number ♦/
/♦ Define "quadrants" of image memory, plus "quadrant 0" for the entire image memory. Used as a shorthand for image areas */ #define QUAD0 XSTART.YSTART.XSIZE.YSIZE #define QUAD1 XSIZE/2.YSTART.XSIZE/2.YSIZE/2 #define QUAD2 XSTART.YSTART.XSIZE/2.YSIZE/2 #define QUAD3 XSTART.YSIZE/2.XSIZE/2.YSIZE/2 #define QUAD4 XSIZE/2.YSIZE/2.XSIZE/2.YSIZE/2 Idefine QUADS XSIZE/4.YSIZE/4.XSIZE/2.YSIZE/2
static int qmap[MAX_QUAD+1][4] -j
I
QUAD0 QUAD1 QUAD2 QUAD3 QUAD4 QUADS
	/*
	Quadrant array
	map

	/*
	Ent i re
	screen */

	/*
	Upper
	right ★/
	

	/•
	Upper
	left */
	

	/*
	Lower
	left ♦/
	

	/•
	Lower
	right ♦/
	

	/*
	Center
	♦/
	

/♦ Define macro to use quad map ♦/
#define QUADMAC(i)
qmap[
i][0].qmap[i][1].qmap[i][2].qmap[i][3]
Table caption*/
h
♦/
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. I987 167
maln()
register Int I; /♦ int x.y.z; /♦ int out; /♦ char $[20]; /♦ char sharp[5]; /♦ float xs.ys; /♦ float gbk.gbl,gbm; /♦
General variable */
Location and value variables Output quadrant ♦/
Input command string ♦/ Sharpen command string ♦/ Stretch factors ♦/
Gaussian burn factors ♦/
V
/* SalutatIons I ♦/
pr
IntffSIMPP
 test program VI. 10 ♦♦♦♦♦♦\n"); printf("Copyright (c) 1987. Benjamin M. Daw8on\n\n");
/* Open hardware ♦/
prlntf("— Open hardware —\n");
If (slm_open() «= ERROR) |
prIntf("<slmte8t> Can’t open hardwarelVn"): exlt(ERROR_EXIT);
/♦ Linearize LUTS, If you have them */ Iln_luts(); prlntf("\n");
for (;;)
 j
/♦ Print menu
*/
printf("AcquIreXt prlntf("Blur\t pr Intf("Grld\t printf("Label prIntf("NegateXt printf("Quit prlntf("Save Image pr Intf("StretchXt pr I nt f ("Command»>
Binarize Brighten BurnXn");
Clear areaXtCopy area Contrast StretchXn");
Histogram Lap 1acIan Plot Histogram Rotate Sharpen Test a I 1
Horizontal EdgesXn"); Linear LUTsXn");
Print HIstogramXn"); Restore ImageXn"); SpectrumXn";;
Vertical EdgesXn");
scanf("%s",s); /★ Get command string, with appended NULL ★/
/♦ Match command */
If (matches(s,"acquire".4)) acqulre(); else If (matches(s,"binarize".4)) { i • get auad();
^ blnarlze(QUADMAC(l).get.lnt("Threshold «"));
else If (matches(s."brighten",4)) j ^ * get_quad();
^ brlghten(QUADMAC(l).get.lnt("Value to add="));
else If (matches(s,"blur",4)) {
I « get_quad();
^ convolve(QUADMAC(l).8.8,kerblur.6.P0SITIVE);
else If (matches(s,"burn",4)) j
* * get_quad();
prlntf("Burn factor (real) *"); scanf("%f".&gbk);
prIntf("Space constant (real) *"); scanf("%f".&gbl); prIntf("Offset (real) «"); scanf("%f",&gbm);
^ gauss_burn(QUADMAC(I).(doubIe)gbk.(doubIe)gbI.(doubIe)gbm);
else If (matches(s,"clear",4))
{
• * get_quad();
^ clear.area(QUADMAC(l).(PIXEL)get_lnt("Clear to Intensity -"));
else If (matches(s."copy",4))
\ printf("Copy ");
^ * get_quad(); printf("To "); out = get_quad();
CO py_a r e a(QUADMAC(I),QUADMAC(out));
168 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
else If (matches(s,"contrast",4)) j
1 = get^quadO;
cstretch(QUADMAC(i),get_lnt("Mlnlmum bln count *"))l
else If (matches(s,"grId",4))
\
X = get_lnt("X spacing ="); y = get_lnt("Y spacing *");
2 “ get_lnt("IntensIty =");
^ draw_grld(x,y,(PIXEL)z);
else If (matches(s."histogram",4)) } i = get_quad(); hIstogram(QUADMAC(I),h);
else If (matches(s,"horIzontaI",4))
\
I * get.quadQ;
convolve(QUADMAC(l).5.3.kerhorIZ.0.ABSOLUTE);
else If (matches(s,"labeI",4)) j I * get^quadQ;
X * get_lnt("Mlnlmum area size *");
I ab eI(QUADMAC(I).MINPIX,MAXPIX.x,
^ (PIXEL)1.(PIXEL)(PIXEL_SIZE-2));
else If (matches(s,"laplaclan".4))
\
I = get_quad();
convolve(QUADMAC(l),3.3.kerlapla.0.ABSOLUTE);
else If fmatchesfs,"!Inear",4^^ lln_luts(); else If (matches(s,"negate",4); j
I ■ get_quadO;
negate(QUADMAC(l));
else If (matches(s,"plot".4)) j I * g«t_quad(); pIot_hIsto(QUADMAC(I),h,
^ (PIXEL)get_lnt("Intenslty to plot with ■ "));
else If (matches(s."prlnt",4)) prlnt_hlstogram(h); else If (matches(s,"quIt",4)) j slm_close(); exlt(OK_EXIT);
else If (matches(s."restore".4)) {
I ■ get_quad(); pr Intf("FI Ie name:"); scanf("%s".name); read_lmage(QUADMAC(I).name);
else If (matches(s,"rotate",4)) |
J “ get_quad();
rotate(QUADMACO));
else If (matches(s,"save",4))
{
J • g©t_quadO;
pr Intf("FIle name:"); scanf("%s".name); save_lmage(QUADMAC(I).name);
else If (matches(s,"sharpen",4)) j J ■ get_quadO;
prIntf("Degree of sharpening: High, Medium, or Low:"); scanf("%s",sharp);
If (matches(sharp,"high",3))
convoIvefQUADMAC(I).3.3.kershi.0.POSITIVE); else If (matches(sharp,"medium".3))
convoIve(QUADMAC(I).3.3,kersh2.1.POSITIVE); else If (matches(sharp,"Iow",3))
^ convolve(QUADMAC(l).3.3.kersh3.2,POSITIVE);
else If (matches(s."spectrum",4)) p_spectrum(); else If (matche8(s,"stretch",4)) j
I ■ g«t_quadO**
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 169
prlntf("X stretch factor (real) ■ 8canf("%f.&x8);
prlntf("Y stretch factor (real) ■ "); scanf ("%f'• j&ys) ;
^ 8tretch(QUADMAC(I),(doubIe)xs.(doubIe)y8);
else If (matches(s.''test''.4)) test.all(); else If (matches(s, "vert leal •',4)) j
J ■ get.quadOl
convoIve(QUADMAC(l).3.5.kervert.0.ABSOLUTE);
else prIntfC'?? Not a valid command!\n");
static VOID test_all()
/* Script to test the package */
register Int I; char c;
/♦ Point operations */
prlntf("\n Test Point operatIons:\n");
printff"— Take a picture —\n"); acqulre();
prlntf("— Negate second Quadrant —\n"); negate(QUAD2);
printff"-- Brighten first Quadrant by 30 —\n"); brIghten(QUAD1.30);
prlntf("— Contrast stretch third Quadrant —\n"); cstretch(QUAD3,30);
#lfdef LUTS
prIntf("\nTest Output LUTs:\n");
p_spectrum(); /* Set luts to spectrum */
prIntfC'Type return (ENTER) to continue:"); scanf("%c",&c);
Iln^lutsO; /♦ Linearize LUTS ♦/
#endIf
/♦ Area operations ♦/
prIntf("\nTest Area operatIons:\n");
prlntf("— Take a picture —\n"); acqulre(); prlntf("— Sharpen Image In Quadrant 1 —\n"); convolve(QUADl,3.3.kershi,0,POSITIVE); prlntf("— Horizontal edges In Quadrant 2 —\n"); convoIve(QUAD2,5.3.kerhorlz,0.ABSOLUTE); prlntf("— Vertical edges In Quadrant 3 —\n"); convoIve(QUAD3.3.5,kervert.0,ABSOLUTE); prlntf("— Laplaclan of Qandrant 4 —\n"); con
VO I
ve(QUAD4.3.3.kerlapla,0,ABSOLUTE
);
prlntff"Area operations test done.\n"); prlntf("Type return (ENTER) to continue:"); scanf("%c".&c);
/♦ Geometric operations ♦/
prIntf("\nTest Geometric operatIons:\n"); prlntf("— Take a picture —\n"); acqulre();
prlntf("— Draw calibration grid —\n"); draw^grId(10.15,MAXPIX); prlntf("— Rotate Quadrant 2 —\n"); rotate(QUAD2); prlntf("— Stretch Quadrant 1 by 2.0 In X —\n"); stretch(QUAD1,2.0,1.0);
prlntf("— Stretch Quadrant 3 by 2.0 In Y --\n"); stretch(QUAD3,1.0,2.0);
prlntf("— Stretch Quadrant 4 by 3 In X and Y (ZOOM) —\n"); stretch(QUAD4,3.0,3.0);
prIntf("GeometrIc operations test done.\n"); prIntfC'Type return (ENTER) to continue:"); scanf("%c",&c);
/* Measurement operations */
prIntf("\nTest Measurement operatIons:\n");
prIntfC'— Taking a picture —\n"); acqulre();
prlntf("— Histogram Quadrant 2 —\n"); hlstogram(QUAD2,h);
prInt_hIstogram(h);
170 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
printf("— Plot histogram in Quadrant 1 —\n"); cIear_area(QUAD1,MINPIX); pIot.histo(QUAD1.h,MAXPIX);
printf("— Copy Quad 3 to Quad 4 —\n"); copy_area(QUAD3,QUAD4);
printf("— Binarize Quadrants 3 and 4 —\n"); binarize(QUAD3.PIXEL_SIZE/2); bin a riz e(QUAD4,PIXE L_$12E/2);
jjiifdef LUTS /* If you have LUTS, use them to color image ♦/
printf("— Setting LUTs to show labeled areas —\n"); p_spectrum();
/♦ Leave the binary colors (MINPIX and MAXPIX) alone */ writ e.LUT(RED.MAXPIX.MAXPIX); w rit e.LUT(GREEN,MAXPIX.MAXPIX); w r11 e_LUT(BLUE,MAXPIX,MAXPIX); write_LUT(RED.MINPIX.MINPIX); write_LUT(GREEN.MINPIX.MINPIX); write_LUT(BLUE.MINPIX.MINPIX);
#endif
printf("Label binary objects with 20 pixels or more in Quadrant 4\n"); IabeI(QUAD4.MINPIX.MAXPIX.20,(PIXEL)1.(PIXEL)(PIXEL_SIZE-2)); printf("Measurement operations test done.\n");
printf("Type return (ENTER) to continue:"); scanf("%c",&c);
/♦ Utility operations ♦/
printf("\Test Utility operations:\n"); printf("— Take a picture —\n"); acquire();
printf("— Save Quadrant 2 —\n"); printf("FiIe name:"); scanf("%s",name); save_image(QUAD2,name);
printf("— Restore Quadrant 2 image to Quadrant 4 —\n"); read_image(QUAD4,name);
printf("UtiIity operations test done.\n"); printf("\n TEST DONE\n");
/* ■•«■■■«■■■■■■■■««*««««■ Internal routines ««■■«■«««««»===«====»=« */
/♦ WARNING: This assumes an ASCII encoding for your characters!!! ♦/
/♦ Encode and match two strings, up to string length n or a null.
Returns 1 If match, 0 elsewise ♦/ static int matches(s1,s2,n) char ♦s1,*s2; /♦ Strings to match ♦/
int n; /♦ Number of characters to use ♦/
register int i,v;
/♦ If either string is NULL, return no match ♦/
if ((*81 « NULL) I I (*s2 *= NULL)) return(0);
V ■ 0;
for (i « 0 ; i < n ; i++) j /♦ Nulls always match after one character ♦/
if ((*81 »» NULL) II (*82 «« NULL)) return(1);
/* Lower case elements. REQUIRES ASCII ENCODING!!! ♦/
if ff*8l > 0100)
kk
 (*8l <- 0132)) ♦si +■ 040; if ((♦82 > 0100)
kk
 (♦82 <- 0132)) ^82 +- 040; if (♦s1++ !* ♦824+) return(0);
return(l);
/♦ ++^.+ #/ static int get_quad() /♦ Get a quadrant number (0,1,2,3,4) ♦/
int q;
continued
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 171
for (::) }
prIntf("Quodrant number - "); scanf("%d".&q);
((q < 0) II (q > MAX.QUAD))
prIntf("Quadrant number must be 0 (for all) to %dl\n", MAX.QUAD);
e I se
return(q);
/ ♦ ++ ★/ int get_int(s) /♦ Print string and return an integer value ♦/
char ^s;
int i;
printf("%s ".s); scanf("%d".&i); return(i);

 i

 /♦ sssssBsssas>«sB« End of simtest.c ■«»■=====»=*=«=» ♦/ /* <— FILE BREAK —> ♦/

 SIMUTIL.C

 Contributed by Benjamin M. Dawson

 "An Introduction to Image Processing Algorithms, March 1987, page 169

 XciK « 4c««««««

4e

9K

>K

«««
 4c««4c)ic
 34c]K:((>|c](c)K «\

 * ♦

 ♦ simutii.c « Utility operations for SIMPP; ♦

 ♦ Simple IMoge Processing Package. *

 ♦ Copyright (c) 1987, Benjamin M. Dawson ♦

 ♦ Edit Version; 1.2 : Jan-30-87 ♦

 ♦

*

 \ 4(♦♦ 4t ♦♦♦♦♦♦♦♦♦♦ 4c« 4(♦ 4c ♦♦♦♦ 4(♦♦ 4c 4c)ic 4(4t 4e 4c>ie ♦ 4(lie* ♦♦ 3(c 4(/

 #include <stdio.h> jjiinclude "simpp.h"

 extern char *malloc();

 /♦ These flags are for open() to indicate read/write ability on a file.

 ♦ The are defined for Berkeley UNIX, but may have to be changed for your

 ♦ system.

 */

 #define READ-ONLY 00000 #define WRITE.ONLY 01001

 /♦ clear_area « Clear an area ★ value z.

 */

 int cIear_area(x,y,dx,dy,z) int x,y; int dx,dy;

 PIXEL z;

 I

 begining at x,y and of size dx,dy to

 /♦ Start of area to set ♦/ /♦ Size of area to set */ /* Value to set area to */

 register int i ; register PIXEL *bp; PIXEL ♦buf;

 #ifdef CHECK

 if (check_areafx,y,dx,dy,"<clear_area>") == ERROR) return(ERROR);

 #endif

 /* Set up a buffer with size of dx */

 buf » bp * (PIXEL *)malloc(dx*sizeof(PIXEL));

 /♦ Set it to all z values ♦/

 for (i = 0 ; i < dx ; i++) *bp++ * z;

 172 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 /* CI ear Iines */

 while (dy—) write_hllne(x,y++,dx,buf);

 free(buf); return(OK);

 /*

 */

 /* save_image = Save the Image * fllewith name name.

 */

 Int save_image(x,y,dx,dy,name) Int x.y;

 Int dx,dy; char ♦name;

 }

 Int fd;

 short xx,yy,dxx,dyy; PIXEL ♦buf, ♦bp;

 Int wrsize;

 starting at x,y and of size dx.dy

 /♦ Start of area to save ♦/

 /♦ Size of area to save ♦/

 /♦ File name to use for save ♦/

 /♦ Shorts for header ♦/

 Into the

 #Ifdef CHECK

 If (check_area(x,y,dx,dy,"<save_Image>") == ERROR) return(ERROR);

 #endl f

 /♦ Copy Integer values to shorts, so that the header Is transportable between machines ♦/

 XX
= (short)x; yy = (short)y; dxx = (short)dx; dyy - (short)dy;

 /♦ Open file for writing ♦/

 If ((fd * open(name,WRITE_ONLY,0777)) < 0) j /♦ Write only open ♦/ prIntf("<save_Image> Can't open file %s l\n".name); perror("a"); return(ERROR);

 /♦ Write out header — xx,yy, dxx,dyy ♦/ wrIte(fd,&xx,sIzeof(short)h wrIte(fd,&yy,sIzeof(short);; wr I tef f d ,&dxx, s I zeof f short) V, wrIte(fd,&dyy,sIzeof(short));

 /♦ Allocate a buffer ♦/

 bp ■ buf ■ (PIXEL ♦)maI Ioc(dx^sIzeof(PIXEL));

 /♦ Write out Image data ♦/

 wrsize « dx^sIzeof(PIXEL); while (dy—) j

 read^hlIne(x,y++,dx,bp);

 If (wrIte(fd,bp,wrsIze) < wrsize) |

 prIntf("<save_Image> File write errorl\n"); close(fd); return(ERROR);

 close(fd); /♦ Close
file
 ♦/

 free(buf); /♦ Free buffer ♦/

 ^ return(OK);

 /♦ read_Image ■ Read an Image from disk storage. If any of the

 ♦ values x.y,dx,dy are < 0, then the corresponding value from the

 ♦
file
 Is used.

 */

 Int read_Image(x,y,dx,dy,name)

 Int x,y; /♦ Start of area to read ♦/

 Int dx,dy; /♦ Size of area to read ♦/

 char ♦name; /♦
File
 name to use for read ♦/

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 173

 March

 Int fd;

 short xx,yy,dxx,dyy; /♦ Shorts for header ♦/

 PIXEL ♦buf, *bp; int rdsize;

 /♦ Open
file
 for reading ♦/

 If
((fd
 ■ openfname,READ_ONLY,0777)) < 0) | /* Open read only ♦/

 pr Intf (•'<read_lmage> Can’t open
file
 %s !\n''.name); return(ERROR);

 /♦ Read header — xx.yy, dxx.dyy ♦/ read(fd,&xx,sIzeoffshort)); read(fd,&yy,sIzeof(short)h read(fd,&dxx,sIzeof(short;); read(fd,&dyy,slzeof(short));

 /♦ Check If you should use these values or the argument values ♦/

 If fx < 0) X « (lnt)xx;

 If (y < 0) y = (Int)yy;

 If (dx < 0) dx « (Int)dxx;

 If (dy < 0) dy » (Int)dyy;

 /* See If you should truncate the size ♦/

 If ((Int)dxx < dx) dx ■ (Int)dxx;

 If ((Int)dyy < dy) dy « (mt)dyy;

 /* See If It
will
 run
off
 the screen ♦/

 	
 If 1

 	
 Ux
 +
dx)

 	
 > XSIZE)

 	
 dx
- XSIZE -
X

 	
 If <

 	
 ((y + dy)

 	
 > YSIZE)

 	
 dy - YSIZE - y

 /♦ Allocate a buffer ♦/

 bp ■ buf » (PIXEL *)malloc(dx*slzeof(PIXEL));

 /♦ Read In Image data ♦/

 rdsize * (Int)dxx*sIzeof(PIXEL); while (dy—) j

 If (read(fd,bp,rdsize) < rdsize) |

 pr Intf (''<read_Image> Image read errorl\n"); close(fd); return(ERROR);

 I

 write_hI Ine(X,y++,dx,bp);

 close(fd); /* Close
file
 */

 free(buf); /* Free buffer ♦/

 return(OK);

 /♦ draw_grld » Cover the screen with a grid of spacing dx,dy, and value z ♦/ VOID draw_grId(dx,dy,z)

 Int dx,dy; /♦ Grid spacing */

 PIXEL z;

 regIster Int I; register PIXEL ♦bp;

 PIXEL ♦buf;

 /♦ Which direction, horizontal or vertical. Is longer? ♦/

 If (XSIZE > YSIZE) I = XSIZE; else I * YSIZE;

 /♦ Allocate
a
 buffer of this size, and
fill

It
 with value z ♦/ buf * bp = (PIXEL ♦)maIloc(l^sIzeof(PIXEL)); while (I—) ♦bp++ = z;

 /♦ Draw the I Ines ♦/

 for (I = 0 ; I < YSIZE ; I +« dy) wrIte.hIlne(0,I,XSIZE,buf); for
(1*0;
 I < XSIZE ; I +* dx) wrlte_vllne(l,0,YSIZE,buf);

 free(buf);

 174 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987

 /* «»■■■■«■»=«!====» End of simutil.c /* <— FILE BREAK —> */

 March

 */

 SIMGEO.C

 Contributed by Benjamin M. Dawson

 "An Introduction to Image Processing Algorithms, March 1987, page 169

)K « He«««9|c« 4c HciK)tc >|C««>|e« 4c He)K I|e« \

 * ♦

 * simgeo.c * Geometric Operations for SIMPP: *

 * Simple IMage Processing Package. ♦

 * Copyright (c) 1987, Benjamin M. Dawson ♦

 * Edit Version; 1.2 : Jan-30-87 ♦

 * ♦

 \ 4c 4c sic ♦ :)c 4c 9|c :ic 4c)K 4c)ic Xc)|(♦ /

 #include "simpp.h"

 extern char 4cmalloc();

 /4C rotate * Rotate clockwise by 90 degrees. Limited to an area of MEMSIZE, 4c and should be a square area.

 */

 int rotate(x,y,dx,dy)

 register int x,y; /4c Start of area to rotate 4c/

 int dx,dy; /4c Size of area to rotate 4c/

 register int i; unsigned long nI;

 PIXEL
4cbuf, 4cbp;

 #ifdef CHECK

 if (check_area(x,y,dx,dy,"<rotate>") *« ERROR) return(ERROR);

 #endif

 /
4
c Compute the number of bytes in the image area to be rotated
4
c/ nl ■ ((long)dx)
4
c((long)dy)
4
c((long)si
2
eof(PIXEL));

 #ifdef CHECK

 if (nl > MEMSIZE)
\

 printf("<rotate> Area too largel\n"); return(ERROR);

 \

 if (dx
1
= dy) j

 printf("(rotate) Warning: area not square, may write\n"); printf(" outside of the image memoryl\n");

 #endif

 /
4
c Allocate a large buffer for storage
*/

 buf = bp ■ (PIXEL ♦)maIloc(((unsigned int)nl));

 /*
 Read in image
*/

 if (read_area(x,y,dx,dy,bp) =» ERROR) j

 printf("<rotate> Can’t read area!\n"); return(ERROR);

 /
4
c Write It out the other way 4c/ while (dy—) {

 for (I ■ 0 ; I < dx ; i++) wr 1 te^plxel (x,y+i
,4cbp++); x++;

 free(buf); return(OK);

 /*
 stretch ■ Enlarge image size by stretching the image by X8,ys. 4c The image is stretched into the same area, starting from the

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 175

 ♦ upper,left corner. Limited to a MEMSIZE area, and uses Interpolation

 *
 to smooth pixel volues.

 ♦/

 stretch(x,y,dx,dy,xs,ys)

 Int x,y; /* Start of source AND destination ♦/

 Int dx,dy; /♦ Size of Source AND destination ♦/

 double xs,y8;
/*
 X,Y scale factors */

 register Int l,J;

 Int lx,ly;

 unsIgned long nI;

 PIXEL ♦buf, ♦bp, ♦p;

 double A,B,C,D,xAB,xCD,xx,yy,V;

 #lfdef CHECK

 If (check„area(x,y,dx,dy,‘'<stretch>") »» ERROR) return(ERROR);

 /♦ Must stretch — shrinking will cause Indexing problems ♦/

 If ((xs <1.0) II (ys < 1.0)) }

 pr Intf ("<8tretch> Scale factors must be > 1.0l\n''); return(ERROR);

 J

 #endlf

 nl ■ ((long)dx)^((long)dy);

 #lfdef CHECK

 If (nl > MEMSIZE)
\

 prIntf("<stretch> Area too largel\n"); return(ERROR);

 #endlf

 buf * bp * (PIXEL ♦)malloc((unslgned Int)nI♦sIzeof(PIXEL)); If (read_area(x,y,dx,dy,bp) ** ERROR) return(ERROR);

 /♦ Method: We compute fractional addresses (xx,yy) that Indicate where

 ♦ the source "pixel" would be. Since this address, In general, will fall

 ♦ between pixels, we approximate the value by bl-lInear Interpolation.

 ♦ We round the fractional addresses down to Integer values to get the

 ♦ address (lx,ly) of nearest real pixel to the top and left of the desired

 ♦ "Interpolated pixel". We then subtract this address from the Interpolated

 ♦ pixel address to get the fraction of address between the four pixels

 ♦ surrounding the Interpolated pixel (xx ■ xx - lx, yy ■ yy -ly). The

 ♦ address of the nearest top, left pixel (called pixel A) Is Incremented

 ♦ to get pixel values for the four pixels surrounding the Interpolated

 ♦ pixel. Thus we have a 2 by 2 matrix of values:

 ♦ A B

 ♦ CD

 ♦ To get the Interpolated value, we first compute the linear weighted

 ♦ value at distance xx between A and B and at xx between C and D. These

 ♦ two values (yAB and yCD) are weighted by yy to get the Interpolated

 ♦ value.

 */

 /♦ Compute address of the "Interpolated for (I » 1 ; I < dy ; I++)
\ yy = (doubIe)(1-1)/ys; iy - (Int)yy: yy as yy - (double)ly; bp = buf + ly^dx; for (j « 1 ; j < dx ; j++)
\ XX = fdoubIe)(j-1)/xs; lx »» (int)xx;

 XX = XX - (double)lx;

 /♦ Compute the value of the four neares p « bp + lx;

 A « (doubIe)(♦p+f);

 B = fdoubleK*P);

 D * (double)(^(p + dx)) C « (double)(^(p + dx

 pixel" and the nearest real pixel ♦/ /♦ Don't change first row ♦/

 /♦ Compute y address for source ♦/

 /♦ Round to Integer ♦/

 /♦ Leave only fraction of address ♦/ /♦ Compute pointer to nearest line ♦/ /♦ Don't change first column ♦/

 /♦ Compute
X
address for source ♦/

 /♦ Rount to Integer ♦/

 /♦ Leave only fraction of address ♦/ t neighbor pixels ♦/

 /♦ Pointer to top, left real pixel ♦/ /♦ Top, left real pixel ♦/

 /♦ Top, right real pixel ♦/

 ;/♦ Bottom, right real pixel ♦/

 1)); /♦ Bottom, left real pixel ♦/

 176 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 March

 Compute the linear Interpolated values (A to B and C to D) */

 xAB = A + (B -
A)*xx;
 /* xx of the way between A and B
*/

 xCD = C + (D - C)*xx; /♦ xx of the way between C and D ♦/

 Compute the (bi)linear interpolated value between xAB and xCD. This is

 yy of the way between xAB and xCD. Round the value by adding 0.5
*/

 V = xAB + ((xCD - xAB)*yy) + 0.5;

 Write out interpolated value ♦/

 write_pixeI(x+j,y+i,(PIXEL)V);

 free(buf); return(OK);

 ======*=**=====*8 End of slmgeo.c =====s=:===as===== ♦/

 <— FILE BREAK —> ♦/

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 177

 BEST OF BIX FOR THE '386

 With the introduction of the 80386 there's o renewed spirit of inquiry bubbling to the surface tn the micro field. By woy of exomple, the following pages contain excerpted dialog, questions, answers, pleas and pontifications, os well as a solid body of technical data, on the new Intel chip, how It's being applied by some vendors, and what you can do with It yourself.

 We're presenting It here because we feel that this

 is a natural vehicle for user reaction to one of the latest advances In microprocessor technology. There's probably a greater Interest among Listings readers for front line technology on a "how-does-It-work" level than In any other group we hove a method of reaching. We're Interested In your reactions. Let us know If this supplement to the Supplement proves Interesting or useful.

 CURRENT OS OPTIONS

 os386/vm #2, from fhelIbronner, Tue Nov 4 09:14:12 1986.

 Boy did this conference come along at the right time. I've got to replace a number of '286 machines running various DOS derivatives and with the workload I'm anticipating a strictly DOS environment Just flat won't cut the mustard. I'm In a time bind also so I can't afford to wait for bIg-boo to come out with their machine. I'm pretty much restricted to DOS delivery systems/environments but for development purposes I'm open for suggestions

 I've pretty much decided to go with one or more Compaq-386's and try and use them In a closely linked net. The trouble Is of course getting a 386-OS thot is somthing other than either a temporary stopgap OS or
0
 total kludge. I'd like to get a UNIX based OS with DOS running as
a
 ta8k(s). The trouble, os I currently see It Is that there are only 286 versions of UNIX available now, and these bad boys aren't able to take advantage of the 386 (other than Just speed-wise). I've talked to the folks over at the Santa Cruz Op. about the ovallobllty of a 386-Xenlx but they soy It will be 2nd-Q/87. In addition SCO Is probably going to moke 386-Xenlx a totally new product so If you've got 286-Xenix upgrading Is gonna COST.

 I've heard rumblings from distant lands about other multi-tasking OS's for the 386 that run DOS as a task(s), a VM/386 ?, Intel ?, and others. The 'Crux of the biscuit' is 'Whats a mother to do?'

 If anyone out there con point me (and I'm sure, a lot others) In the right direction I'd be redundantly appreciatve!

 NOT(fhelIbronner)

 os386/vm #4, from Intel, FrI Nov 7 02:58:16 1986.

 Today I saw a demo of Softguard's OS VM/386, I was as blown away with It as I was when I saw the VIsICorp's Vision demo (my previous company), MacPaint, the Mac's switcher, or VIdeoWorks for the Mac. VM/386 Is an Incrediable product, it also you to create multiple "virtual IBM PC". In each Virtual Machine you can run PC-DOS and any PC-DOS applications.

 VM/386 multitasks between each Virtual Machine. (The user can even select the time slice he wishes to allocate to each virtual machine). The user switches between virtual machines via a hot key (Sys-Req) which causes a complete screen switch.

 I was really impressed about the functionality of the product at this time. They demonstrated Jet,

 Lotus, Sorgon, Topvlew, and a basic program all running simultaneously!1. In fact since Topvlew has limited multitasking Topvlew was doing multitasking under VM/386. The speed was pretty Impressive all the forground process were typically running at AT speed. The thing that I liked was being able to do other tasks while waiting for a program to boot from floppy. In one test I mode a 13,'000 cell lotus spreadsheet, put it in the background, and started up a game program while I was waiting for 1-2-3 to finish copying the cells and when I come back 1-2-3 was Ready, neat.

 The OEM sales manager. Steve Williams says that you con see VM/386 at Comdex at the Softguard, Compaq.

 and probably at the Intel booths. If you ore at Comdex moke sure to look at this product.

 Cl If Purkiser 386 Applications

 386 VM

 os386/vm |5, from potwood. Sot Nov 8 10:28:11 1986.

 Besides SCO, Compaq Is doing their own Xenix port to the 386 environment. Microport (a UNIX porting company) has a good 286 product and Is working on a 386 port of System V Release 2. They have also licensed the Locus product for their 286 machine (allows simultaneous UNIX/DOS executAsNKKCealso known os SI mu I task on the AT&T PC 6300+).

 Does anyone know of Softguard's VM/386 can run multiple 8086 Xenix systems? Given the advent of 386 Xenix, this may sound useless, but It would be Interesting.

 Pot Wood

 os386/vm |6, from potwood, Sat Nov 8 10:29:08 1986. A comment to message 5.

 Oh yes. the tel # for MIcropdrt is 800-722-8649.

 os386/vm #7, from bllln, Mon Nov 17 17:49:55 1986. A comment to message 5.

 At this point, protected 286 mode applications cannot run under vm/386 because the 386 virtualization Is not complete (of 286 code). Later masks for the 386 may be changed, full virtual Is promised for the 486 chip and It may be possible to remove the offending Instructions from Unix earlier. But not now. Maybe soon. For sure RSN. :-) BIIIN

 os386/vm #8, from msokol, Mon Nov 17 21:42:18 1986. A comment to message 7.

 However, 8086 based XENIX systems will execute under VM/386. Marc Sokol

 os386/vm #9, from Jshlell, Tue Nov 18 00:54:15 1986. A comment to message 8.

 Note that some protected mode applications could be run under vm/386. That Is those that "know" that they are running under VM/386 or are well behaved or ore user mode only. Jon Shlell

 08386
/vm #10, from fhelIbronner, Tue Nov 18 11:27:20 1986. A comment to message 7.

 Could you explain whai you sold about 386 virtualization not being complete? Why would the 386 masks have to be changed and who would change them (doesn't IBM own the masks now?). Also where did you hear about the 486 chip. I hope you take these questions In the spirit they were meant (I don't mean to question your knowledge of these things). It's Just that I personally am In a quandry concerning committing my operations to the current slew of 386 machines when I hear talk of 'mask changes'. Incomplete virtualization, and 486 chips. Jeez Beaver, I Just now

 178 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 get my boss all worked up about a true multitasking OS for the 386 chip and now I heor thlsl Anyway, I hope you con clear these points up for me.

 Appreciate your time,

 NOT(fhelIbronner)

 os386/vm #11, from bllln, Tue Nov 18 15:06:20 1986, A comment to message 10.

 1*11 try and respond to your points. But first a word from... You might wont to read grafIc.dlsp/comdex #31 which Is a view of the 386 trends I Just posted. A few messages earlier Is my overview of the Comdex show. (Brought to you by BIIIN, moderator of grafIc.disp).

 Now back to our program. 1. 386 virtualization not complete. The 386 cannot virtualize Itself (run 386 protected code under a VM operating system) nor can It fully virtualize protected 286 mode due to a few critical OS type instructions (forgot the exact ones) which affect the OS but cannot be forced to cause an interrupt If run under a vm type OS.

 2. 386 masks being changed. In order to fully virtualize the 286 and 386 protected modes, the 386 chip masks ¥rould have to be changed, causing possible six to nine month delays while the new chips ere made, tested, proven and delivered. This delay would be unacceptable to most people. IBM has the rights to copy the chip or modify It for their own use. This does not affect Intel's right to make further changes.

 3. 486 chip. Intel has admitted that a 486 chip Is under development, though perhaps not officially. It Is a logical progression and fully expected by the micro community.

 4. True multitasking OS. Yes. with limitations. Til be trying to put together an overview In the next week or so on the 386 OS arena. Stay tuned. (Don't Panic - A. Dent)

 BII IN

 os386/vm #12, from fhelIbronner, Tue Nov 18 17:26:48

 1986. A comment to message 11.

 Thanks for the comeback Bill. Panic Is my middle name.

 I guess 1*11 Just hold on to my obsolete <grlmmace> 286*s. It's not that I*m trying to be Just another computer Jock with a nltro-methone box, but I've got a bunch of systems In their senior yeor at DOS-U. and I can't decide whether they should try ond get Jobs In the *REAL* world or go for their Masters at the U of 386. I'd give up my dads slide rule If my boss would toke off his blinders and see that we (the DOSers) have Just gotten too big for our britches. I need multitasking but I've got to sneak It In as a PC due to the fact that the mere mention of *NIX around here Is the kiss of deoth. Anyway, thanks agin for your time, and I'll stay tuned for further developments...

 NOt(fhelIbronner)

 RUMORS ON INTEL 80486

 os386/vm #14, from dtuttle, Tue Nov 18 22:33:29 1986,

 Information which I have seen/heard on the '486 Indicates that It may start to show up In products In the first part of 1990. The targetted differences will be upgroded semiconductor technology, more pipelining / porollelism, probobly separate data & Instruction bus, and at least some cache on the chip Itself. Initial parts would run In the 24 MHz ronge, with technology targetted to peak at 30-32Mhz. Clearly all of this info Is subject to change and was hearsay to begin with...

 os386/vm #15, from dtuttle, Tue Nov 18 22:36:12

 I forget to mention that Intel Is committed to a *486 which Is «fully_ software compatible with the 80386. They expect to be able to run the *486, with a small adapter board, plugged into the socket for a *386.

 386 SO FAR . . ._

 os386/vm #19, from tperelra. Wed Nov 19 19:48:42 1986.

 These ore my first Impressions on the 386:

 The overall feel and look of the machine Is of being sturdy and well built. The keyboard resembles a VT220 format, and It has very good response. The previous machine I wos using had a tendency of getting the return key stuck. (Yes. this Is already my second 386,

 I love to brag obout this ...). Reset switch is still missing, but my guess Is that the thought was deliberate, because If you ore using the machine for development as I do, then you're also clever enough to Install one. or buy one. thus not allowing for someone else to come by and do a floppy boot. In cose you have one. This situation can be very serious In business environments. My recommendation would be to Include one reset switch anyway, but lock It. The convenience Just offsets the disadvantages. Now, about that lock: You can't get to the machine without losing some eight screws on the back. Then you slide the top panel up all the way to the front. Same way to Insert It back, otherwise the little guide at the bottom will get on the way. And screw It beck to place again. No change from the old PC's. I can get to the guts of my VAX 8300 0
 LOT easier then this, same goes to MIcroVax II.

 Again, I would recommend o flip cover top, and a lock.

 If you are thinking of secure business environments. I hove a lot to say obout this, but being here neither the place or time. It seems to me the obvious choice.

 In a time of loaded up super utility boards, extra add on cards, memory, etc. to have eosy and quick access to the Inside of the machine. Operotlons are fast and It feels and really octs as one being In front of a minimainframe. Loading and saving files Is quick, and the screen scrolls fast. I have Installed the Compaq EGA and Compaq Color monitor. I tried to see who made the fast hard drives, but all I could find was the manufacturer of the 360K drive, which Is Mitsubishi, some maker of the color monitor. The drives are on top of good sized shock mounts. Formatting a tape cartridge takes forty minutes, so I decided to do my next and first hard disk to tape backup over the weekend. In the meantime.
I'll
 take off ... I tried to boot PC DOS 2.1, Just for the compotIbl11ty of It. I don't know If It Is supposed to run It or not. I assume yes. It does not see the hard drives, the error message being 'Invalid Drive Specification*. DRI Concurrent DOS v4.1 won't boot either: 'Incompatible Rom Version*. I happen to I ike concurrent.

 Turbo Pascal V3.01A runs and compiles without problems. It takes me around ten seconds to compile a 3000 line source program. That feels good. Sometimes the system hangs If the option compile and run Is chosen, but recompiling again always seems to restore things back to normal. I dont't know the cause for that one either.

 FInolly, VTERM terminal emulation showed no problems so far. I am going to try LattIceC next.

 Things are hectic here, and that's only when I hear Stevie Nicks that I seem to realize tliat I am living In California ...

 Regards.

 Tperelra.

 os386/vm #20, from dondumitru, Thu Nov 20 02:30:04 1986. A comment to message 19.

 >...doe8 not see the hard drives...

 You formatted the hd(s) with 3.x, right? Then 2.1 doesn't recognize them because the medle descriptor byte Is wierd (It specifies 2k clusters, and DOS 2.1 expects drives that big to have 8k clusters only). Donald

 os386/vm #53, from borryn, FrI Dec 12 01:02:19 1986. A comment to message 19.

 > about 10 seconds to run a 3,000 line program through Turbo....

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 179

 Interesting. It takes about 10 seconds to compile o 3.000 line Turbo Poscol progrom on my 12Mhz AT clone. And the PlbTerm progrom, which Is 37,000 lines (obout 1 1/2 Megs) of code, tokes 3 1/2 minutes to compile at 12Mhz. I wos hoping for more of o speed Increose in the 80386 thon you describe.

 os386/vm #60, from tonj, Sun Dec 14 04:50:45 1986. A comment to messoge 19.

 Possible reosons for dlscreponcles In line rote: density of comments - number of include flies - style of type usoge, intensive vs. occoslonol - overoll bytes in files, and speed of drives they ore reod from/written to. - version of Turbo (Inc. BCO/87/soft float) - options In effect (stock check, .com or RAM output). - whether moln file is in edit buffer before storting. It Is on interesting exercise. Row specs suggest the 16 Mhz 386 should run about 40% foster thon the 12 Hhz 286, ossumlng neither hove wolt stotes (note thot Turbo uses oil 16 bit code: you would get more like 2:1 on o 32-bit orithmetIc-lnteslve progrom, and significontly better ogoln If you could compore the old "large** model with the new "32 bit instructions, smoll" mode). To test just the CPU's It would be ideol to run the some compile out of RAM disk with oil swtlches and procedure ogreed. I remember 10 yeors ago the Croy 1 compiled Fortron ot 50,000 lines per minute.

 Thot looks just obout within reoch when we get compilers running In "32 bit smoll" mode.

 VIRTUAL 8086 ENVIRONMENT_

 os386/vm #22. from rnjk. Wed Nov 26 17:58:36 1986.

 By for the best woy to moke use of the power of the 386 seems to be to use vlrtuol 8086s oimost exclusively, ond thus never hove to write *386 progroms ot oil (except for the OS). Several monufocturers ore, of course, doing exoctly this sort of VM thing, but here ore o few points I would hope to see covered:

 1. Access to poging. Toke o DBMS for exomple. At present, these do their own buffering, using their own olgorithms to decide whot buffers to flush and which ones octuolly need to be written to disk. The first obvious reoction Is to get rid of oil this on the *386 and use the poging mechanisms insteod. The trouble Is that the underlying poging olgorithms won't necessorily know whot the records being poged in ond out meon, nor which ones will be needed ogoln soon: things thot the DBMS hos o better chance of knowing. Suggested solution: oliow occess to the poging mechonisms by meons of extended DOS function colls so thot the fundomentol poging operotlons of "Mork poge os in use", "Mork poge os altered", "Flush out o page from reol memory" con be intercepted by the DBMS and special knowledge used where oppropriote. For instance, the supervisor con signol on interrupt In the virtuol 8086, with o defoult octlon of IRET to use the default paging mechanisms. All this is something that Microsoft probably can't do, because they alreody have Protected Mode DOS, ond so hove to try ond encouroge people into that direction.

 2. Access to process erection, spownlng, ond interprocess commonicot Ion. Agoln, the point Is thot this con be done on virtuol 8086s without having to rewrite the entire progrom to conform to stringent segmentotion, gote, privilege level conventions.

 Note olso thot one con now implement the Most Elegont Fork Ever. When o fork occurs, you mork the whole of the virtuol mochine's memory os read- only; eoch time the ♦first* write occurs to a particulor page, there'll be an exception (in the 386, not the VM), ond thot con ♦then* be hondied by moklng two copies of the poge in question, one for eoch of the twin VMs, ond morklng them os reod-write. Mony ports of the mochlne, such os MSDOS, will never be written to and hence wlii never need to be split, sovlng physlcol (or poged) memory.

 If you moke these things occesslble to virtuol 8086 processes, then it will be quick and cheop to toke odvontoge of the new feotures of the 386. We con go on writing in Turbo or C or Assembler with only o few tiny subroutines specioliy written for the 386 environment. Stick to the compiler bugs we know and

 love insteod of discovering new ones.

 But the VM suppliers do need to get together ond ogree some conventions!

 os386/vm #24, from tonj. Thu Nov 27 20:21:25 1986. A comment to messoge 22.

 The best woy to use the power of the 386 will be to write 386 code. Virtuol 8086 will just be o tronsltlon phose, like when everyone first used the IBM PC in smoll mode with object-converted Z80 code. Considering thot IBM seems uninterested In the 8086, ond thot ony socketed 286 chip con be swapped for o 386 on o smoll carrier board (it is pln-stroppable for socket compotibiIity) within the next few yeors os the price foils, it will eventuolly be o 386 notlve world os for 08
 first-class programs ore concerned. People will just use the virtuol 8086 mode to run progroms they bought in post yeors. Note thot the "Most Elegont Fork Ever" is usuolly colled "copy on write" ond is the norm on BSD 4.2/4.3 or Unix 5, os well os severol other operating systems.

 os386/vm #28. from spiv. Sot Nov 29 02:26:40 1986. A comment to messoge 22.

 Your comments obout virtuol memory monogement ore correct. Actuolly, Xenix/386 oireody does whot you suggest. It Is colled "copy on write" and ollows oil Xenix processes to shore memory poges until o process writes to
0
 page. Then the page is mode privote to thot process only with o virgin copy kept to be shored by the other processes.

 os386/vm #26. from rnjk. Fri Nov 28 08:28:01 1986. A comment to messoge 24.

 >Everyone first used the IBM PC in small mode with object-converted Z80 code.

 No such thing: It wos possible to *source*-convert 8080 (ossembler) code; not object-convert (this would Imply relioble disassembly) ond never Z80. So conversion involved *work*. The only source-converted product thot is still being sold (os for os I know) Is Wordstor: even version 1.4 is full of LAHF instructions - but I think it's rother sod. Every context-switch takes oges becouse no-one knows that the XCHG SP,[mem] instruction exists.

 So in 8080 -> 8086 there wos o choice: do work sourceconverting your progroms (lots of pitfoils even with DR’s XLT86, and impossible If Z80), or do o little more work and write o nice new progrom. In 8086 -> 386 there is o choice: rewrite the whole of your progrom to run in native 386, or rewrite just o few modules to run in virtuol 8086. The gap between the opprooches Is ♦far* wider.

 os386/vm #29. from tonj. Sun Nov 30 06:01:49 1986. A comment to messoge 26.

 The stondord MS Boslc (os shipped with DOS) wos olso o converted progrom, though it did hove some notive 8086 sections potched onto the CPM design. It might still be. I occept your onolysis thot It wos source conversion ond not from Z80: I moved to the 8086 from minicomputers ond never used the 8-bit CPUs, just sow the converted code os It wos evidenced by dlsossembiy in 1981/82. But I think the mechonics of the process ore not the point, the results ore. Lotus 1-2-3 wos one of the first progroms to moke use of the new architecture, ond It obsoleted 8-bit spreodsheets overnight. It Is true thot you con move your existing opplicotions to virtuol 8086 with minimol trouble. However, your morket uioy not port with you if someone develops o next-generotion product In your morket which con use 32-bit doto spoces, unconstrolned poged code, clean multi-tasking, and port to nearly any 32-bit mini or micro on the market (remember, there are hundreds of thousands of those oireody out there, some selling like hot-cokes). It moy not happen, but then ogoin It moy.

 180 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 WHAT CPU IS THIS?

 ot386/vm #23* from mjk. Wed Nov 26 17:59:26 1986.

 Ways exist of deciding whether o CPU Is on 8086, 8088, V20, V30, 80186, or 80286 - which, most of the time.

 Is pretty uninteresting Information anyway. But on the 386, we have the 66H (Operand Size) and 67H (Address Size) prefixes, two extra segment registers, extra logical Instructions, and 32~blt arithmetic, and these are such a good thing that It'll often be worth providing both 386 and 8086 versions of critical routines (eg arithmetic) and deciding at run-time which to use. So we need to decide at run-time whether this Is a 386.

 On the 386, the use of the LOCK prefix Is severely restricted, and most useless combinations (such as LOCK / INC AX) will cause an exception 6 to be signalled. In Real Mode, then, you trap interrupt 6, Issue a useless LOCK, and see whether INT 6 was signalled. If not, 8086; otherwise 386.

 In Virtual 8086 mode, there Is a problem. The exception will still be signalled, but the VM supervisor will see It. If It Is an exceptionally kind and friendly VM supervisor. It may decide that the Instruction that caused the exception should be allowed to execute as If nothing had happened. If It does this, then there'll be no way to tell a virtual 8086 from a real one, and so no way to decide whether all these nice new Instructions and addressing modes can be used.

 So please, VM manufacturers, don't be too userfriendly. If you were thinking of hiding "Illegal LOCK prefix'* exceptions from us, leave at least one of them visible, and tell us which one It Isl

 os386/vm #25, from tonj, Thu Nov 27 20:21:28 1986. A comment to message 23.

 You can try 32 bit arithmetic Instructions, using prefixes, to tell If you ore on an 80386. Even In virtual 8086 mode these are available. However, on an 80286 even In real mode they will trap as Illegal ops, so you must plan on catching the exception In case It is an 80286.

 os386/vm #27, from mjk, FrI Nov 28 08:28:30 1986. A comment to message 25.

 >Even In virtual 8086 mode 32-blt Instructions ore available. Yes, I know: that's why we need to distinguish a virtual 8086 (or real-mode 386) from the real 8086 and 80286.

 os386/vm #32, from tpennello, Tue Dec 2 04:22:50 1986. A comment to message 23.

 From my discussions with people at Intel and Compaq, there Is no way to sense 386 vs. xx86 without getting a protection exception In protected mode. However, If you're running under MS-DOS, this doesn't matter. Here Is a routine from Compaq that detects.86/286/386 In real mode: pushf; xor ax,ox; push ax push ax — try to put 0 in flogs popf; pushf; pop ax and ax,0f000h: cmp ax,0f000h: je ls.86 mov ax,0f000h; push ax; popf; pushf; pop ox and ax, 0f000h; Je is.286 — 286 clears

 upper 4 flag bits — If we get here. It's
a
 386 since the upper 4 flag bits remained on ls_286: — It's a 286 Is.86: — It's a lowly 8086 I've used such a test for

 discovering presence of a 386 In a recent modification to the High C run-time library. When the 386 Is there. I'll use "real" Instructions to do 32-bIt division rather than more expensive software emulation. Tom Fennello, MetoWore

 os386/vm #33, from Intel, Thu Deo 4 01:43:36 1986. A comment to message 32.

 Thanks Tom for posting the how to figure out what processor you ore using code. I was digging around looking for my memo I sent to Compaq many months ago.

 I would like to point out that the easiest way figure out what processor you are using Is to have the OS store the Information about the processor somewh ere In memory and/or make a processor Id system coll available

 to application programmers. This Is real nice on the 386 because after reset the 386 stores the component and revision (I.e stepping Id) in register DX. I hove ask Microsoft and Compaq to make this available to application programs. I'm not sure If they are going to do this or what effect this has on application programs running on non-386 systems. But I tried.

 Cl If Purkiser Intel

 os386/vm #34, from dondumitru, Thu Dec 4 03:10:40 1986. A comment to message 33.

 I agree - we are getting to the point with 80x86 where a standard system call to determine cpu type would be very handy. And It should be one of the easiest things to provide (on the same level as determining OS version).

 Donald

 os386/vm #35, from tpennello, Thu Dec 4 06:17:48 1986. A comment to message 33.

 I would prefer on instruction to determine It, so one doesn't have to depend upon a particular operating system. There are plenty of 0f opcodes left — why doesn't Intel start now Installing a "get cpu Id" Instruction? With the instruction, we only have to depend upon Intel to do It right. With the OS call, we have to depend upon every OS to do It right.

 os386/vm #36, from Intel, FrI Dec 5 03:02:54 1986. A comment to message 35.

 I menitloned a simlllar Idea to the architects about year-ago, they left grumbling about lack of microcode space and extra work needed In the Instruction decode unit.

 I wi11 pass the request along to the 486 boys. I don't about you software types we give you a processor with segments greater than 64K and you want more :-) (the usnet sign for a joke)

 os386/vm #37, from skluger, FrI Dec 5 11:05:55 1986. A comment to message 36.

 But Real Programmers DON'T want SEGMENTS AT ALI_

 os386/vm #38, from bllln, FrI Dec 5 23:19:07 1986. A comment to message 36.

 While you are passing notes to the 486 guys, let me suggest one of the real concerns with segments. Performance. As a potential solution, how about a segment register cache? Maybe extend up to 8 segments with perhaps 32 or 64 cache entries. Since cache Is a regular design. It would not take as much real estate. Bi I IN

 08386/vm #39, from ton]. Sun Dec 7 06:01:16 1986. A comment to message 36.

 If the architects threw out the segments entirely for 32-blt mode then surely they would hove the room to odd a few instructions and some cache... Does Intel really expect the 32 bit segmentation to be Important ? Do any of the operating systems currently In production run applications except as separate paged linear 32-blt address spaces ? Will the 486 be like the 286 ? Lots of bells and whistles designed In before It became evident the market was actually going to use the 386 in the fastest and most obvious way, unrelated to the fancy extensions ?

 os386/vm #40, from jthlell. Sun Dec 7 19:04:28 1986. A comment to message 38.

 In native 386 mode how many segments do you think are going to be used. If the model you "Like" Is anywhere near flat (FAST) then o segment register cache would not buy you very much. A better buy would be a "Loop

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 181

 mod#** In tht pr«fetcher where It "Knowe" about laet (1 to maybe 4) LCX)P or JCXZ ope. and etarte prefetching down their token pathe. It le a very eimple form of branch prediction. Jon Shlell

 LOCK PREFIX

 oe386/vm #31. from Jehlell. Mon Dec 1 21:38:53 198$.

 Does anyone know where/when DOS, Xenix etc. uee the loxck prefix ?? Jon Shlell

 oe386/vm #46. from vllll. Tue Dec 9*12:37:19 1986. A comment to meeeoge 31.

 My bet Is that none of them ever usee the LOCK prefix. The LOCK prefix Is used to secure the system bus agoins access from co-processor and other directly connected devices. It Is not needed with the 8087. and the only other PC hardware I can think of that might cause contention for the bus Is DMA, but I think that's manoged by the DMA controller. So: most likely, the answer to the question Is NEVER, NOWHERE.

 os386/vm #47, from skluger, Tue Dec 9 14:11:30 1986. A comment to message 46.

 Looking at the IBM AT schematic, I envision electrons dripping from the LOCK pin on the 286... It's not hooked upl

 os386/vm #48. from mwolte, Tue Dec 9 21:25:33 1986. A comment to message 47.

 So you can't easily run multiple 28600S programs on the 386 In VM. Okay but Is that a problem. For example, what KINO of program would you expect to run specificaly for the 28600S rather than OOS3? Well one that uses the >640K barrier. Which will be lots of stuff from super fast RAM based word processors, database engines, etc. So I own two of these programs.

 I buy my 386 box which claims mu 11IprocesIng ability, boot up the VM38600S, run my two programs and I get: Sorry only one 28600S program allowed at one time. Is thot It?

 os386/vm #49, from geary. Wed Dec 10 01:50:12 1986. A comment to message 48.

 Not really. If you get 286D0S running on the 386, It will run multiple 286D0S programs Just fine.

 For my money, I'm waiting for 386 Windows...

 386 CAN^T VIRTUALIZE 286 APRS?

 08386/vm #41. from mwalte. Sun Dec 7 21:38:16 1986.

 This may have been asked before, but a recent InfoWorld article claimed thot the 386 can't virtualize 286 programs, meaning code optimized to the new 286 won't work without modifications on the 386. Is that true?

 os386/vm #43. from rnjk. Mon Dec 8 03:25:51 1986. A comment to message 41.

 >Code for 286 won't run on 386... As I understand It, It will, but only on the real 386 - le on the whole machine; so while you can run a dozen virtual 80868 on one 386, you can only run one 286
k
 It won't co-ex 1st with anything else.

 os3Q6/vm #44. from geary. Mon Dec 8 04:57:04 1986. A comment to message 43.

 That's right. For example, programs written for 286DOS will work fine on the 386. And 286D0S itself ought to run OK, with maybe some changes In the Initialization code. But you couldn't run multiple 286DOS'8 under any kind of VM 386 system the way you can run multiple DOS

 3.2*8.

 _
\

 08386/vm #45. from bllln. Mon Dec 8 11:03:23 1986. A comment to message 44.

 Actually, while what you said Is accurate, there Is a way to run multiple 286 code systems on the 386. The problem resides In one or two instructions In the 386 that cannot be virtualized. There was some discussion at the vm demo about changing the 286 code to avoid use of those Instructions, making It possible to virtualize the 286 code successfully. BIIIN

 I/O PROCESSOR?

 os386/vm #50. from peddy. Thu Dec 11 13:02:34 1986.

 In the recent rash of announcements of 386 add on boards for AT type machines, I expected to see at least 0
 few that would use the present 286 chip os on I/o processor, especially on Intel's 386 board! Doesn't this seem like an obvious thing to do?

 As for the benefits of using I/o processors on microcomputers, witness the old Compupro 10: The system contained an 8088 and four Z80*s. Under Concurrent DOS, The 8088 ran all the 16 bit stuff while the Z80's functioned os I/o processors when they weren't running 8 bit software. The result was that dBase II ran faster on the Compupro than on on single user AT!

 With the new control programs for the 386 and the memory management features of the 80n86*8, I con only assume It would be almost trivial (or at least not too hord) to do the same thing with an AT... or am I living in a dream worId?

 os386/vm #54, from villi, FrI Dec 12 17:31:13 1986. A comment to message 50.

 Another view of I/o co-processors: The DEC Rainbow has both a Z80 and an 8088. When running MS-DOS, DEC literature proudly points out, the Z80 Is used os on I/o coprocessor, freeing (supposedly) the 8088 up to do other tasks. Well, If that's true, I can't Imogine how slow the Rainbow would be WITHOUT the Z80, since It Is ABSYMALLY slow at disk and diskette I/o; certainly much slower thon the IBM PC, which does not sport on I/o coprocessor. So, folks, keep In mind that what the salesmen says Isn't always the whole truth.

 os386/vm #59, from me I son. Sat Dec 13 14:04:55 1986. A comment to message 54.

 The reason the DEC Rainbow os so slow at I/O wos NO DMA. The processor had to read from the disk byte by byte. Yuck.

 08386/vm #67, from ronlepine, Mon Dec 15 11:04:12 1986. A comment to message 59.

 No DMA In Itself does not have to be slow. The TI Professional has no DMA chip for disk I/o but does as well as IBM on many tasks. Some ore faster and some ore slower. That Is If you use disks formated by a TI. Using disks formated by a IBM Is the surest way to convince someone the TI Is SLOW on disk I/o.

 os386/vm #70. from jgotwalt, Thu Dec 18 19:05:32 1986. A comment to message 59.

 The IBM AT doesn't use DMA for HARD disk lo. It reads from the disk controller sector buffer word by word!

 os386/vm #74, from tan]. Sun Dec 21 04:49:34 1986. A comment to message 70.

 In PCDOS using rep Insw Is a rational decision, since it moves faster than an 8237 and there Is nothing else to do while waiting. As for mu 111-tosklng systems, the only rational way to do It Is with a better controller board that just takes the command, delivers the transfer, and interrupts (or chains to the next command) when everything Is wrapped up. It amazes me that IBM originally hyped the AT as a multi- user

 182 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 machine: after all their mainframes may have lousy Instruction sets but they did a first class Job on 10 architecture, so they do know how It should be dona.

 08386/vm |75, from ksarno. Sun Dec 21 12:33:51 1986. A comment to message 74.

 I would like some clarification on this point, Mr.

 Tan], If you wouldn't mind. It seems to me that the disk controller DOES fetch the sector off the disk (into Its locol buffer) end then interrupt. The operating system has to move the data from the controller to Its own buffer (and possibly again thereafter to a user buffer), ond that is unfortunate but hardly unusual In the micro world. But given that fact, there Is nothing worse about doing a 16-bit-wlde rep Insw from the controller buffer than 8237 DMA. The data has to be moved, and the Insw Is the fastest way to move It and the cheapest.

 However, I think the Insw Is the most desiroble way to move disk data under ANY operating system for another reason. With DMA, the disk move becomes the highest-prlor Ity processing thread In the system. It WILL steal cycles (either all of them or half of them) regardless of what else Is going on. If, say, a character Interrupt from a UART comes In and real-time response Is Important to avoid a 9600-baud data loss, the response to the character interrupt WILL be slowed down by any disk DMA that Is going on at the same time. However, the string Input Is fully interruptible. If a character interrupt must be processed, the the string move stops until the end of the Interrupt processing, causing no delay to the real-time Interrupt code. It Is right that disk 10 processing should be subordinated to certain other, hIgher-prlor Ity events. This can't always be done with DMA, but It CAN always be done with 0
 string move.

 os386/vm #76, from bllln. Sun Dec 21 13:17:22 1986. A comment to message 75.

 I think you overlook the point about multitasking. If the epu Is busy moving data, no matter how fast. It cannot be doing reol work for one of the tasks, and therefore Is slower than a DMA alternative.

 There Is also o problem raised by queuing theory that Indicates a bottleneck caused by requiring two servers In sequence before finishing a task.

 These problems mostly don't show up under single tosk or non disk Intensive workload, but multiple users on UNIX will clearly see the effects, though masked by the built In cache.

 And, BTW, the crippling of the AT by IBM was probably not occidental. They had their base of S34 ond S36 to protect at the lower end. BIIIN

 os386/vm #77, from tanj, Tue Dec 23 18:02:58 1986. A comment to meseoge 75.

 I think you will find that DMA Is subordinate to the CPU, since the 8237A must get permission from the CPU DREQ pin to grab the bus. Comms are hondled by the CPU and therefore not threatened. The reason It Is done like that Is exactly to prevent the situotlon you describe and ensure that maximum latency can be guaranteed In such systems. Actually the Intel CPUs are pretty greedy: In one board I worked on we solved o latency problem In a DMA channel by making sure the CPU did a true HALT rather than an Idle loop In the background. The loop caused continuous Instruction fetch, worse even than a typical computation sequence (the 8086/8 CPU fetches waste bytes beyond the end of a loop even after a jmp, the pre-fetch engine seems rather like the hlnd-broln of a dinosaur which takes a while to change direction) and a low priority DMA never made It through. It can happen that comms fed In on another DMA channel could be hurt, and that would be relevant If the PC had smart comms chips like the Zllog ASCC's, but It doesn't. The Ideal Is to use channel structures such as Intel Is slowly moving across Its product line (starting with the 82586 Ethernet controller, then a text chip, recently the 82786 Graphics controller) where the CPU con just chain commands and the chips have built In DMA channels. The multi-tasking CPU just does a clean task swap and gets on with useful work with no time token In waiting. Eventually an Interrupt will- signal completion and the

 Interrupt routine moves the related task back on the ready queue. It Is up to the bus arbitration circuit to ensure no DMA or CPU con hog the bus: a sophisticated design problem, but one familiar to any good hardware designer. BTW, Its Mr. Bennett, Tanj Is my first name.

 08386/vm #78, from ksarno, Thu Dec 25 01:51:57 1986. A comment to message 77.

 Oopsl Excuse me, Tanj, for the error In your name. But I still maintain that DMA can and does degrade the response to communications interrupts on the IBM PC family. It Is true that the 8237 must get a Hold Ack from the CPU (DREQ comes from a device Into the 8237) before It will take over the bu s. But according to the 8086 data sheet, the 8086 will give up the bus at the end of the current cycle or the next cycle In most coses (exceptions are locked Instructions and Interrupt acknowledge sequences) when HOLD Is asserted. That Is, the 8086 does not refuse to get off the bus for very long If at all. Once the 8237 has the bus, of course.

 It can keep It for os long as It likes just by keeping HOLD asserted. For example, o nasty disk driver writer who chose to use DMA could program the 8237 to do Block Mode DMA transfers. In which It would hold the bus for 0
 full 512 bus cycles without ever giving it up, once it got control. The CPU wouldn't get ANY Instruction fetches In this case. Fortunately, most people aren't that crazy; they program the 8237 In single-transfer mode, in which It drops HOLD after each bus cycle, allowing the CPU to get bock In for a cycle or two.

 But the 8237 still WILL get In for one cycle out of every two or three, meaning a bus cycle reduction of 33% to 50% for the CPU. I think the loop problem you cited may be an undocumented special case: the prefetcher refusing to give up after a jump Instruction empties the queue. But most code doesn't consist of tight loops, so there will be significant degradation unless most of your code consists of multiply and divide Instructions and loops.

 In any event. Merry Christmas.

 08386/vm #79, from tanj. Sun Dec 28 05:12:57 1986. A comment to message 78.

 Hmmm, our hardies simply told us "thou sholt not block mode" and we obeyed, since the hardies had designed all their devices with correct buffering to operate In single-transfer mode. Unfortunately the PC Is a jungle where one encounters dubious devices and software, though the benefit has been the extreme fitness of the best programs evolved In the jungle. The 386 Is a protected machine, and (unlike the 286) will run protected even while DOS Is supported, so I was going to write that the problem would go away. But of course device driver software will be loadable (to do otherwise would be o suicidal freeze-out of add-on devices) so there will still be no control of what kinds of hard and soft tricks ore perpetrated. Use of 0
 block mode DMA would probably be fatal because any such product would be drowned In a flood of complaints and bad reputation from Its unlucky first users. It will be normal however to take the maximum permitted In single transfer mode for transfer to and from device buffers. The only redeeming feature Is that the end user of a PC normally wouldn't be doing anything. Including most comms, which a 386 couldn't handle while 50% of the bus cycles go elsewhere for a few milliseconds every now and then. Maybe you are right that there was a bug ("undocumented special cose") In the 8086 pre-fetch. At the time we were busy and mighty glad to solve It. Seasons greetings I bye

 os386/vm #85, from qnx, Mon Feb 2 21:58:25 1987. A comment to message 75.

 I know this Is on old thread (DMA vs. Processor controlled movement of disk data), but I had to throw my 25 cents (Inflation has hit) In. QNX (the 0/S) does not use DMA for the reasons mentioned In #75 (real-time

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 183

 performance, etc). In fact, file I/O It at priority 3 with device I/O at one level higher (priority 2) and time el Icing and memory management (among other thinge) at priority 1. It works very well at evidenced by the number of cuetomere doing real-time operations such at data aququitItIon.

 VM/386 WHAT IS IT?

 ot386/vm #68. from softguord. Wed Dec 17 20:01:00 1986.

 VM/386 Is
0
 control program designed exclusively for 80386-ba8ed computers. It's patterned after the VM/370 operating system for IBM mainframes, but Is oriented to the microcomputer environment. The main goal of VM/386 Is to deliver multitasking, virtual memory, multiuser capability and a growth path to future hardware/software without forcing the user to change or repurchase any software. VM/386 creates a set of virtual machines In the Virtual 86 Mode of the 80386. Each virtual machine acts like a real computer and thinks It has exclusive access to all of the resources of the real computer. Virtual machines are protected from one another; a 'crash* In one virtual machine does not 'crash* the entire system. Each virtual machine can have Its own operating system, application, and termlnate-stay-resIdent programs.

 	
 Lotus 123

 	

 	
 dBASE III

 	

 	

 	
 SIdeKIck

 	

 	
 ProKey

 	

 	

 	

 	

 	

 	
 DOS 2.0

 	

 	
 DOS 3.1

 	

 	
 rrwprivvur^

 o/s

 I

 VM/386 Control Program

 I80386 Hardware (CPU, monitors, disk drives,etc) |

 Multitasking Is obtained by runnning different applications In each of the virtual machines. Different virtual machines can also run the some application but with different data. Any operating system or application that runs on on IBM PC or PC-compatible can be run from a virtual machine under VM/386. You con 'hot-key* from one application to another. The background tasks continue to run while the foreground task talks to the real monitor and accepts Input from the keyboard. Since the background tasks write to virtual devices, VM/386 can multitask applications, such os Lotus 123, that are not 'well-behaved* and write directly to video RAM.

 The prime assumption behind VM/386 Is that operating systems (such as MS/DOS) and their applications hove a delicate, tightly bound relationship. Any changes In this relationship can be hazardous. Most successful PC programs aren't "clean", they directly use hardware and/or take advantage of "undocumented" DOS features. This leads to a great many difficulties when attempting to move such applications Into newer OS's. It should be pointed out that the reason many applications are "dirty" Is to deliver performance and features to the user that are otherwise not possible. VM/386 preserves this relationship between applications and OS's by treating them as a matched set. The operating system expects to find certain hardware, memory, privileged Instructions, etc. By delivering a "virtual" set of these hardware resources, the entire OS can be "hosted". This hosting Isn't limited to a single OS. Multiple OS's (or "guest" OS's) con be hosted simultaneously. VM/3S6 delivers a "virtual reality" to the OS and Its applications (virtual memory, virtual Interrupt controller, virtual hard disk, etc.) and maps It to reality. The "virtual reality" and reality can be quite different. In a VM environment, OS's are almost like applications. They can be selected based on

 comopotabl11ty or feature needs on a user by user basis, without forcing the entire machine to run only that particular OS (e.a. Topvlew, Windows and Gem running simultaneously). MS/DOS Is designed as a single user. Interactive, fairly simple OS. It's not unlike CMS under VM/370. By running multiple copies of MS/DOS, multitasking and multiuser environments are possible without painful conversions.

 Brief Technical Overview.

 VM/386 Is written entirely In assembler. It runs In native 80386 32-bIt mode. Assembler was chosen because of the critical timing problems Involved with virtualizing hardware. VM/386 Is designed exclusively for the 80386 (and the coming 80486). The heart of VM/386 Is the control program (CP). The CP Is the kernel or nucleus of the system. CP doesn't Involve Itself with hardware or BIOS's. Its Job Is to handle 80386 exceptions (such os page faults and privilege exceptions) and route those exceptions to the proper software handlers. The Hardware Device Driver (HDD) Is the primary method of dealing with the outside world In VM/386. HDD's are not unlike DOS or UNIX device drivers in concept. However, HDD's exist OUTSIDE the guest OS. They ore responsible for managing and "virtualizing" various hardware components. Such events os "guest OS attempted IN", "guest OS attempted OUT", "real external interrupt" and "virtual external Interrupt" are dealt with by the HDD's. Compared to the 370, the PC I/O architecture borders on onarchy. A "device" con be a collection of ports, maybe an IRQ line, maybe a DMA channel, maybe some dedicated RAM or any combination thereof. The HDD attempts to bring order to this chaos. Hard disks may be set up as "minidisks". A minidisk Is like a partition, except that the disk cylinder numbers are virtual. That Is, each minidisk appears to the guest OS os storting at cylinder number 0. This allows for the simultaneous execution of guest OS's with Incompatible file systems. The File Share Subsystem (FSS) manages simultaneous MS/DOS file accesses In the VM/386 environment. MS/DOS has no facilities to allow file
 sharing and locking across multiple OS executions. The FSS allows multiple DOS's to shore a single hard disk In an orderly fashion, preserving
file
 and data Integrity. The FSS Is a layer of code that Is oware of the characteristics of one particular guest OS (MS/DOS) and Is also aware that
It's
 running under VM/386, this type of code Is referred to os a subsystem.

 There
will
 be quite o bit more techlncol Information posted later on. This Is just a brief Introduction.

 VM/RUN "High" Memory Model.

 VM/386 uses MS/DOS as a "starter motor" operating system to get going. This approach was taken mainly to avoid forcing hard disks to be reformatted, and to take advantage of existing DOS I/O capability. During VM Initialization, DOS is used for I/O In 8086 mode, then the machine Is placed In 32-bIt protected mode, to access extended memory, then the machine Is returned to 8086 mode for more I/O, and so on. Another way of describing this process Is to soy that 80386 32-bit progroms running In extended memory ore using MS/DOS for their I/O. If this technique works for VM/386 initialization, why not for application programs? This observation led to the development of VM/RUN. VM/386, which is
0
 very large system, won't be ready for sole until the 2nd quarter of 1987. However, the part of VM/386 that allows for the use of 32-bIt mode and extended memory
will
 be ready at a much earlier date. A Pascal and C compiler for the 80386 (that runs under DOS) is available from MetaWore, an assembler and linkage editor for the 80386 Is available from Phar Lap Software. Softguard Is providing VM/RUN (for 32 bit environment loading) and an accompanying debugger. As a set, these tools ore a complete development environment that allow for 32-bit programming under "stock" MS/DOS. The following memory layout Is used for programs that take advantage of the "32 bit mode" of VM/386 and/or VM/RUN.

 184 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Table caption1023

 	
 MEG :

 	
 386 application program stack. May be at

 	
 :

 	
 3FFFFFFCh or at "top" of application

 	

 	
 : virtual memory or fixed address.

 	

 	
 : Many options.

 	
 #10:

 	

 	

 	
 : 386 application program area.

 	
 : Alwoys starts at virtual address

 2000000h :

 : (32 meg decimal). Runs at CPL 3.

 	

 	
 : Default lOPL ■ 0, may request 3.

 #9 :

 32 MEG

 	
 1 MEG

 	
 ALL ADDRESSES ABOVE 1 MEG ARE VIRTUAL

 	

 	
 Video RAM. BIOS. etc.

 	
 #8 :

 	

 	
 640K

 	

 	
 DOS free area. Mainly for use by calls

 	
 #7 :

 	
 such as 4B. Optional

 	
 512K

 	

 	
 Area given to high virtual addressing

 	
 #6 :

 	
 Optional.

 	
 384K

 	

 	
 User mqnaged low buffer pool.

 	
 #5 :

 	
 Optional.

 	
 320K

 	

 	
 VM/RUN managed buffer pool.

 	
 #4 :

 	
 Includes default INT 21 DTA.

 	
 #3

 	
 :

 	

 	
 •

 	
 90K

 	

 	
 -:

 	

 	
 TSR’* (If ony)

 	
 #2

 	
 1

 	

 	
 •

 	
 50K

 	

 	

 	

 	
 DOS area

 	
 #1

 	
 :

 	

 	
 *

 	
 0

 	

 Diagram Description.

 The above diagram shows what a program designed for the 386 ’’sees" when executing in the VM/RUN environment.

 All memory addresses below one meg, with the exception of area #6 (low real memory mapped to high virtual addresses) run with V«R (virtual addresses « real oddresses). Area #1 is the DOS operating system area. Areo
§2
 is any user device drivers, terminate and stay residents, etc. Area |3 Is the runtime VM program and 386 debugger. Area #4 Is the "low** buffer pool used to hondle I/O requests from up **hlgh**. Managed by VM.

 Area |5 Is the user specified **low** buffer pool. This V«R area Is used by 386 programs for I/O. By using low addresses, buffer copying overhead can be avoided.

 Area #6 Is low real memory given to **hlgh** virtual addresses (more ram for a 386 application). Area #7 Is reserved (via shrInkblock) for DOS to service such things as the Int 21/4B function. Area |8 Is the videoram and BIOS. Area #9 Is the 386 application program. It*s always loaded at virtual address 2000000h (32 megabytes). Area #10 Is the 386 application program stack. Its size and location are specified at execute time (default Is virtual top of 386 program, e.g. 2200000h on a machine with 2 megs of real memory given to the 386 application area).

 Notes.

 The code model can be thought of os "68000 style". A large flat address space that's very accomodating both to C and ossembler programs. No segment registers ore used. The 386 application program can be thought of as a "1 gigabyte COM file" using the "small" memory model. The starting address of the 386 application Is always 2000000h (this avoids any extended or expanded memory confI lets).

 The application code should run unmodified under VM/RUN or the full VM/386. The "16 bit" DOS area will be available to the 32-bIt program for Inspection/modification. Vldeorom can be directly addressed without segmentation (e.g. EDX > B0000h to get at monochrome vldeorom). DOS INT 21 I/O functions are supported. 32-bIt Int 21 colls will be "deflected" Into 16-bit mode for service. EDX will be the buffer pointer Instead of DS:DX. No FCB calls (DOS 3 style only).

 More details will be posted In the near future.

 - For More Information

 Please contact:

 Softguard Systems. Inc 2840 San Tomas Expressway Suite 201

 Santa Clara, CA 95051 Tel: (408) 970-9240

 Table caption256K

 VM/RUN monitor (and debugger)

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 185

 MOST-HYPED CHIP_

 U8«rt386/oth«r
|2»
from dondumltru.
W«d Nov 5 02:07:14 1986.

 I feel compelled to nominate Intel's 80386 processor for the Most-Hyped Chip of the Decode Award. Just look at this weeks InfoWorld, not to mention the lost three Issues, lost month's DOJ, this month's PC Mogztne, and who knows what else. Granted, I want one on my desk, running multiple operating systems, and all that nifty stuff. But this Is getting ridiculous, considering that I know of eone* company that Is shipping the machines. Donald

 users386/other #3, from tperelro. Wed Nov 5 13:29:23 1986. A comment to message 2.

 I agree mainly with you. But also Is the factor that something Is being done. I have a 386 Compaq, It Is a splendid machine for a price that I cannot afford.

 $9045 w/ EGA and coiro monitor. Undoubtedely, the 68000 is a much better chip without a much less Hyped trail. Regards. TPerelra.

 users386/other #4, from jgotwals. Wed Nov 5 19:54:31 1986. A comment to message 3.

 The extreme Interest In the 386 chip over the 680x0 Is not because one chip Is better than the other, but It Is because of the massive amounts of PC DOS software which the 386 can run.

 80386
LIFE
 CYCLE

 users386/other #9, from dwarren. Sun Nov 30 21:00:30 1986.

 I am making a private study of developments revolving around the 80386 chip. From press reports, I've put together the following table of significant events likely over the next 3-4 years. The table assumes (1) a 3-4 year life cycle for the 80386, and (2) the Implementation of both 386-based hardware and software In a second-generation form (e.g., per rumors about IBM's likely offering) after the first-generation hardware (Super AT) and software (Advanced DOS 1.0 and Unix systems).

 Life Cycle: 386-based Products Time Development

 2H 1986

 o First Super AT's announced and delivered o Uncertainty and confusion among hardware suppIier surrounding standards o Several firstgeneration

 multitasking operating systems announced

 1H1987

 o First-generation multi tasking operating systems de11vered

 o IBM announces second -generotlon 386-based machine

 2H 1987

 o Microsoft Advanced DOS 1.0 for protected mode of 286 delivered o Major software firms announce Intention not to rewrite software for 286 protected mode o Super AT's enter commodity marketing phase

 o PC's reach retalI stores as low-end consumer product; 286bosed machine

 becomes PC standard, AT phased out os high-end machine

 o First IBM second -generation 386 machines del Ivered o First clones of IBM second-generotIon design announced, for delIvery next year

 1H 1988 o First second-generation

 clones delIvered o Sales of 386 machines overtake 286 o First 386-specIflc software avallable o Second-generation multItosklng/molnfrome networking) operating systems delIvered 0
 New 32-bIt chips sampled (80486?) o Large-scale network Interconnect systems Implemented, based on second-generation operating system o New types of add-In boards for secondgeneration machine appear

 o First machines based on new 32-bIt chip Introduced

 Would greatly welcome horse laughs or comments of any other kind about the timetable proposed here. David Warren

 users386/other #10, from skluger. Sun Nov 30 21:16:26 1986. A comment to message 9.

 You asked for It you got It...

 2H 1987

 o MC68030 gives Motorola total dominance of the 32-bIt market 0 80386 succumbs as Intel cannot get a significant yield of 25 MHz chips and Is unable to supply 80387 In any quantity

 Should the 386 be a moderate success, you will be right about the first appearance of '386-speclfIc softwore In 1/88. I predict that the 386 will gain a strong foothold In the OA market doing minor spreadsheet-type number crunching, data base applications and word processing. The scientific workstation market will be divided between National and Motorola, with the latter gaining on the former.

 users386/other #11, from bllln. Sun Nov 30 21:20:28 1986. A comment to message 9.

 At this point I can't see where there is a big blunder In your schedule. It Is possible you may be too conservative. And graphics displays and applications will be
0
 major factor In the market - don't forget their impact. BII IN

 users386/other #12, from johnf, Mon Dec 1 03:39:44 1986. A comment to message 9.

 I would think that 386 specific software will become available In late 1987 rather than 1988, but then I have always been an optimist. What Is your prediction for odd-Ins for first generation 386 machines? Also,

 I would be Interested In the availability of an Industrialized 386.

 2H 1988

 1H 1989 2H 1989

 1990

 186

 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987

 JohnF

 u8«r83S6/oth«r #13, from dwarren, Tue Otc 2 1€:*«:S7 1986. A comment to me88age 12.

 I'll tell you what I think about add-ins first- generation 80386 machines, and I*d Hke
tz what you and others think.

 I think add-ins for first-generation 386*s ®re here now: the boards designed for the PC ond A* ,

 Other possibilities ore limited by the lock of mco standardization and the use of 16-bIt I/O l« fe fi^^stgeneration designs.

 One type of board that may gain populorlty is first- generation machines Is a communicatiort emulation board that supports multiple sesslo*-^^ performs functions previously requiring sepcrcte boards. Otherwise, each concurrent session cee c require one board. Arnet markets an Intell!ge^*t communications board called Smartport that
z PC

 Into a Xenix multiuser system. Available nc^
• 4^ ^ 8-port models. It features 64 Kbytes of cst 5^

 accessed by both the computer's main processor
gut 80186 coprocessor on the board. This board taces I/O processing to support the multiple ports, f'eslsig the main processor for computing and reduci-; degradation In multiuser performance. It uses t>*e
IfZ channels of the PC bus. Other firms that sccc ? multiple-session network boards for PC's o^d tjxkst sore announced the Intention to provide similar ;'9«mcts
for 386-ba8ed PC's are CXI and Digital Communicct
Toit*.

 Other makers of multiuser add-ons for PC-A7's mc/
of*or similar products. Including Alloy, HAAR Inocst*'Imm. a»d Software Link. Looking ahead to a second-^e-e^rt"om design, memory boards will continue sell w«; . 7

 megabit DRAM's, 8 MB wlI I fit In a single s :t.

 However, until there Is standardization in 32-^'t memory bus ond memory organization (PC€T stor^derd?}. there con be no add-ln 32-blt memory boords. sr>»e t^«se mode by the manufacturer of each machine.
ccoe
*ts

 In graphics cards are mainly speculative ct t^s ac nt. One Is higher resolution, needed to support campwteroided design and engineering applications, s
\%

 the use of the 32-bit bus to transmit signc s 'ester than possible on 8- and 16-blt buses (this s eot
for the first- generation machines, though). A t^Trd is to use the speed of the 80386 to take over more ics

 processing, simplifying and reducing the cost sf electronics on the graphics board—In the rst'cme, entirely eliminating the graphics card. St' ev^ther, more exotic type of odd-In board will provise mere capable Interfaces between computer and exte'*c: world, such as drivers for speech recognition ond mec* ^e vision devices. I, too, would be Interested '9 t*e availability of on Industrialized 386. Ar.yore ^r«e ony Insights? David Warren

 u8er8386/other #14, from dwarren, FrI Dec 5 2t:36:45 1986. A comment to message 11.

 Graphic displays and applications a major
footer
'>cnks for comments on
80386
timetable. Can you ev^ord
ct
all on your comment about the role graphics dispi ?ye «ni play In the market for
386
products? Whot rc e? s^en? Any thoughts will be welcome. David Warren

 LARGEST ALLOWED INSTRUCTIONS

 users386/other #17, from Jshtell, FrI Dec 19 91:51:61 1986.

 From the FYI dept:

 The 8088/8086 hove no limit on the size of on Instruction.

 The 80286 limits an Instruction to 10 Bytes max.

 The 80386 limits on Instruction to 15 Bytes max.

 Thus two Instructions (on 11 byte followed by o 16 byte) could be used to tell which of the 3 processors Is being used, with no timing dependencies.

 Jon ShlelI

 users386/other #18, from skluger, FrI Dec 19 11:69:55 1986. A comment to message 17.

 Just what sort of instruction ore you thinking of?

 Must
be some Indirect Immediate 16-blt move with lotsa segment
override prefixes...

 I om afraid I can not recommend using the maximum I*^structlon size as valid means of determining the drocessor type. Tom Fennello (metaware) has creviously posted the "official" method of determining t're processor type. While It Is more than two -istructlons It Is much safer because of differences between stepings than your method

 users386/other #20, from villi, Mon Dec 29 10:03:52 1966. A comment to message 19.

 Exomple: REP REP REP LOCK LOCK LOCK REP REP REP STOSB SS:

 5ig Question: Where do all the electrons from the .OCKs go? (Reference: Skluger's observation re LOCK din on IBM PC AT...)

 WHATEVER ARE YOU DOING?

 •sers386/other #21, from curtf, FrI Jon 16 09:10:36 1987.

 I'd like to ask a question of those who own 80386 Bcchines:

 •^ct ore you doing with them?

 I meon. since there Is precious little 386-specific software out right now, what ore you using the speed end power for? Are you busy developing software? Do you have a number-crunching application where the 286 is just too slow? Were you also the first on your block to buy a VCR?

 I've used 386 machines, and they are certainly wonderful, but I am truly curious to know why people are
 actually *buylnge them now.

 Curt Fronklln Co-moderator

 users386/other #22, from meed, FrI Jon 16 09:56:55 1987. A comment to message 21.

 Well, at the moment I'm BIXing on mine. It Is a swell tool for anyone doing serious 'C development - compile times shrivel up and evaporate. They at least get accelerated to the point that you don't forget what changes you mode by the time the compile Is done.

 In addition, I'm doing some 80386-spec IfIc development on tools and environments to support software development projects, particularly ones spanning several machines and programmers.

 users386/other #24, from esmedley, Mon Jan 19 08:38:38 1987. A comment to message 21.

 We are using the '386 to explore running multi-user applications. The power of 286's for multi-user leaves something to be desired, os does the 386 with the existing software. I am hoping for a big Improvement In the speed with 32 bit software.

 users386/other #25, from viewlogic, Thu Jan 22 20:35:26 1987. A comment to message 21.

 We here at Viewlogic now hove
a
 number of Compaq 386's, and use them mainly to demonstrate our PC-based CAE package. A significant number of our customers are buying these machines, and we are trying to make sure that our software doesn't have any problem with them.

 We ore, by the way, running plain old DOS on them. In the future, we
will
 no doubt be trying out new OS software when It becomes available, and possibly be writing software for It, but not for now.

 Alan Medsker (at Viewlogic)

 continued

 users386/other #19, from Intel, Tue Dec 23 12:54:13 1966. A comment to message 18.

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 187

 DESPERATELY SEEKING
UNIX..._

 ot386/unlx #2. from g«b«rhardt, Thu Nov 20 09:55:15 1986.

 I om looking for a UNIX BOX running 5.2 or 5.3, native on o 386. One of my frlends toye that the cdb debugger hoe been ported to euch o eyttem but cannot Identify the manufacturer. All leads appreciated.

 George.

 os386/unlx #4, from curtf, Mon Nov 24 15:15:30 1986. A comment to message 2.

 At COMDEX I saw an 80386 UNIX box, mode by SCI, a company out of Huntsville, Alabama. Try looking In the Comdex.fall conference for my report on the machine.

 Curt Frank I In

 os386/untx |5, from tpennello, Tue Dec 2 05:08:05 1986. A comment to message 2.

 call peter rowel I at 3rd eye software, 415-321-0967, for cdb for unlx 386 tom pennello, metaware

 MULTITASKING SPECIFICS

 08386/unlx #6, from fhelIbronner, Mon Jan 5 17:00:28 1987.

 What kind of degredatlon can be expected on a Compaq386 running Xenlx/286 If I set the Compaq up with SMB of their 32blt hl-speed static RAM. Con I hang 6 or 8 cpu Intensive tasks on the box without having to send out for dinner? Are their any other eNIX flavors other than Xenix running on 386, now or In the near future? Jim Pauley - N0T(fhelIbronner)

 os386/unlx #7, from bwong. Mon Jan 5 23:38:12 1987. A comment to message 6.

 Microport Systems either has released or Is about to release their System V.2 (3?) for the 386. I haven't heard anything about this, except that they say that It's around. I do know thot their 286 version Is very disk-intensIve (much more so than Xenix — we know, we hove both), ond performance Improves eVASTLYe when you give enough (imb per user) memory. Once I/O goes to the floor, Microport Is quite fast. I'd expect their 386 product to behave similarly, .s oops

 os386/unIx #8, from tpennello, Tue Jon 6 01:20:33 1987. A comment to message 6.

 I suppose there aren't many comments because there aren't many unixes out there. Interactive's system V port Is In beta and being tested by at&t now. I have a copy and It seems to work; we brought up our C & Pascal comp 11ers on 11.

 os386/msdos #1, from curtf, Mon Nov 3 10:43:57

 The 80386 has Joined the long line of Intel chips to run under MS-DOS. While the world onxfously awaits the Introduction of Version 5, many 386's are shipping with DOS 3.2. How Is running DOS on the 386 different than running It on on AT? on a PC? Are you satisfied with the performance of the 386 under DOS? Hove you run any benchmarks? This Is the place for your questions and comments on running MS-DOS on the 80386.

 Curt

 WHICH OS WOULD YOU CHOOSE?_

 os386/msdo8 #2, from Img. Mon Nov 17 10:03:22 1986.

 I'd like to ask the folks out there, "Which of the 386 operating environments do you like, and why? Which one would you buy for your own 386 based machine? Choices seem to be among straight MS-DOS, MS-DOS under UNIX or Xenix, or one of the new multitasking VM environments.

 os386/msdo8 #4, from dondumitru, Mon Nov 17 19:14:10 1986. A comment to message 2.

 I tend toward wanting MS-DOS under Unix, or equivllent. "Maximum utility" and all that. When the software becomes available for a "standard" 386/VM environment, that will be entce*. (But It will take some time.)

 Donald

 os386/msdoi #5, from dtuttU, Mon Nov 17 23:27:27 1986.

 A comment to message 4.

 The choice of operating system clearly depends on whot you wont to do with the system. For general software development, the choice would normally be one of the UnIx-phIlosophy systems. Add the MS-DOS virtual en-vironment If you want to run or develop MS-DOS progroms.

 If you wont a general purpose computing engine, try the multI-tosklng VM-style system. I cm on experienced advocate of virtual machines, being one of the authors of IBM's VM/370 Control Program (rel. 1,2,3) and a devotee of multi-tasks for a single user.

 os386/msdos #6, from gsory, Tue Nov 18 04:47:27 1986. A comment to message 2.

 The 386 environment I wont Is 386 Windows. Unfortunately, It's pretty questionable when It will be aval I able.

 os386/msdos #7, from grssnbsr, Tus Nov 18 09:21:30

 1986. A comment to message 5.

 Wont a decent operating *ond* MSJX)S?? I hear Microport SYS V/AT should be available for the 386 beast soon. Then you simply use MERGE386 by LCXXJS and vollol You found
0
 way to cripple your UNIX machine, but now you can run lotusl :-) roes

 os386/msdos #10, from paul.hoffmon, Tus Nov 18 22:23:28 1986. A comment to message 7.

 Hoving worked on o contract at Locus (not the Merge project), I can soy with all certainty that using Merge386 will eeenot*** cripple It, It Is a seamless drop-ln thot Is executed wonderfully, even for those of us who hate Unix (and use It all too often).

 MS-DOS COMPATIBILITY IN 386 MODE

 os386/msdos #13, from vllll, Mon Nov 24 20:31:36 1986.

 It looks
08
 If we are going to need two kinds of operating systems for the 386. One kind Is the "user" operating system, which Is probably going to be good or MS-DOS 3.x running In Virtual 86 mode. The other kind Is the "system" operating system (Yeechl) which "sits under" all the concurrent MS-DOS sessions and manages common resources.

 As we all know, there are some products on their way In this category. However, you are (as I understand It) still left with limitations like 640K (or 1 Mb) of RAH for each Virtual 86 session. The trouble comes when I wont to write application software that really USES the 386, multi-megabytes and all. This software would have to be Initiated from Virtual 86 mode
under MS-DOS and run under the SYSOS, returning to the MS-DOS session when finished. SYSOS must therefore be able to provide my program with all kinds of OS services, just like MS-DOS can.

 I om Interested In knowing what the 386 SYSOS'es under development provide In this respect. Also, we hove another problem. My application Is probably going to be developed under MS-DOS, at least to begin with. That means that I need development tools that can produce code for such a "mixed" MS-DOS/SYSOS environment. Segment registers ain't what they used to be, which means that for example good ol* Lattice C (large model) and other C compilers ore useless; the pointer arithmetic no longer works. The linker Is also not up to the task. Are those problems being solved by Microsoft In their Advanced DOS? I really hope so, because what application developers need Is a TOTAL solution. This may also explain why IBM and Microsoft took so long to develop a 286/386 OS. You really have to write the whole gamut from scratch: linkers.

 188 BYTE LISTINGS SUPPLEMENT • JANUARY-MARCH. 1987

 compilers, assemblers, etc. (Unless you use Xenix, but thot Is not the Issue here.) And anyway, we WILL have to rewrite ports of our applications to run under ADOS. If they ever make use of the segment architecture of the 8086.

 The lesson to be learned from all this: the 386 SYSOS’es being developed and "Introduced 1Q87" are probably not what the software developer needs. They may be nice for the user who wonts to Juggle his existing 640K MS-DOS 3.x applications around, but they do not end the wait of those who wont to really USE the 386 properly.

 os386/msdos #14. from jshlell, Mon Nov 24 22:19:48 1986. A comment to message 13.

 Phar Lap has an assembier/lInker/runtIme system for protected mode that Is real (I have used It 11) and Medowware has a protected mode "C" compiler that can run In the Phar Lap system (I have not used It but I know people who hove). The folk s from Phar Lap (Richard Smith et al.) are on BIX.

 Jon Shlell

 os386/msdos #16, from curtf., Tue Nov 25 16:38:16 1986.

 A comment to message 14.

 Perhaps this Is the place to begin putting together a list of compilers that take advantage of the 80386*s protective mode. We heard about several "We*11 be shipping RSN" products at COMDEX, but we*d like to hear about anyone actually using these products. Put your lists here...If we get enough products we'll put them together In the "digest" topic. Thanks, Curt Franklin, co-moderator

 os386/msdos #29, from tpennello, Tue Dec 2 04:51:00 1986. A comment to message 16.

 MetaWare Is currently shipping Its High C and Professional Pascal compilers that make use of the 80386 protected mode In conjunction with Phar Lap's DOS extender.

 Most of our customers want to look at C rather than Pascal. Phar Lap has already used High C 386 to rehost Its 386LINK linker from Microsoft C (286) and has obtained a 25% Increase In execution speed and a 20% reduction In object size. Expect In general to obtain some object code reduction but not always a great speedup.

 Once you go to 32-blt mode you pay for 32-blt offsets. Two proarams I wrote for personal use didn't run much faster (perhaps 5%) In 386 protected mode vs. 286 real mode, although they were smaller. The main speed win from 286 mode to 386 protected mode occurs If you make considerable use of 32-blt arithmetic, especially multiplication and division, which Is slower In 286 real mode. [These product announcements were In response to your request for product Info] Tom Pennello, MetaWare

 os386/msdos #17, from tanj, Tue Nov 25 19:04:40 1986. A comment to message 13.

 Why Is XenIx/UnIx "not the Issue here" ? It exists now on machines both more and less powerful than the 386,

 Is doubtless In a fairly advanced state In Intel labs (maybe released, I'm not quite up to date), and has all the tools you mentioned. With 386/Merge or equivalent software you can launch Unix applications from an MSDOS shell If you so require, since you have access to Unix files, named pipes, and maybe ordinary pipes. If Locus are one of the Beta sites for DOS 5 you could bet that there are other ways to communicate between DOS and UNIX processes.

 UNIX has Its Imperfections (argh, not rwars pleasel) but most of the horror stories relate to years past when It was the only decent OS that permitted Itself to be crammed Into too small a machine. It Is now a plain vanilla OS with proven versatility, so any other host for DOS partitions looks a real long shot.

 os386/msdos #18, from tanj, Tue Nov 25 19:04:56 1986. A comment to message 13.

 A little care with terminology Is worthwhile.

 Protected mode Is the 286 mode designed In 1980 as the micro answer to the
POP
 11/70. The nicest feature of the 386 Is we con forget about It. Protection exists, but It Is no longer obtrusive and a more appropriate term for 386 programming Is paged virtual mode.

 It Is most likely that a typical application runs with one 32 bit segment and the OS will use page mapping to place the code, data, and stack In widely separated parts of the address space, like any other 32 bit machine. The two segment style - code and data/stack - looks like a "natural" fit but It forces long (48 bit) pointers for constants In the code segment which Is just ridiculous for 99.9% of opplloot Ions.

 Existing 32 bit machines are normally run using the paging to control separate (shared) code, data and stack sections of one address space so the design problems ore thoroughly understood. Some OS's, like Unix 5.2, allow the code area to be sub-dIvIded Into page mapped "segments" for dynamically linked libraries, which means that each application does not need to carry around a copy of the run-time library.

 I think you will find the main use for segments on the 386, at least until someone Is seriously exceeding 32 bit address spaces on one process, will be for hardware assisted gates between tasks. Into Interrupt handlers, and Into virtual 8086 mode. You need fancy compilers If you wont to write the OS, but for opplI cat Ions you con just relax and forget the segmentation. I think In the long run the 80266 form of segmentation will be a dead end for DOS-oriented programmers, since DOS 5 (which Is opparently protected mode, not paged mode) will look rather painful by comparison.

 os386/msdos #21. from jshlell. Wed Nov 26 13:42:40 1986. A comment to message 18.

 The other problem with Segmentation Is that It Is SLOWER then using a flat space, and because there Is only one page table there Is no additional virtual space available via the use of segmentation.

 Jon Shlell

 os386/medoe #22, from tanj, Thu Nov 27 20:21:47 1986. A comment to message 21.

 You ore right It Is slower, but what do you mean about only one page table 7

 The fundamental reason It Is slow Is that loading a full pointer requires 14 bytes to be fetched from memory (2 for selector, 4 for offset, 8 for segment descriptor). Even the 386 slows down for that. There Is no practical limit to the number of page tables, except for RAM. Each task has a different base pointer (CR3) which selects a page directory, which In turn points to up to 1024 page tables. A minimum process needs 4 of 4k pages resident just to hold the directory and 3 page tables (code, data, stack), which must be resident and are one of the disadvantages of the architecture. However It Is possible to limit the number of pages of resident RAM by keeping only a hlghprlorlty set of tasks In real tables and copying table entries back and forth os processes change priority, since a typical task only has a few tens of 32-blt descriptors In use. I would expect to see from 128k to 256k bytes allocated to page tables In a 4M byte (36 RAM chip) work station.

 Even with 16kb of overheads per active task It Is a bargain If one can use 32-blt "small" model. Large model on the 80386 will be slightly more efficient than on the 80286 because there are 2 new segment registers which allow a decent compiler to keep a few "register" class pointers, but In view of the typical 25% difference between small and large code on the 8088 It would be optimistic to expect less than 15% difference on the 386. In other words. If you use compilers and your application has more than 100k of object code then non-segmented mode Is not only faster but also on balance smaller, even with the extra system tables. And that Is before you count the savings In data space due to smaller polntersl

 It Is Interesting that the programmer of the 80386 In paged mode
will
 see very
little
 difference between from using the 68020. NS32032, VAX, or ony other modern

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 189

 32 bit dtvtc«. Attembly code will dtclint (but not vonith), the tcroon will bo windowed end blt-'inopped, end the OS will be (at leoet modelled upon) Unix and protected.

 oe38e/medoe #23. from Jehlell. Sat Nov 29 90:12:57 1985. A comment to meeeage 22.

 Only one page table may be active at a time and all active eegmente muet map Into that table when paging le active. Jon ShlelI

 oe388/medoe #24, from tanj. Sun Nov 30 06:01:53 1986. A comment to meeeage 23.

 Ahhh..the light dawne I So the only way to make uee of the 84 trillion byte (46-bIt) virtual address space (32 trillion In user-space) Is to use multiple processes, each of which might Just os well be In 32-bIt "small" mode.

 There ore days when I yearn for the clean Instruction set and architecture of a 68020. or 32x32, or Clipper, or VAX, or... Instead, I wl11 doubtless use on 80386 which Is a stretched version of a widened 8080. It Is for the outside chance of escape that I keep looking to UNIX.

 os386/msdos #25, from geberhordt. Sun Nov 30 13:01:57 1986. A comment to message 24.

 But 32 bit address space In small model Is the some as Is currently available on the 68020. Actually I am In the process of getting a 386 C Compiler up. and I expect that A 3 segment version would be much easier to set up.

 The segemnte would be 1 for code, one for data and 1 for stock. It may be nice to hove the data and stack segments In the same physical address space, but enve then It would be 2 times the size of the 68020.

 Still the real limit will be the size of disk for swap purposes. My biggest machine has only 400Mb of disk, and that cost $17000 for the disk alone.

 George.

 os386/msdos #33, from tan], Wed Dec 3 20:00:55 1986. A comment to message 25.

 You don't need segmentation to Implement separate address spaces and grow stacks. What you do Is use the most significant bits of the address space as "segment" bits, as for example with the IBM RT, and then the paging hardware keeps track of what's what. For example, you could grow the stack down from 4 Gbytes, the date up from 1 Gbyte, use the first 256 Mbytes for application software, and the next 768 M for system softwore and HLL eupport libraries. To grow your stock the OS knows that If you try to use the next page down It should allocate another page, fix the page descriptor, and restart your program. You do have the disadvantage that the protection system Is weaker since you can't catch a bad data pointer which scribbles on stack (for example), but I'd rather live with that than the horrors of 48 bit pointers on a 32 bit machine. Would you like to try thot In C (or any other practical HLL) ? The funny segment registers will basically support 286 emulation and special tricks, hand coded.

 In the OS. In a few years time It will seem a shame to be paying for the unused silicon and heat dissipation they represent. I can't even see the 486 changing that, even If It does allow more than 32 bits of paged address, since there are so few applications that need more address space enough to accept 48 bit pointers (with 112 bits per segment load).

 os386/msdos #27, from jehlell, Mon Dec 1 01:02:45 1986. A comment to message 25.

 There Is not point In using segmentation In the 80386 unless you don't use poglno because the page table can only describe 2ee32 bytes (also see 386users/flames), le. the page table can only mop a sinale segment (at the segments maximum size 2e*32 bytes).

 Jon ShlelI

 os386/msdos #30, from tpennello, Tue Dee 2 05:10:36 1986. A comment to message 25.

 No, you don't wont a eeporote segment for the stock, otherwise, you couldn't use simple 32-bIt addresses to reference any data Item In C. E.g., the following couldn't work In your model without 48-bIt pointere: sub() J static Int x; Int y; f(to<); f(l:y); } A 32-blt reference to the address of x or y Is Insufficient for the receiving routine (f), since It doesn't know which segment register to use Tom Fennello

 os386/msdos #31, from Jshlell, Tue Dec 2 11:04:49 1986. A comment to message 30.

 Unless a totally flat model Is used (le the SEG regs. ore NEVER changed). Jon ShlelI

 os386/msdos #32, from tpennello, Tue Dec 2 16:19:27 1986. A comment to message 31.

 Even If the seg regs are not changed. If ds o ss then 32 bit addresses still don't cut It. Do you define "totally flat" as ds-ss-cs-fs-gs-es?

 COMPILERS FOR 386_

 os386/msdos #36, from Intel, FrI Dec 5 03:25:42

 In
0
 previous message someone asks for a list of 386 compilers. There are number of companies doing 386 compilers. Most ore In the beta site stage for their comp 11 ere.

 Franz

 GreenHII Is

 Lisp

 C, Fortran, Pascal

 Most

 Unix System V.3/386

 (later) Unix System V.3/386

 Lucid Lisp

 Metaware C, Faecal

 LPI C, Fortran, Pascal, Cobol Ryan-MacFarland FORTRAN, Cobol Silicon Volley Software C, For Intel C, ASM

 Unix 386 and 7 DOS, Unix 386 others etc Unix #86 Xenix, Unix and ? tran, Pascal Unix V/386 Xenix 286, DOS VAX/VMS

 (Ql)

 I know I've left some out these ore the one I have been dealing with and which we have done press releases with.

 I am very familiar with two companies compilers GreenHIM's and MetaWares. GreenHII Is Is most famous for their 68K compilers, but recognized a winner like the 386, they ore currently moke a real nice optimizing compiler. It generates amazing Dhyrstone numbers (In excess of 6200 (version 1.1) and seems to be remarkably free of bugs. Metaware's compilers are used by bIg-name software developers In the MS-DOS world. Their compiler for the 386 also generates superior code and seems very stable. Whats real elick about the MetoWare compiler Is you can use It with Pharlap's 3861 Inker and DOS Extender product to generate real 32-bIt code and run It on your 386 PC, today.

 Cllf
 Purkiser

 COMPILERS?

 os386/msdos #38, from Jwvlncent, Tue Dec 9 08:19:28 1986.

 I om Interested In porting a manufacturing application that currently runs on Apollo, VAX, Prime, and HP320 systems to a Compaq386 or Zenlth386. This program's

 190 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987

 object code It currently 3Hieg and growing. I am enote Interested In segmentation! I would like to operate under MSDOS since It Is the std OS at this time. The program Is In very straight FORTRAN 77. Questions:

 What would be the best compiler for this task?

 Is there any prospect of a vertuol memory OS coming to my rescue?

 What can I do to get around the short file name problem?

 (Mfg'sr like to ref things by port numbers longer than 6 chars)

 Please help.

 Thanks. JWV

 os386/msdos #39. from feenberg. Tue Dec 9 18:18:41 1986. A comment to message 38.

 If you join the FORTRAN conference you will
fin
d that the favorite compiler of mony Is the LAHEY F77L compiler. I suppose 3meg of object files Is about 300,000 lines of source code. Programs that big hove been converted to run on PC's, but It con take a few daysl The current crop of PC FORTRAN compilers ort os good os the best mainframe compilers.

 os386/msdos #42. from jwvlncent. Wed Dec 10 08:18:07 1986. A comment to message 39.

 You hove given us credit for slightly tighter code than actual. The source Is over 150,000 lines though. The real Issue Isn't having to segment the code once and have It work. Instead It's that the program Is moving ahead with many new features and enhancements which must be available on all hardware platforms with a minimum of effort. We currently hove the program gene ric enough to move between 32 bit systems quite quickly. We don't want to lose this flexoblllty by supporting a PC.

 No prob* neether kin eyel

 OP SYSTEMS FOR 386_

 os386/msdos #46. from gtromble. Sat Dec 13 15:03:00 1986.

 Today who con shed some light on the 386 multiuser op sys being marketed by Software Link. I'm sure It's probably a revision of their multi-link software and not a true 386 op sys. Any beta testers out there? Galen Tromble

 08386/msdos #48, from donbrady. Sat Dec 13 21:38:21 1986. A comment to message 46.

 I had a demo of the 386 MOS by Multi I Ink and was NOT Impressed. I crashed It 3 times just running their demos of Lotus, WordPerfect etc. on a three- terminal system. Also their feature list Is pretty strange and sort of beside-the-point. I.e. they mention minor operating environment commands (such as the "NO" prefix) which are have nothing to do with 386-mode operation. Of course that was a pre-release version but It seems to me they have a LONG way to go. Yes they claim It Is a new operating system but It LOOKS more like a Multi I Ink extended to support virtual 8086 mode. There are some nice task-switching features etc.

 os386/msdos #51, from csmedley, Tue Dec 16 09:36:44 1986. A comment to message 46.

 Ihave the BRIDGE version of the software, which Is MUItllInk with a protected mode driver. However I hove also seen the pre-release versions of PC MOS 386 This appears to be a totally different animal down to displayinmg a directory with the period symbol delimiting the extensions and other strange things. These differences may change In the final release due Feb 28,1986.

 os386/m8dos #49, from bllln. Sun Dec 14 12:01:51 1986. A comment to message 48.

 In theory It looks like It ecould* be good (someday). The demo at Comdex with a 386 system running two

 terminals was so slow os to be unusable, but that could be from many causes, probably fixable.

 As a broader concern, there Is really a problem In the multiuser on on AT or 386 area. No single system has a dominant position causing scattered efforts In the applications area. This Is a chicken ft egg problem I do not see being solved very soon. Unfortunately.

 What Is ereallye needed are development tools that can span the many multiuser OS environments with minimal effort by developers. This could finesse the OS problem, which Is really an application problem (not enough applications, leaving MS-DOS dominant).

 Any Ideas? 611 IN

 os386/msdos #50, from jshlell, Tue Dec 16 02:05:51 1986. A comment to message 49.

 Applications developed without useing the seg. regs. (le CS - ??, SS - ??, DS ■ ES - FS ■ GS) should run In most enviroments. Both 386/ASM from Pharlap and HIGH-C from Metoware (Hello Richard ft Tom) support this type of seg. structure. Maybe someone who knows the DOS under Unix OS. could state If they are also using this mode I. Jon Shle11

 os386/m8dos #52, from tpennello. Wed Dec 17 03:36:15 1986. A comment to message 50.

 John has asked me to summarize current seg reg usage of the High C compiler. This Is actually dictated by the Phar Lap environment, and also by architectural constraints of small model. Here Is the seg reg arrangement:

 SS - DS - ES - FS - GS CS - ??

 This Is also true of Intel's system V unlx, release 3.0. That SS ■ DS Is DEMANDED by small model; you can't get away without It. Let's put this one to rest:

 Int x; maln() { Int y; f(ftx,fty); j The address

 of X ond of y Is
0
 32-bIt quantity. In function f, the dereference of the two passed-In pointers are made relative to DS:

 f(Int *x, Intey) j

 ex ■ ey; /e mov eax,x; mov eax,[eax];

 mov edx,y; mov [edx],eax e/

 Here the x and y pointers ore referenced off of ds In the two mov Instructions. If SS were not ■ DS, the address of y passed In would be Invalid.

 Now, whether ES - FS ■ GS and/or whether ES • DS Is a separate decision. In Phar Lap's environment, DS-ES-FS-GS-SS. Under UNIX ES-DS-SS, but I don't reecall If FS and GS are set to anything In particular.

 08386/msdos #53, from tan).. Sun Dec 21 04:49:40 1986. A comment to message 52.

 One thing puzzles me. You soy that CS Is unconstrained. What kind of pointer do you use for parameter-functions ? Don't you put Initialised const In the code segment (where code Is shared, as with System V), and how would you handle something like an Implementation of the regcmp() functions which places code Into a heap-block and then tries to jump to It via pointer ? It looks like you either accept 48-blt pointers or place restrictions on the programmer. I can't see what Is gained by leaving CS open, seems easy enough just to tie It CS*DS"SS.

 os386/msdos #61, from tpennello. Sot Jon 3 00:34:04 1987. A comment to message 53.

 Sorry to take so long to reply; just got back from two weeks vocation. CS can be unconstrained because the procedure call Instruction, for short calls. Implicitly uses CS. So 32 bits suffices. But note that dereferencing a function pointer os data — e.g., costing It to (Inte) and dereferencing — does not produce a value In the code area, since the deref uses DS Implicitly.

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 I9I

 If you allow CS - OS you •llmlnoto tho read-only protection given to code. Goto references con then clobber the code area. No reason to allow this unless someone really wants It.

 os386/iisdos #66, from ton]. Sun dan 4 04:32:37 1987. A comment to message 61.

 CS-DS does not lose read-only protection of code, If the OS Is designed to mop code and data Into distantly separated pages and the code pages are read-only. That Is a normal practice In paged virtual OS's (viz. 370 VS/XA, VAX/VMS, BSD 4.2, System V.2.2 and later).

 os386/msdos #68, from tpennello. Tut Jan 8 01:25:52 1987. A comment to message 66.

 Yes, If you use paging. You need not use paging, right? I don't recall If the Phar Lap DOS Extender currently uses paging. Richard Smith, can you hear me? According to friends at INtel, embedded applications people may want to use 48-blt pointers to get very local protection. Quite a few of the bugs I had to get out of our C & Pascal ports to 386 system V unIx were hard to find since we overran an array and the symptom didn't show up until later. On a 286 system we would hove been caught earlier, frequently at the array overrun, since sometimes an array has a segment of Its own. Hence we've kept Intact the medlum-compact-blglarge memory models of our compilers so we con support 48-blt pointers.

 os386/msdos #69, from tanj, Tue Jon 6 18:43:40 1987. A comment to message 68.

 I put In a message earlier analysing the pros and cons of paging, and why I think It Is the right 386 choice. Maybe It was In the vm topic. I've used the 86 family since 1980. I've written an object oriented OS, and I've used Intel's RMX. They have their advantages, but In a competitive commodity market (which Is what the 386 Is about: If you wont just nice 32 bit micros Motorola Is way ahead, but the 386 will Inherit the business PC market) after 6 years with the beasts I just don't think strict object oriented code slavishly converted Into Intel's Idea of a segment Is the way to go. You sold It yourself: "sometimes on array has a segment". Sometimes, not always. The reason Is that your compiler would crawl If you olways did It and noone would buy. If you move to a 32 bit environment where the simplest way to Implement malloc() Is linearly then "sometimes" becomes "rorely". You will design your compiler to allow people to set a high threshold on the size of arrays given their own segments or just turn It off, since they will want their code to be small and fast.

 In some languages array access Is more recognisable than In C so a bounds-check Is more reliable. Anyone writing serious embedded code should look for a good Pascal or Ada compiler, os those languages help you write reliably, at the expense of o few favourite tricks. Only the arrays need bounds checks, which ore selective and cost less time than condemning the whole application to loading 48 bit pointers with descriptors.

 I do expect that whichever 386 OS wins out will support both styles, and have paging. For the majority of applications the paging Is by far the more valuable feature and programming In a linear model Is simpler and will give the best running speed. Some special applications will run In segmented object-oriented mode, and those may Include programs under test up to the Beta phase.

 os386/m8dos #70, from tpennello. Wed Jan 7 05:36:57 1987. A comment to message 69.

 r.e. "array has a segment of Its own". Whether or not It does doesn't affect speed of the compiler on the 286; In the particular application, they were all pointers to arrays, so a 32-bIt pointer load was necessary always. Sometimes, due to heap management, the segment In which an array was allocated was not shared with anyone else, and provided for array bounds detection, since the bounds of the segment were close (possibly Identical) to that of the array.

 os386/msdos #71, from ton], Thu Jan 8 17:45:13 1987. A comment to message 70.

 Now write that paragraph again, but for a 386... 32 bits changes the compiler and allocator strotegy. PS. If a 386 OS does not provide paging then why would It win on the competitive market ? Considering how nice It Is on existing workstations, why shouldn't PC usersfind paged virtual addictive ?

 SEGMENTATION

 os386/msdos #56, from dtuttle, Tue Dec 30 23:35:08 1986.

 It's really Interesting to observe ("listen to") the controversy on segmentation versus large, linear address spaces. There are both benefits and drawbacks for each approach, and a eignlfleant amount of "religion" (os In unsupported beliefs) behind any choice of one or the other.

 The "original" memory management schemes, as much as there Is an original, were based on what Is now colled bonk-swapping, a la Intel/ EMS (I think). <ref: 1961-68, MIT Compatible Time Sharing System on an IBM 7094 with two banks of 64K each, 36-blt words> Around the some era Burroughs hod some sort of virtual memory scheme, but I've never found out much about It. Significantly, the CTSS/7094 system used the bankswitching for memory protection os much os It did for the extra space. The operating system ran In one bank, user programs In the other. This also solved the address range problem, since a user program had access to o full 64K range of Its own.

 Next Into the fray was (I think) the IBM System/360 Model 67, with the first large-scale Implementation of dynamic address translation and demand paging. <ref: 1968 IBM Time Sharing System/360 (TSS/360); 1969 IBM CP-67/CMS; 1971 (?) Michigan Time Sharing (MTS)> The S/360-67 had your choice of 24-blt or 32-blt virtual addressing, on a physical base of 24blt addressing (1-Mbyte segments, 4-Kbyte pages). Significantly, the System/360 machines had a storage protection scheme which was com- pletely Independent of the virtual memory/address translation hardwore. Conventional operating systems such as OS/360 and TSS/360 used storage keys to protect the system code from the user code, and used the memory management facilities to Isolate users from each other. Virtual machine systems such as CP-67/CMS and MTS used the virtual memory facilities to Isolate everything (Incidentally allowing "user" programs the full use of the storage protection key mechanism).

 The IBM System/370 Virtual Storage announcement (1972) brought In the notion of choosing between 1Mbyte and 64Kbyte segments, and between 4Kbyte and 2Kbyte pages. The much later Extended Architecture facility rediscovered the notion of system space vs. user space (see 1961, above) along with the notion of 31-blt addressing.

 While this was going on, somewhere In the early 1970's. DEC discovered that 64K bytes was not a lot of memory for a multi-user machine and started using segment registers and memory mapping. The real need was for a way to utilize a physical memory space which was larger than the maximum logical address, but they Included support for variable-size segments and segment-based protection mechanisms. This was, I think, the first explicit combination of memory management and memory protection schemes. Thus It was possible to control access to areas of memory with- out on expensive, physical-memory-based, storage protection scheme.

 The Intel 8086/80186/80286 segmenting most likely grew out of the some basic need —— how do you address more than 64K bytes when you're stuck with a 16-blt logical address? — but that's by far not the only reason for continuing with It. The combination of persegment attributes such as read/write, read-only, execute-only, "gate segment", etc., with the basic virtual memory functions, results In a very powerful "object- style" capability for mu 11 l-task Ing ond^r

 192 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 muitt-uter environment*. — Dove Tuttle

 (currently: Principal Technical Consultant.
Prime Computer Inc.) (formerly; VM/370 Control “rcjrae

 System Architect, IBM Corp.)

 os386/iiitdot #57, from wmIMer, Wed Dec 31 26:35:34 1986. A comment to message 56.

 DEC? I thought It was the Mu I tics work on GE In the late 60*s and early 70*s that pioneered tirm s'?>d of segmentation, protection rings, etc. that c'e toe appearing In the 386.

 08386
/msdos #58, from tanj, Thu Jan 1 06:66:36 1667. A comment to message 56.

 If memory serves me correctly the Ferranti At s* paged virtual memory around 1963. It was a fost machine for Its day and derived from work ct lecrc^^mste' University. The lost one was switched off rte

 708. Ferranti's computing Interests were
ore
o' components which merged to form ICL, and the'^e always been virtual storage machines In the ICL o'oaoct line.

 I read somewhere that the virtual
memory
mc
^
em
e

ir the SCS machines (which Burroughs bought) vcs Inspired by the Manchester Ideas. I have mc'kmd
cm 6500, which Is both paged virtual and segmentprotected, with HLL/Algol stack-oriented ■
•.*ti.

 I don't know how much the Californian SCS i-^ertmd Independently, but that whole ball, of wox
mam Manchester promoted. The key Innovation
ZBn z:sr

 lay claim to In Its VS design Is the virtue moc^'rm. with the hyperviser able to simulate not sm^crcte

 memory spaces but a whole private confIgurcf s' peripherals. Object-style programming oc-rs *ct necessarily Involve overhead* of object (st^meitt) descriptors at run-time. It I* true thet de- sme

 can help with catching certain kind* of errc's. '

 a program Is error-free then all that chesi *-; '* ;.**t parasitic. You can get the same kind* of • ••

 complle-time and run- time software check •; ou' •; development.

 History suggests that only specific mertets v pay for paranoia overheads In hardware. A *

 necessary Is the separation of processes es ore

 con crosh without offecting others, ond protection does that job quite well.

 Gate-segments are just a variation on '*te—process or inter-virtual- machine calls, which cor ^e «ere otherwise. I don't have anything per se segmentation. However, the style of segmertet-or promoted by Intel for the 80286, and toko- tc extremes with the IAPX-432, causes run-time overheoos d&e to descriptor loading. In a 32-blt machine i^-ere cM the key virtual and protection facilities are mveriefele In the paging hardware, I think that kind of ssjmentetion Is Irrelevont to the majority of opp 11 cot 80386 Is best used linearly.

 os386/msdos #59, from dtuttle, Thu Jan 1 15:23:22 1987. A comment to message 57.

 The MIT/GE Multics project was the
piorme'
-
terms of ring-based protection, but I don't know w^*'# t**« segmentation approach orginally came fros. ^“e i*.'tic8 work wo* also the basis for the current
Prism 50-serie* ring-based architecture. A* far as I know t*** DEC memory monogement (PDP-11) was at leost on ec' .* end aggressive use of logical addressing as c seens of utilizing a large physical memory.

 There were at least two major trends of c«-*«'9oeent of the virtual memory and memory monogess-t capabilities — from the high-end dosm end f^'orn t^e low-end up. Concepts pioneered on lorge-scc* systesra hove been adapted and utilized on smaller ond smcMer systems, and (because of the compatibility reo. reeent) architectures designed for very small systems •‘o# been appearing on larger and more powerful mochloms.

 The current architecture of the Intel 66368 Is on Interesting mix of small-scale features Ir'^erlted In the name of compatibility and some very sogMstlcoted additions which ore justifiable only for muftl-vser large-scale systems.

 os386/msdos #60, from dtuttle, Thu Jon 1 15:35:33 1987. A comment to message 58.

 Interestingly, even the early CP-67/CMS system was set the first virtual machine system. It was based on e research system called CP-40, which ran on a modified System/360
Model 40, with both hard- ware and software developed at the IBM Cambridge Scientific Center In Coibridge, Massachusetts. Earlier yet was M44/44X, 2
csed on a modified IBM 7044 and developed at the IBM Yorktown
Research Center In Yorktown Heights, New York. I mes fortunate enough to be a user of the M44/44X system
during a summer job In 1966.

 On the other subject, I agree that the "overhead" of segmentation Is of no Importance to on application — but It _l*» Important to the system. As long as the size of one segment Is sufficient, there Is no reason 'or ony one _appIIcatlon_ to use other than CS«SS-OS-ES«... If, however, I were writing a multiuser
ond/or multi-tasking «system_ program or SoOsystem, I could make very good use of more segments.

 os386/msdos #62, from dathomas. Sat Jan 3 13:23:15 1967. A comment to message 58.

 sice to see that someone does the homework/history. The At os was the first machine. The other Interesting sccMne to use paging was the SOS then Xerox Data Systems
Sigma series. We ran our university computing or a 64K 32 bit word Sigma 7 with 8-16 users and 2 retch streams In 19701 The machine had a head per track sweeping disk with a 4 ms latency and 3.5 MB transfer retei The machine also had multiple registers sets 16, 'er fost context switching. The CP-V OS was ported to -IS hordwore when Xerox exited the computer business In *975. The Vox OS Internals have a famllar similarity. S'gred An Old Systems Programmer

 ^ets See 16 users on an 8361 <grln>

 em366/msdos #63, from bllln. Sat Jan 3 13:31:05 1987.

 A
comment to message 62.

 Actuolly,
given the right suoportlng hardware and sufficient memory (say 8 meg). It might not be too bad. out you
will need a egoode OS, much better than currently avaliable.

 6TW,
as I recollects, the Atlas, a British machine, was circa 19591 BiI IN

 os386/msdos #65, from tanj. Sun Jan 4 04:32:34 1987. A comment to message 60.

 A multI-user/multI-taskIng system needs multiple page tables. These may give each process a combination of private pages, shared read- only code, and shared Inter-process variables. The only thing segmentation buys you (on the 386 at least) Is exact control of the length of each area: cute, but not worth a performance loss.

 os386/msdos #67, from bllln. Sun Jan 4 11:47:06 1987. A comment to message 65.

 Or you con share on a segment basis which sometimes makes more sense. BII IN

 os386/msdos #72, from dtuttle, FrI Jan 9 00:11:10 1*987. A comment to message 65.

 I am getting a little tired hearing about "performance problems" on a machine which Is capable of 3.2 to 3.8 MILLION Instructions / second. If there are any performance problems, they are not the result of the architecture of the processor — they are the fault of the surrounding system. Put a 16-MHz 80386 In a reasonable package (64Kbyte cache, DMA multi-channel, overlapped disk I/O, (seml-)IntelIIgent communications controller, etc.) and you have a system which can easily blow the doors off of a medium- to large-sized VAX 8x00 system.

 As to 16 users on a 386... Bell Northern Research used to routinely support 1- to 2-second response time for 190-240 users on a System/370 168-AP, which had an Instruction speed approximately the same as a 16MHz

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 193

 80386. The I/O iubeyttem wot not “PC/AT compatible**, to be eure, but thot It not o character letIc of the CPU architecture.

 If anyone actually hae a requirement for more than 2**32 bytee of program plus data, or hae a program which doesn't run because It has to occasionally use 48-blt pointers, I wl 11 happily offer free consulting to work on their problem. It will certainly be worth the time...

 os386/insdos #73, from Intel, FrI Jon 9 02:37:03 1987.

 A comment to message 72.

 Yes, I agree that It Is sort of ludicrous to complain about the performonce of the 386. In the right system. It really screams. Even In a system with a poor I/O subsystem like a PC a 386 makes everything appears to happen Instantly.

 Ignoring If you will my built In bios, I can honestly that speed of the Deskpro 386 at work Is enouah for me to prefer using to my Mac+ (with hord disk) ot home. This Is only true because of the speed of the 386. I vastly prefered my Mac 512 to my first IBM PC, and It was a toss-up between my Mac and a 8 MHz PC, but the speed of the Deskpro mokes everything seem to happen as soon as I hit the return key.

 My 60 page Framework documents load, save, reformat Instantly, I never turn the spreadsheets off autorecolc, and even C compiles happen within a few seconds . Eventhough, I perfer the Mac's Interface It Is frustroted to hove to wait for the Mac to perform some CPU Intensive operations, like redrowing the desktop.

 Cllf Purkiser.

 WHERE ARE THE 32-BIT EXTENSIONS

 os386/expert.query #1, from vl111, Mon Nov 3 17:57:09 1986.

 The 386 has new 32-blt registers named EAX, EBX, EDI, and so on. Also, I understand that It can do things like MOV AX,[12345678] (that’s a 32-blt absolute address). As a compiler developer (who has not received the Intel tech documentation yet), I would like to ask where those features were put In the Instruction set. The mod reg r/m structure of the 86/286 appears pretty full. How were the descriptors for the extra registers and addressing modes added? Mustn’t the new 32-blt Instruction opcodes be at least a byte longer than their 8/16-blt counterparts?

 os386/expert.query #3, from skluger, Mon Nov 3 18:15:22 1986. A comment to message 1.

 Judging from the manual, they did fit them all In. Try to get the P.R. manual. Order # 230985-001. The ModR/M tables are on pages 17-4 through 17-7. There Is something called *’SIB'* (Scale Index Base) byte which Is required for based Indexed and scaled Indexed 32 bit addressing.

 os386/expert.query #4, from meed, Tue Nov 4 00:45:51 1986. A comment to message 3.

 As far as the difference between AX and EAX registers, the 386 at all times has a default operand size and a default code pointer size. These defaults are set In the segment descriptor assocloted with the current code segment.

 So If you’re executing **32-blt** code, a given opcode will pertoln to the EAX register - In a **16-blt** segment the same opcode wl11 mean the AX.

 Just as there are segment register override prefixes In previous processors, the 386 has operand and code size overrides: they work os simple toggles to indicate that the next Instruction should use whatever size ISN’T the default right now. The code pointer size Is used for jumps, calls, and the like.

 The SIB byte Is a real nice extension. It follows the mod R/M byte In the opcode and Its presence Is Indicated by an encoding In the mod R/M byte. The Programmer’s Reference manual Is tough to find at present, but It Is by far the best reference around.

 It’s the only document I’ve found which actually EXPLAINS what the 386’s swell features are and how to use them. Other writers (especially those of magazine articles) seem to love spouting forth obout what CAN be done (copied from Intel spec sheets) but precious few of them seem to have any Idea of HOW.

 os386/expert.query #5, from vllll. Wed Nov 5 16:17:35 1986. A comment to message 4.

 Re the default operand size located In the current code segment selector: It Is sure gonna be nice to write a compiler which finds out which default operand size yields the smallest code, and then uses that information to optimize. However, I guess the 16-bIt mode will be the most popular default mode, judging from experience with common programming constructs. By the woy- Is there on 8-blt default mode? Of course.

 I’m joking. Thanks for the Information on the Programmer’s Reference. It’s real gold for me.

 M
ULT I TASK ING MSDOS
_

 os386/expert.query #2, from vlIII, Mon Nov 3 18:01:54

 1986.

 My company Is developing on Ada compiler for the 286, running under PC-DOS and MS-DOS. On the 286, we switch the processor Into protected mode, do our multl-tasking In hardware (with superb performance), and then use a complex kludge to get bock Into real mode and DOS (Involving a reset and the CMOS reset vectors In the PC AT).

 Does the 386 have hardware features to let me do the some thing without kludges? That Is, does It allow an MS-DOS task to Initiate a program that switches Into 386 mode, communicating with MS-DOS while running, and then returning gracefully to the original MS-DOS real mode task when finished?

 os386/expert.query #6, from Intel, Thu Nov 0 02:04:05 1986. A comment to message 2.

 The 386, unlike the 286, can be returned to real mode. This Is because the Protection Enable bit In the 386 Is not sticky like It was In the 286. In general the way to do this Is to reset the PE (bit 0) In the Machine status word which Is called CR0 (control Register 0) on the 80386. There are a few cavets when doing this the most Important one Is to ovoid having stale values In the segment descriptor caches. This Is done by making a long (Intersegment) jump followed by loading the segment register after returning to Real Mode.

 Phorlop, who Is on this conference (Richard Smith), hos a beta site product which already does this. Incidentally, one of the Ideas behind the Virtual 8086 Mode of the 386 Is to avoid the complexities associated with tronsistloning between Real and Protected Modes.

 My recommendation is to Investigate having your Ada compiler run In V86 Mode. Cllf Purkiser Intel 386 Software Applications manager

 386 VS. 286

 os386/expert.query #7, from poul.hoffman, Mon Nov 17 21:47:01 1986.

 OK, I’m confused. Everyone Is talking about how wonderful It will be when Microsoft has their ADOS (MSDOS
V.
5, or whatever) so that we can have real multitasking on the AT and 386 machines. But, as I understand It, the 386 Is not really a superset of the 286, and that the protect mode of the 386 Is really quite different than the protect mode of the 286.
Will 0
 multl-tosking MS-DOS that Is designed for the 286 be able to run on the 386? WIN It just be a kludge that works but runs slowly? Or
will
 there be a 286D0S and a 386D0S?

 194 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 Of course, I*m not asking Microsoft to
-
9
r\ anything. This Is really Just a tech-'c^
vm about the differences between the two os.

 ot586/expert.query |8, froM dtuttle. Mow t7 3:31:05 1986. A coimnent to Message 7.

 One can make a very educated guess — tr^-e
^ z

 386-only DOS, whether or not there is c :a—Tgii# 286D0S. The hordware features and copce
ty
 tibc 80386 are too powerful to Ignore, espwcic'Fj f«r
wkj multi-thread system.

 os386/expert.query #9,
froM
Jshlell. Tee
M 00:57:40 1986. A
comment to
messoge 7.

 The protected mode of the 80386 Is o proper am^mrset of the 80286 (UGH 11) thus anything that cot -jm
tm
 Um 80286 can run on the 80386.
,^mm
SMlell

 os386/expert.query #10, from villi, Ti»e 10 01r06:01 1986. A comment to messoge 9.

 Yes,
given some previous system
register Initialization, etc.

 os386/expert.query #11, from Intel, T«e 10 01:25:46 1986. A comment to message 7.

 The 386*s Instruction set Is a superset 296*s.

 Therefore, 286 OSs will run on the 386. s the much-dlscussed-lIttle-seen ADOS, DOS 5.t. detected Mode DOS (your favorite term for uSoft’s OS

 goes here).

 The Interesting question Is will a 386 spmc'rs DOS developed by one of the smaller componles. ISc^t^ecrd. Software Link, Pharlap etc) gain popuic' t* ^^s'e o DOS for the 286 gets Introduced.

 At Comdex, I saw no less than six new 3S6 CS efeicfi let you run multitasking MS-D OS appiicctiomm.

 In addition to two DOS under Unix proOe<ts: t^/ix by Interactive Systems, Phoenix Mer9e386
ty
 Loess Computers

 Multiple DOS sessions were demonstrated Sy Se^tguord In there VM/386 and by Software Link with 386

 Finally, Phar-lap allowed users to run 32-mit DOS opplIcatIons.

 Probably the most Impressive product ece Comwergent Technologies. On their NGEN 386 ¥rorkstot yoe could' run multiple copies of MS-DOS along with
me t'pie
CTOS applications. I was Impressed with the speed
c
 the good human Interface CT used to switch
be
t
wee
n opplIcatIons.

 Of the other companies, Softguard's
>Al/306 ead Phoenix/InteractIve's VP/lx seeme d to be deeest to being a finished product. Although, I weesas't look for anybody to have a solid product much before the end of Q1/87.

 Cl If Purkiser

 TASKS_

 os386/expert.query #15, from johnf. Sun Nov 38 17:47:51 1986.

 Where In the course of system software deve
g
pm
e
^.t do you see operating systems for real-time processes becoming available? The two main character- Istlcs I see for such a system are the ability to ru* tesks at a variety of controllable time Intervals, olorg
with
o number of othere tasks running as time Is ovoMoOie.

 In addition, there must be facilities for eesy and efficient communication of data and semaphores between otherwise Independent tasks.

 -:- JohnF -:

 os386/expert.query #17, from rgullmette, Tue Dec 2 03:27:06 1986. A comment to message 15.

 System V has all the primitives you could need for semaphores and message passing, as well os
memory sharing. As far as real-time, all you need is to tweek

 the UNIX scheduler a bit to get that, and many of the UNIX clones on the market have done that (e.g. regulus). See also: "The Fair Share Scheduler" In the Bell Labs Tech Journal, October 1984.

 os386/expert.query #25, from ton]. Wed Dec 3 20:01:11 1986. A comment to message 15.

 There are two kinds of "real time": one is like controlling an aircraft or a chemical plant, the other is like logging Instruments or recording voicemail.

 The first Is distinguished by having closed-loop Inputoutput paths with critical timing requirements. Don't use Unix for that, not even a fair-shore version, since Unix Is not repeatable on fine time-scales. It Is also rather larger than Is normally required for such systems, which must normally be special boxes with a fixed program repetoire, kept at comms-length from the vaguarles of general time-sharing hosts. If that Is what want I suggest you talk to Hunter
k
 Ready, or to Intel (the IRMX group), or to IPI (the MTOS people), ond possibly to Alsys (since Ada includes a suitable run-time kernel).

 The second class has real-time data throughput requirements, but the rapid response loops are all trivial stuff like handshaking a comms line. Unix can do these fine. You get a version which supports you adding your own device drivers and In your drivers you put all the hand-shaking, and a buffer for I/O data.

 The data analysis and storage programs operate as normal applications and get scheduled every so often to pick up or deliver data In the buffers. Screen oriented edlttlng Is a real-time problem In this class. Not all editors ore competently Implemented, but Unix can run them with fine hand-eye coordination, which requires loop times well under a tenth of a second. However, they do hiccup occasionally when the system Is very loaded or when the editor has not been used for a while and needs to swap back from disk. That Is why you need the buffers In the device drivers. Also, don't overload or allow uncontrolled users on machines which must handle real-time work. Within this kind of environment, Unix has the facilities you asked about.

 os386/expert.query #34, from johnf, Mon Dec 15 03:57:08 1986. A comment to message 25.

 It's the first, real time control application that I'm Interested In, with other, non-time critical tasks running In a background mode. It Is done now, but the advantage of the 386 seems to be that unrelated tasks are easily protected from each other.

 -:- JohnF -:

 os386/expert.query #35, from ton], Tue Dec 16 17:50:46 1986. A comment to message 34.

 The 286 In protected mode was inspired by KSOS, a military Kernel Secure OS project. Unrelated tasks are protected, so long os the OS design Is tight. The 386 Is, if anything, a bit more relaxed about security.

 The NS 32nxx chips hove Inter-process colls which are effectively switches between virtual machines, and Motorola followed suit with some new instructions In the 68020. I think you will find many 32-bIt machines with memory management have similar capabilities of Isolating programs from each other. It Is one of the normal design goals. If you hove reservations about the security of Unix then It won't moke a difference which chip you use, except Insofar as some machines still run old Unix versions, and there can be differences In the quality/solIdlty of ports to different chips.

 os386/expert.query #31, from
vllll,
 Tue Dec 9 12:58:28 1986. A comment to message 15.

 What you need Is on Ado compiler for the 386, regardless of OS. Ado hos tasking (real-time), can run tasks at controllable Intervals, and has very advanced

 continued

 BYTE
USP^r<
 f. *‘_£MENT • lANUARY-MARCH. 1987 195

 Intertask rendezvous and communication facilities. (Beware: my company makes Ada compilers.)

 os386/expert.query #18» from Johnf, Tue Dec 2 04:02:82 1986. A comment to message 17.

 It seems to me that It Is accepted wisdom that Unix Is not suitable for real time control applications, perhaps because of Its origins, but maybe because of more concrete reasons, such os the way It would handle analog and discrete (boolean) Input and output.

 1*11 check Into Regulus. The article you reference Is titled '*The Fair Share Scheduler** which puts a ♦user* rather than real time control emphasis on the system.

 Perhaps the problem with Unix Is that It Is too *'blg" on operating system to Include os a shippable product.

 JohnF

 os386/expert.query #19, from Johnf, Tue Dec 2 04:04:07 1986. A comment to message 17.

 One ather question: How Is the multl-tosklng available with System V affected by the architecture of the 803067

 JohnF

 os386/expert.query #20, from rgullmette, Tue Dec 2 05:20:19 1986. A comment to message 18.

 I don*t accept the accepted wisdom on UNIX not being acceptable for real-time. Question authority Is my motto. Also, I don*t see boolean I/O as being THAT different from character I/O. The Fair Share Scheduler could allow a sort of real-time control In the sense that you con allocate a fixed percentage of available (I.e. non-overhead) cpu time to a given UID (or was It a group of UID*s, or was It a process group, oh well It could all be made to work out the some). This percentage would then ABSOLUTELY be made available to that UID, or CIO or whatever, whenever needed. That sounds like you could setup one "real-time** UID which would be given a fixed allocation of up to 100X and tadal Real-timel Yes? No?

 os386/expert.query #23, from patwood. Wed Dec 3 18:56:59 1986. A comment to message 20.

 Real-time UNIX...hmmmm Seems to me that AT&T has been using UNIX for quite some time In one of the largest real-time control systems In the world: the telephone switching system, specifically, the number 5 ESS, which Is a 3B20 on the Inside with DMERT and UNIX running on It. There hove In fact been several, versions of UNIX specifically designed for real-time applications. Including UNIX/RT, which to my knowledge only runs on PDP-11 type machines, and VENIX, from VentureCom, a Version 7 port with enhancements.

 Seems that real-time should be pretty easy to Implement: write a device driver to handle the Incoming data (assuming It*s Interrupt driven). The driver can turn off Interrupts and buffer the data somewhere a lazy user process can get to It using read(2). You can even time-stamp the data on the way In. Actually, when you think about It, a device driver Is a real-time application.

 As for the fair-share scheduler, well I*ve worked with It, and It can*t quite be used for real-time simulation. The percentage given Is a goal that the scheduler attempts to maintain by balancing clock ticks whenever the scheduler Is called. You still may have to wait your turn In line to get the CPU when you need It, unless you never relinquish It. If you set the CPU allotment to 100X, you will still lose the CPU when you attempt to perform I/O, and you may not regain It for a second or more. Seems like o better Idea to modify the scheduler so that a superuser process con coll a system routine to set a process table flag that states: This process preempts all other processes when lt*s ready to run. Of course, you con only hove one real-time process running on the system at a time; otherwise, there*11 be contention unless you*ve programmed everything real good.

 Oh. Yes. MASSCOMP also sells a real time version of System V called RTU.

 Pat Wood

 os386/expert.query #24, from tan]. Wed Dec 3 20:00:26 1986. A comment to message 23.

 That version of Unix Is eheovllye modified, and not generally available. It has a level of tasking below processes, multi-CPU features, and rellabllty features even In the opearator console process to help them diagnose trouble accurately. Last I saw It had 99.999X up-tIme.

 387-WEI TEC???

 os386/expert.query #27, from jaymartin. Sat Dec 6 01:14:49 1986.

 Does anybody know when the 80387 Is going to be released? Is It software compatible with the 8087 and 80287? And how about the We I tec Math coprocessor that Intel keeps giving benchmarks for. Is It software compatible with the 80387? What Is going to the price tog on these processors? I have seen results showing the Weltec twice as fast as the 80387. If this Is true, who needs the 80387? Floating Point speed Is critical to many scientific applications and the 80287 Is pathetic.

 os386/expert.query #28, from Intel, Sat Dec 6 04:23:06 1986. A comment to message 27.

 The 80387 Is fully compatible with 8087 and 80287 and the IEEE P754 Rev 10 Numerics standard. New Instructions Include support for all Trig operations and more Importantly It accepts trig arguments > 2 pi.

 The 387 Is sampling now and will be generally available In Q1/Q2. It Is 6-8x th e performance of a 8 MHz 80287.

 The Weltek chip set Is not compatible with anything. It Is Intended to be used for Engineering Workstation. Intel has worked with Weltek In developing an Interface chip and providing C and Fortran 386 compilers which generates Weltek code. The Weltek chips and the compiler (GreenHIITs) ore available to OEMs now.

 Cl If Purkiser

 os386/expert.query #30, from rnelson. Sat Dec 6 12:11:26 1986. A comment to message 27.

 Also, the Weltek chips are **4-bangers,** I.e., add, subtract, multiply, and divide. The 387 has all the good transcendental support, sqrt, etc.

 os386/expert.query #29, from bllln. Sat Dec 6 11:50:43 1986. A comment to message 28.

 The Weltek chips (plural) are large, expensive and efaste. The 80387 Is a big Jump up from the 287 In performance and should hold the fort for all but the scientific compute hogs. If I remember right, the 387 was spec'd out at about 1.7 MFLOPS. That kind of speed should hold 90X of the market. BIIIN

 EGA IN MULTITASKING

 os386/expert.query #36, from Jcockerham, Mon Jan 5 18:44:09 1987.

 I have been thinking a lot about the EGA and how It might function In a multl-tosklng OS. It Is not a very friendly adapter because the latches have to be saved across a context switch for the screen. Does anyone out these think that saving the EGA hardware state Is a reasonable proposition? Are the designers of the OSs for the 386, and the 286 for that matter, planning on a forced context switch for a virtual 86 task which owns the EGA when It might be expecting the hardware In a particular state. The plane latches are loaded on every CPU read from video memory. In order to save the latches, they must be stored Into EGA memory and read out. This means that the 0$ must reserve a piece of the

 196 BYTE LISTINGS SUPPLEMENT • IANUARY-MARCH. 1987

 EGA memory space (1 byte) for t-:s op«rctloo. If the designers agree that the EGA •! 1 :
or\j
 c.^’cnge hands across an operating system col*, is in itself not

 too safe, then the latch stuff con be gotten
o«ray
with — not saving the state.

 os386/expert.query #37. from meed. Turn ^ 6 13:23:29

 1987. A comment to message 36.

 Sounds like a reasonable answer — in my discussions with Microsoft about designing new Qrcp*^:cm boards, their first comment (shouted loudly in chorus) was "Let us read whatever we can writel". Of course, your solution assumes that each application o^s t^e entire EGA screen when It Is active — no multipie cccs In windows or shared screen territory.

 os386/expert.query #38. from jcockerhom. Tue 6

 19:43:47 1987. A comment to message 37.

 However In this case, let us write and
reod whatever
we can read and write, or something
like
thot
<grin>

 oe386/expert.query #39. from dothomos. Wed Jon 7 01:49:30 1987. A comment to message 38.

 Multiuser Graphics? How are multiple dsiplays supported? Mapped to different physical oddretses? Hcs anyone done this?

 os386/expert.query #40. from Jcockerhom. Wed Jon 7 18:52:09 1987. A comment to message 39.

 Multiple EGAs can be supported by disabling the BIOS In one, and fixing the addresses for the page of video memory. More than likely some of the OS will perhops, provide some form of emulation that lets the application think that it has the adapter when it really does not. This Is not multi-user graphics
per se, but a mechanism to allow several routines to share a resource. I am just trying to think obout the right woy to do this. With the EGA. as currently defined, it will not be easy to Integrate Into a multi-user
env.

 os386/expert.query #41, from meed. Wed Jon 7 21:03:28 1987. A comment to message 40.

 Part of the problem Is that the obvious solution doesn't work. The EGA performs some funny Internal operations depending on all data written to It.

 Although I haven't thought about It extensively, you might get Into trouble trying to virtualize on EGA by simply (assuming a Virtual 86 mode program here) mapplrvg the EGA's address space to another physical location and then updating the REAL EGA when that tosk Is active (or owns the disploy. or whatever). That sort of approach would work OK for o monochrome or CGA kind of display, but not for on EGA (I don't think).

 Fortunately, I have the luxury of spending most of my time designing operating systems for graphics coprocessors and producing graphics boards which allow each oppllcatlon In a multitosking environment (and even the multitasking environment Itself) to totally Ignore the fact that they are running In such an environment. Applications just leave the driving to us.

 os386/expert.query #42. from jcockerhom, Thu Jan 8 18:35:19 1987. A comment to message 41.

 How would one provide the 4 parallel bit planes and the soft fonts If one attempts to virtualize the EGA? Conceivably, the task which attempts to talk to the EGA could be suspended until It gets the hardware, or some such thing. But like It or not, the EGA Is not going to fit Into the 386 architecture very easily at all If applications expect to roll their own graphics.

 NOW I CAN REMEMBER...__

 ot386/expert.query #43. from meed. Thu Jon 8 20:19:36 1987.

 ... what the problem Is.

 If the OS simply redirects the EGA output to another

 RAM location and then updates the real EGA In the same manner when that task becomes active, you'll be OK until your application tries to READ back data which was (presumably) modified by the EGA In weird and wonderful ways when It was written.

 Perhaps the only way to do It Is to write a software emulator which can trap all EGA memory accesses and modify the results properly each time. It will probably have the undesirable side effect of making the system speaker say "oink oink" each time, however.

 os386/expert.query #44, from bllln, Thu Jan 8 21:25:04 1987. A comment to message 43.

 The word I have on that emulation Is 1000:1 slowdown. Bit of a problem, what? BIIIN

 os386/expert.query #46, from Intel, FrI Jan 9 02:47:12 1987. A comment to message 43.

 It is correct that virtualizing the EGA is one of the toughest tasks In designing multitasking OS that does virtual EGA, I Imagine Softguard can shed some light on how the deal with nasty Issues like write-only registers that do strange things.

 This leads me to a question ore there any good books on progromming/understandin g the EGA. My favorite PC book the Norton book does not get Into any real details

 However there Is hope with solving this problem also. Intel has developed a nifty graphics chip called the 82786 which provides fast support for hardware windows. My crystal ball soys that the 786 with some fancy software should be help virtualize the EGA.

 os386/expert.query #47, from rduncon, FrI Jan 9 03:28:14 1987. A comment to message 46.

 It would be a shame to see anyone waste the power of the 82786 on virtualizing the EGA. Some nice articles on EGA.programming are finally appearing. There hove been several In PCTJ In the last few months, ond the lastest Issue of Programmer's Journal has a nice one too. For a general Introduction see Wilton's article in the 1985 IBM PC Issue of BYTE.

 os386/expert.query #48, from bllln, FrI Jon 9 07:45:28 1987. A comment to message 46.

 The current Info available on BIX Is listed In

 grofIc.dlsp/specs #6 courtesy of Barry Nance (barryn).

 BIIIN

 os386/expert.query #49, from meed, FrI Jan 9 20:55:15 1987. A comment to message 48.

 I'd have your crystal ball hauled In for a tuneup, Mr. Purkiser. Today, In fact Is the first anniversary of the day I held an 82786 In my hot little hands and during that year I've discovered precious little In It which would help virtualize an EGA. It has a large number of other outstanding features which make It EXCELLENT for use In 80386 systems, however. The chip's basic ability to remove any hardwired association between physical display RAM and the data displayed on the screen make It Ideal for multitasking environments. Each app requests Its own portion of screen memory (as one would do with a mallocQ call In system memory) and then request the OS or graphics system to create a hardware window In which to display that data. The actual placement, sizing, and overlapping of those windows Is managed by the OS external to the application - but the application doesn't care. Gone are the days of applications being asked by the operating environment to redraw a portion of their display because another window moved and exposed It. With on 82786, It does nothing more than that - exposes It I

 I get to play with an 82786 In an 80386 machine on my desk every day. I can't wait to see some people out there develop some REAL uses for the pair.

 os386/expert.query #52, from tanj. Sun Jon 11 06:02:32 1987. A comment to message 49.

 If I understand you aright, software "windows" are

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH 1987 197

 redundant. Do you hove any whisper of someone Integrating window priority and buffer swaps with the process swapping In the OS kernel (Ideally Unix) ? I rather like the Idea of swapping my window buffers to disk when my process's other memory Is swapped out too. The screen's overlapping windows would give a picture of processes recently active and resident. Combine this with hardware managed virtual memory, and most of the struggle with MS Windows seems a poor Investment.

 VIRTUALIZING EGA/CGA

 VS. MULTITASKING GRAPHICS_

 os386/expert.query #53. from dtuttle. Sun Jan 11 15:46:56 1987.

 I'll take a contrary position on this Issue, Just to see what other people have to soy. The difficulties In multiple access to an EGA/CGA/ whatever controller Is that the functional breakdown Is wrong. Clean ac- cess can only be accomplished If there Is a common software Interface to the graphics resource, such os a windowing package, GKS kernel, or some yet-to-be-defIned alternative to a dlrect-wrIte-to-hardware approach.

 As long os each "application" wants to use Its own graphics routine, the only performance-acceptable approach Is some very fancy hardware (a multiple-image controller, with built-in windowing) or more than one EGA card — one per application, each with Its own screen, or with some means for choosing which screen will be actually displayed. The multiple-card approach would require cords with a "settable" address range, so that the physical addresses would not overlap but could still be mapped Into the virtual space of each task or user.

 >*<- Dave T.

 os386/expert.query #54, from meed, Mon Jan 12 16:65:34 1987. A comment to message 53.

 > EGA virtualization

 I agree that, provided we start with some rules and follow them, we're OK and that there are many acceptable sets of rules from which to choose. But the problem Is supporting all the EGA-specIfIc software that's already therel

 > Hardware windowing

 As I see It, a sensible system using hardware windowing can provide a set of visual priority and protection mechanisms directly parallel to those provided os processor/memory priority and protection using on 86386, A rather favorite topic of my fantasies, I admit.

 os386/expert.query #56, from jshlell, Tue Jan 13 66:54:16 1987. A comment to message 53.

 True a common software Interface would be the "Least Worst" (le there are no easy solutions) however this Ignores the Installed base of "Bad" software. A hardware solution while more expensive Is also, I suspect, a more acceptable general solution.

 Jon ShlelI

 PS: I mean the Interface would be the fastest, simplest and could be used to allow virtualization of any graphic display. But ...

 os386/expert.query #57, from bllln, Tue Jan 13 66:57:21 1987. A comment to message 56.

 Right. Nobody sold It was perfect. But It would (finallyl) get some programmers to write hardware Independent code. And they would prosper. BIIIN

 os386/expert.query #58, from jcockerham, Tue Jan 13 26:66:41 1987. A comment to message 57.

 The Intent of providing In this forum the discussion about virtualizing EGAs has to do with how those of us writing operating systems for the 386 will put virtual 8686 tasks (and I do mean plural tasks) under a common operating system (a VM If you will) and provide concurrent execution of the already written, and bad acting DOS applications. I think, however, that the EGA as It currently Is architected will never easily

 support virtualization. One solution, but poor, would be to suspend any tasks that talk to the EGA through anything other than well-behaved BIOS calls or even higher levels.

 os386/expert.query #59, from blMn, Tue Jan 13 23:25:65 1987. A comment to message 58.

 I would basically agree with that approach. 386 systems will rapidly replace their EGA displays as better become available, and apps will follow. Virtual EGA has a narrow (about a year IMHO) market window and Is therefore not worth an excessive amount of effort.

 Bi I IN

 os386/expert.query #66, from Jshlell, Wed Jan 14 63:36:12 1987. A comment to message 59.

 I disagree; the amount of effort Is related to the number and popularity of programs that use It, and how long (If ever) It take the user base to outgrow (le move up to "better hardware") the current EGA.

 Jon ShlelI

 os386/expert.query #61, from Jcockerham, Wed Jan 14 26:16:26 1987. A comment to message 66.

 Even with better hardware, the popularity of EGA applications and the NEC multisync mean at least considering some form of emulation. There are a lot of users out there who will be expecting to run graphics and something else at the same time

 os386/expert.query #62, from dtuttle, Thu Jan 15 66:13:67 1987. A comment to message 61.

 The really Important question Is whether any significant number of people will want to run MORE THAN ONE graphics-interface application. If all you really need Is one "old-style" Interface plus some small number of well-behaved text-mode Interfaces, It should be possible to manage without fancy (read: expensive) extra hardware.

 In the slightly longer term, when a good hardwareindependent Interface has been defined AND ADOPTED by the majority of the software. It will still be possible to dedicate an "old-style" EGA controller with Its own screen, to the Important application which needs all of the Interface capabilities. It's even likely that the "digital HDTV" trends will eventually give us monitor which con accept more than one video feed, with builtin "windowing".

 In the meantime, the operating systems will probably have to moke do with "stealing" a few-IInehlgh window at the top or bottom of the screen, for well-behaved text messages only, while allowing a single grophlcs-mode task at a time. It's easy to protect the display RAM - Just don't mop It Into the address space. This also gives the system on automatic trap on any attempted access.

 >♦<- Dave T.

 08386/expert.query #63, from Jcockerham, Thu Jan 15 21:39:53 1987. A comment to message 62.

 The EGA even has that now, with Its split screen. I agree that the definition will have to come, and things will be painful for a while after Its Inception.

 EGA AND 386

 os386/expert.query #67, from matt.trask, Mon Jan 19 08:63:51 1987.

 We currently have the EGA fully supported In the Vplx product and It was pretty straightforward given the 386*s 10 permission mopping. The real question Is what will the users want to be able to do with It?

 os386/expert.query #68, from Jcockerham, Mon Jan 19 13:66:58 1987. A comment to message 67.

 That's very good. But tell me, how are you allowing two DOS sessions to run to the EGA simultaneously? That's more what this thread has been about.

 198 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 os386/«xpert.query #76, from mott.trosk, FrI Jan 23 08:18:28 1987. A comment to message 68.

 I understand the focus of this thread - thus my question: "what will the users want?" Do they expect Sun windows on on EGA? Is full screen swapping sufficient? Will they be satuisfied to run a single foreground graphics task? I think we all agree that new hordwore and graphics standards will remove the problems associated with current EGA hardware - I con see a 386/786 solution that will provide multiple EGA compatible sessions in windows on a large screen display.

 So, being that there are no users (yet) for multitasking DOS products, how do we find out what they wont while we wait for newer hardware? Vpix currently supports a single ill-behoved EGA graphics task in the foreground on the console for the beta release and we Intend to support multiple EGA tasks in the final release ond I believe that the user will just hove to "pay the price" performance-wise In order for this to happen.

 Opinions?

 os386/expert.query #78, from blMn, FrI Jan 23 10:49:25 1987. A comment to message 76.

 Were It me making the decision, I would support a single EGA emulator session, foreground or background, displayed or not os the user wishes. This should satisfy the majority of users and give an Incentive to all to upgrade software for the better display hdw.

 For a short while It might cause some restriction, but would minimize performance Impact and the service where absolutely needed.

 Consider the tradeoff. If the EGA emulation slows the screen display as little as 50:1, how many people could stand running two slow apps at one time. Given the rumored 500:1 ratios, even one would be a problem.

 Bi I IN

 os386/expert.query #79, from jcockerhom, FrI Jan 23 19:47:04 1987. A comment to message 78.

 I think that the ratios will be even worse than 500:1, depending on how close to on EGA the emulation needs to provide. Certainly the primitive BIOS services can be written, with little if any performance penalty, because the operating system will have to provide basic screen services. The bugagoo Is these very Ill-behaved applications. Including Windows that Insist on rolling their own, by directly manipulating the hardware. I appreciate the opinions expressed by all and hope that someone smarter than I wl11 have to creote this software.

 As for 82786 emulation of the EGA, that will be no piece of coke either. The 82786 does not provide the bitplanes present In the EGA. But I think any further discussion of the 82786 EGA emulotlon Issue belongs In the graphic.disp conference.

 os386/expert.query #70, from jshlell, Tue Jan 20 01:27:48 1987. A comment to message 67.

 How is the performance when a background task (such os EGA PAINT does a rep move with bIt-bIt operations enabled ??), or do you only support "well behaved" EGA users In the background. Jon Shlell

 PS: I would guess that you must see alowdown of between 100 ond 500 times for the above worst cose.

 386 PRM ERROR

 os386/expert.query #69, from msokol, Tue Jan 20 01:24:03 1987.

 Is the Intel 386 PRM correct. Is REP MOVSW really faster that REP STOSW? Marc

 os386/expert.query #72, from tpennello. Wed Jan 21 01:52:35 1987. A comment to message 69.

 I hod olso heard this was true, although as a rumor. I used the Phor Lap assembler and debugger to run a protected mode 386 program on a Compaq. It did the following

 repeat 2000 times [rep (stosd | moved) with ecx •> 20000] All constants are in decimal. The times: stosd * 13.31 seconds

 movsd - 21.19 seconds time with a stopwatch.

 Stopwatch on ¥rhen typing "g" In the debugger; off when debugger responds that program terminated normally.

 I haven’t tried the test on my Intel 386/20 UNIX box but I expect similar results. All data was allaned.

 I also tried the test using movsw and stosw (2-byte operotlons) Instead of four-byte operations. The results: NEARLY THE SAMElll (perhaps .1 second different). Moral: for aligned data, always use 4-byte opns.

 os386/expert.query #73, from Intel, Wed Jan 21 02:03:45 1987. A comment to message 69.

 I asked the microcode boys obout this sometime ago and the answers is Yes the PRM Is correct Rep MOVSW Is faster than REP STOSW. However, I wl11 double check this again. Cl If Purkiser

 os386/expert.query #74, from Jcockerhom, Thu Jan 22 20:30:14 1987. A comment to message 70.

 The performance will be very slow. Again, because of the EGA hardware, and IBM's decisions about that board, the EGA wl11 be difficult to impossible to virtualize.

 os386/expert.query #75, from jshlell, Thu Jan 22 22:54:37 1987. A coiMient to message 69.

 Mark:

 I ran a test on a Compaq/386 In real mode and got the following results:

 Operotion MOVSW DI-SI+4KB STOSW

 MOVSD DI-SU4KB MOVSW 0I-SU4 MOVSD DI-SI-('4 STOSD

 MOVSD Dll1006}, SI{1001(

 STOSD DI110061

 Cycles per 4B moved 16-17 10-11 8-9 8-9

 4- 5

 5- 6 19-20 15-16

 from the above It apoears that the spec (4c/DW for Movsd, 5c/DW for Stosd) Is correct. Also the difference between the <*>4 and <f4KB cases Is caused by the trashing between src and dest static col. In the Compaq, the 4>4 case Is approx, pure zero wait state and •f4KB Is approx a pure 2 wait state case.

 Jon Shlell

 os386/expert.query #80, from meed, FrI Jon 23 20:07:30 1987. A comment to message 79.

 Well, I guess the emulation of a single EGA In the foreground when you hove o physical EGA installed was a "given" - I ossumed that when you sold VP/Ix did It I assumed there was something more than be able to let the hardware do what It does anyway. But I think that the ability to support multiple EGA applications Is pretty vital - If for no other reason that the fact that It is pretty tough. If not Impossible, for a typical user to determine by Inspection whether his applications softwore Is "clean" or not. Most folks just don’t know ond don’t want to know.

 As for taking o performance hit, that’s quite certain to be a problem If you try to do something like run two copies of Windows (I.e. skip the Clock application, you’ll be better off with a sundial) but I oon’t think mony people
will
 do that. The trouble is thot disploy errors ore unforgiving - If ANYTHING is wrong, ths user Is discomfited. If my normal, nice BIOS oppllcotlon does ONE tiny
little
 tweak to the EGA hardware (or ot least a small number of them) I’m probobly NOT going to notice the performance penalty but I
WILL
notice If my screen looks funny when I twitch to that opp.

 continued

 5>TE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 199

 Moral: Sometimes you con do It fost, sometimes you con do It slow, but you ALWAYS hove to do It right.

 os386/expert.query #81, from Jshlell, FrI Jon 23 21:41:33 1987. A comment to message 79.

 I Agree with your comment that further discussion of using the 82786 to emulate and EGA belongs In another conf. Jon ShlelI

 os386/expert.query #82, from ton], Mon Jon 26 83:33:33 1987. A comment to message 88.

 Surely the summary of this thread so far Is that EGA Is a tar-pIt for 386 systems which aim to run DOS guests, unless they do so by suspending all but one at a time.

 I hope someone from companies like Interactive or Software Link has been thoughtful enough to get on the phone to AST, Hercules, Compaq (?), and suchlike, to explain the opportunity to moke an upgrade of the EGA which gets us out of this mess. After all, most folks who ore buying a new 386 box ore buying a new adopter too.

 The EGA problem exists and Is thoroughly embedded In existing applications (not least because IBM never seems to understand that mediocre slow BIOS functions ore of necessity bypassed). An EGA-1 Ike board which had a mega- byte of memory (le. 4 virtual EGA spaces) and a display engine to select windows to be displayed would be the right product at the right time and make a few bucks. No-one with money to buy a 386 this year will be Interested In software emulation 500 times slower, and next year the multi-EGA will be as cheap as an EGA now.

 os386/expert.query #84, from bllln, Mon Jan 26 13:24:54 1987. A comment to message 82.

 Good suggestion. People like Chips and Technologies and ZYMOS should listen. BIIIN

 PAGED VIRTUAL ?

 os386/expert.query #83. from tanj, Mon Jan 26 03:33:54 1987.

 Does any 386 OS now announced or Imminent definately support paged virtual ?

 os386/expert.query #85, from ksarno, Mon Jan 26 23:43:00 1987. A comment to message 83.

 	

 	

 	
 system.

 AVAILABLE NOW(I)

 	
 Merge-386

 	
 Locus

 (213) 452-2435

 	
 A11 owe DOS oppIIcatlons to be run under the Intel/Interactive UNIX Port. Uses virtual 8086 mode.

 	
 PC/MOS-386

 	
 Softwore Link

 (408) 998-0700

 	
 A mu 11luser/ multitasking OS that can run both MS-DOS

 oppiIcatlons and protected mode oppiIcatlons.

 Avallable Feb.

 23, 1987.

 	
 3861DOS-Extender

 	
 Phar Lop

 (617) 661-1510

 	
 Runs 32-bIt protected mode appiIcatlons under MS-DOS 3.X. Avallable Dec. 1986.

 	
 UNIX

 	
 Int.raetiv.

 (213) 453-8649

 	
 A port of UNIX System V to the 386.

 Intel Is footing the bill for th1s one. Avallable

 Ist Quarter 1987.

 	
 VM/386

 	
 Softguard

 (408) 970-9240

 	
 Probably the most ambitious 386 OS project. VM/386

 Is patterned after the popular VM/370 mainframe OS. Runs multiple OS’s as virtual mochines. WIN support both MSDOS and protected

 Table captionmode oppiIcatlons. Aval I able 2nd Quarter 1987.

 The INTERACTIVE Systems (my employer) port of Unix V.3 for the 386 which was done In close cooperation with folks at Intel Is now In Beta test (available from Intel) In around 50 sites and fully supports demandpaged virtual memory using the AT4T ’regions* obstroctlon Initially Introduced In Unix V.2.2.

 os386/expert.query #86, from Jshlell. Tue Jon 27 04:55:50 1987. A comment to message 83.

 In addition to the Unix V.x Ports (all of which will be supporting paging as far as I know). Softguord will be supporting paging In their VM/386 product. Note that In a PC type system paging will NOT be very Importont because the I/O system Is very limited, thus paging will be SLOW. I would guess a rate of maybe 2 pages per second would be very noticeable. Jon ShlelI

 80386 OPERATING SYSTEMS

 os386/expert.forum #1, from pharlap. Wed Nov 5 21:14:14

 The 80386 certainly has attracted a great deal of ottentlon from OS developers. Here Is a list of announced (but not shipped) OS’s for the 386:

 Product Nome Company Description

 VP/lx Phoenix

 (617) 762-5030

 XENIX-386 Microsoft

 (206) 882-8080

 Allows DOS app11 cot Ions to be run under the Interoctive UNIX port or XENIX386. Uses virtual 8086 mode.

 XENIX for the 386. Available 2nd Quarter 1987.

 Here are some rumored OS's for the 386:

 Concurrent DOS-386 - A 386 version of DRI’s multitasking MS-DOS compatible operating system.

 Other UNIX ports - Whenever a new chip Is Introduced, there seems to be at leost three or four UNIX ports done for the chip by various companies. Expect the something to happen with the 386. A Berkeley 4.2 port seems like a good bet. Some of the new Sun extensions to UNIX also look very Interesting.

 Multitasking DOS 3.2 from Microsoft — allows multiple PC applications to be run under MS-DOS In virtual 8086 mode. Similar In concept to DeskVIew 1.3.

 DeskVIew 1.3 Quarterdeck Runs multiple MS- 'Windows for the 386 — runs applications In virtual

 DOS applications mode. The big odvontoge over the current version

 (213) 392-9701 each with 640K of

 memory. Also a windowing

 200 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 of Windows is that each application gets its block of memory instead of every applicatior over the some 640K bytes of memory.

 DOS 5.0, Advanced DOS, 28600S, ADOS, etc. — 5*/ every name you coll It, this is the next ve-sicr: of MS-DOS from Microsoft. Supports 286 protected sr-C

 multitasking. Will run existing 8086 PC oppi*cct»oos" but only one at time. Since the 386 con run 236 C
9
«e. Microsoft will pitch it os a 386 OS also. Use
It if you love segment registers and progrotMiIr^g long memory model. Available sometime In tre first half of 1987.

 DOS 6.0 — True 32-bit protected mode MS-OOS for t-e 386. Bill Gates was quoted os saying in ComputerWorwhat there won’t be a DOS 6.0 unti! er-^ of 1987. Don’t bank on it after what hoppenet ef Windows and DOS 5.0.

 True Blue DOS — Multi-tasking, protected k y

 killer, virtual- machine DOS from IBM that fs into ROM ond uses custom 386 Instructions. Mo-w strange rumors are flying around about this
or%\
 it is really hard to believe ony of them.

 Sources: PC Week. InfoWorld, MicroBytes, end ComputerWorId.

 P. NORTON AND 82786/80386

 os386/expert.forum #2, from fheiIbronner. Moo T2

 14:04:06 1987.

 In the 6-JAN-87 issue of PC Week PN (Peter
hertoe) discusses the comparitive strengths of the S2736 the TI 34010. PN says "if it’s easy to imoieM-t virtual windows with the chip (82786), it’s Jsst ss eosy to implement entire virtual displays —

 EGAs, if you will". Well I guess we will, r/ is. how *easy* is easy? Most of the converse: hos been on how complex the virtualization of
£Sa is. Comments?

 08386/expert.forum #3, from bllln, Mon Jon 12 ?5;36:13 1987. A comment to message 2.

 Some of the discussion about the EGA virtue izc^ c** *"cs gone on in graflc.disp (unabashed piug)/processo^. It seems that the ’write only’ registers ond t^^e wey :»e board handles bit planes are ereally* dlfficw’: (rood lots of cycles) to virtualize.

 EGA can be looked at in two ways: As a (board) requiring hardware emulation OR os e display definition (640 x 350 x 4) with 64 possible colors. Emulating the former Is a bear, doing the
letter 9«>^t to be reasonable.

 If Peter Norton Is suggesting the
former
(“crp^cre) emulation Is easy, he knows not whereof he
spooks. Basically I’m not os suprised as some bscouse t^^e internals of the EGA are trickey to soy the 'ecst ovd PN’s columns hove become disappointing of lote

 BIIIN

 os386/expsrt.forum #4, from meed, Tus Jon 13 M:12:92 1987. A comment to message 3.

 The 82786 provides NO (with a capital NOTHIlC) support for the virtualization of the EGA. Since one con write to an EGA display RAM location ond
hove the EGA modify that write using Its hhardwarKe (e.g.
moce
the written value be XORed with current RAM), o sequence I ike

 MOV ES:[BX], AL MOV AL, ES:lBXl

 must, when emulated, return the properly
modified
value In AL. On on 80386, you’ll hove a hard time finding ANY graphics pr^ocessor which can
"virtuolize* t^e required hordware modification fost enough (j-st c
few nanoseconds) to perform properly.

 08386/expert.forum #5, from Jcockerhom, Tue Joi 13 20:00:09 1987. A comment to message 4.

 However... In a virtualized EGA, the access to the RAM would be flagged and the emulating routine woerd somehow (And I really do not know how) set t^is up. One

 ideo I had was to come up with an operating system call end maybe use the trap on the 80386 to allow execution of one instruction In the user’s code and then trap beck to the operating system so that the virtual EGA would be able to reset for the next read/write access to video rom. In the above example AL would be set with the correct value the emulation reset In the mov es:bx,ol. The instruction would be restarted and after its execution, the emulation would trap on the next •rstruction the "mov al,es:bx". The correct plane would be sapped into the video ram space end the Instruction would be restarted. You have to reset the emulation trop after restarting instruction so that the reads will set the emulated plane latches and perform color conporlson and the epu writes will set all of the sepped planes. This is a real bear!

 os386/export.forum #6, from meed, Thu Jan 15 10:49:23 1987. A comment to message 5.

 You’re right about that method solving the problem... but causing a protection violation on every RAM access (end I/O access) to fake it out makes me want to cry.

 IN THE BEGINNING...

 users386/compat.hard |2, from rduncon, Mon Nov 3 23:56:44 1986.

 I’ve heard rumors that Intel Is on the verge of or-iouncing a 80386 accelerator board for the PC/AT. Some say that It will be displayed at Comdex, and that It
will cost several thousand $. Anyone hove some outhentic info on this?

 veers386/compat.hard #5, from Inboard, Tue Nov 4 1A:33:35 1986. A comment to message 2.

 I think I con help. Intel has already announced the product; It’s called Inboard 386/AT. It’s on r-noncement board for ATs and compatibles.

 It uses a replacement architecture for compatibility. Cependlng upon the program. It delivers 2X performance increose over on 8MHz AT.

 There’s o 0-waIt state cache and up to 3 MB of 32-bIt memory
 (1 MB on Inboard Itself and 2 MB on a piggy-back module). There’s a socket for a 387 when It becomes ovollable; until then, there’s a 10MHz 287 module ovolloble. List price Is $1995 with 0K. First public showing Is at Comdex next week. Shipments start In January.

 I’ll
 be happy to answer any questions. My name Is John Beoston and I’m the 386 Program Manager for Intel’s Personal Computer Enhancement Operation.

 users3d6/compat.hard #7, from
villi,
 Wed Nov 5 16:23:30 1986. A comment to message 5.

 This sure looks nice. I already have an Intel AboveBoord with 1.6 Megs on It in my AT, using It os a RAM disk. I presume there
will
 be no problems using It with the InBoard. Am I correct? Also, Is Intel going to be supplying the software to run PC-DOS In virtual mode on the board? If not, who Is? Although I’m gonna be developing softwore (a compiler) for the 386, I still
 wont to run PC-DOS on the board, RAM disk and all.

 users386/compat.hard #8, from Inboard, Thu Nov 6 1:02:32 1986. A comment to message 7.

 You bet Inboard Is compatible with AboveBoerd. The Inboard memory Is all extended memory and we
will
 be supplying an expanded memory emulator. So you might want to reconfigure your AB memory for extended.

 Thot’s just
0
 suggestion, there ore several ways to go; use leave the AB as expanded memory and use the Inboard memory with VDISK, etc.

 I can’t comment on 386 control software for Inboard. I can say that we are working with every vendor I know of who’s doing such software. Watch the press for announcements....

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 201

 u«tr«386/compat.hard |9, from vlllK FrI Nov 7 20:37:21 1986. A commont to motoogt 8.

 This is just whot I wonted to haor. My AboveBoord It oiraody configured os extended memory, since we olso use XenIx/286 here. Soy, this InBoord looks greot. When con I get my bonds on one?

 users386/compot.hord #22, from Jborrett, Sot Dec 6 04:00:18 1986. A comment to messoge 5.

 I own
0
 Z-248 (Zenith PC/AT clone) configured os follows: 1 COC 40Meg hard drive 1 Segote 4051 40

 Meg hord drive 2 Z-445 Fast memory cords (0 wait stotes) 1 Intel Above Board PS/AT w/piggybocked memory 1 80287 8MHz coprocessor 1 Tecmor EGA cord My question Is will the Inboord 386 work In this mochine without overloading the power supply ond/or crushing In flomes (fIgurotIvely). It Itr really worth the extra expense for the extro umph? According to Norton's SI ver 3.00 my mochine oil ready morks ot 9.2 index. Is thier ony llteroture on the performonce running BYTE'S Infamous benchmarks?

 users386/compot.hord #23, from Inboord, Sot Dec 6 13:11:55 1986. A comment to messoge 22.

 There shouldn't be ony problem with the power supply: every AT compotible that we've looked ot hod plenty of juice left. There might be o mechonlcol problem with your mochine however. We hove not tested the Zenith mochines yet. Since they use o non-motherboord opprooch, we might hove cobling problems. It will be hord to tell until we try It. Coll our technicol support hotline (800-538-3373) ond osk If It's been done yet. [If It's not yet been tested, they probably con't give you o schedule on when It will be - there ore soooo mony mochines ond soooo little time.... Just try the hotline ocosslonoIly.]

 Regords, John.

 WAIT
 OR PLUNGE?

 users386/compot.hard #14, from curtf, Tue Nov 18 09:05:02 1986.

 I just returned from COMDEX, where I sow quite o few 80386-bosed products. Most of these were being "onnounced" or "previewed," with delivery promised anywhere from Q1 '86 to Q2 '87. I also sow o *LOTe of 12Hz 80286 products, most of which ore now being shipped. My question Is this: Given the reody ovolloblllty of 80286 mocKInes, ond the un-ovollobi11ty of 80386 mochines (ond I've not even mentioned OS ond oppllcotlon softwore for the 80386), would o compony which needs high-speed microcomputing be better served by buying on AT-clone now, or by woltlng (6 weeks or 6 months) for on 80386-bosed mochine. I don't reolly wont on onolysis of the situotlon of the purchosing compony, just your reoctlon to the current stote of the two types of mochine.

 Your Ob'd etc.. Curt Fronklln, Co-Moderator

 u8ers386/compot.hord #15, from bllln, Tue Nov 18 11:14:13 1986. A comment to messoge 14.

 Not on eosy question to onswer. If they need the 386 speed then COMPAQ or Advanced Logic Reseorch (ALR) ore shipping 386 mochines now. ALR octuolly beot Compoq onnouncement by one week ond hos been shipping since August 1. But there Is o cost Issue. Right now, 386 mochines cost more per MIP thon 286 mochines. If they 0
 buying o bunch, this Is on Issue.

 My persons I opinion Is to go for o 386 mochine becouse of the ultimote benefits of the processor copoblllty. But for routine non-power user use, on Inexpensive AT does the job. Is cost effective. Is ovolloble ond well debugged. Don't go 386 If on AT will do the job. BiI IN

 u8ers386/compat.hord #16, from Inboord, Tue Nov 18 11:24:58 1986. A comment to messoge 14.

 Forgetting my corporote olleglonce, we hove o lot of experience on 12MHz ATs ond 386 mochines. Our compotIbl11ty lob hos tested severol 386 mochines oil with excellent results with both hordwore odd-Ins ond softwore. Our experience with 12MHz ATs Is mixed.

 The design of the 12MHz AT hos o direct beoring on how well It will work with odd-In boords. Some designs simply cronk up the clock. While these mochines give the best performonce (both processor ond bus speed up), they're the worst for compotIbl11ty. Designs which stow down the bus ore definitely the best ond the performonce tmpoct Is mlnimol.

 Overoll, I'd wait. Given the problems we've hod with 12MHz ATs ond the foot that 386 systems ore shipping now (Compaq ot leost ond others In Q1), the 386 Is the right choice. Vlrtuol-86 mode softwore will olso be shipping In Q1 ond It won't run on on AT ot ony speed. Also, If you're thinking obout protected-mode DOS, don't forget It'll be slower than regulor DOS. A 386 mochine will more thon give bock that lost performance.

 users386/compot.hord #19, from bllln, Tue Nov 18 15:11:11 1986. A comment to messoge 16.

 I'd soy thot's on oversimplified onswer. Good 12 ond 16MHz AT's ore In existence ond hove been tested.

 There Is o good cose for those mochines thot con be mode If It Is not for o power user. Cost/performonce and ovolloblllty ore still reol Issues. In my opinion, there Is still morket and room for both. BIIIN

 users386/compot.hord #17, from sklugsr, Tus Nov 18 11:44:37 1986. A comment to messoge 14.

 IMO
0
 16 MHz AT clone (heck, even o 12 MHz unit) will deliver o much better cost/performonce rotio until ot leost 4087. That Is, 80286 machines, of course. The 386 will not be o greot Improvement until 32-bIt OSs ore written and used, and until people migrate from their 8-bIt 8088 opp11 cot Ions Into the 32-bIt world. Given the software bose ond the reluctonce to switch, the letter moy never hoppen ot oil.

 KEYBOARD PROBLEMS
WITH
 COMPAQ 386

 users386/compoLhord #18, from ter Jem, Tue Nov 18 15:04:30 1986.

 I hove just started to use o 386 beost here In Norwoy, and I hove found the following problem: I om using Compaq's Enhonced Keyboord (100-f keys). This keyboord will not run with IBM's DOS 3.2 Keyboord Support progrom; KEYBNO.COM, or rother. It will run, but oil the extro keys ore dlsobled, ond the speclol comblnotlons which we use here to get both English ond Norweglon letters dosn't work.

 Terje Mothlsen

 users386/compot.hord #20, from vllll, Mon Nov 24 20:37:30 1986. A comment to messoge 18.

 Lest you Americons forget, the problem mentioned by ter jam Is o very serious one when It crops up. Monufocturers must beor In mind thot o lot of people don't speck English os their notive tongue.

 In Icelond, we've got 10 odditlonol chorocters (oslde from the English 26) which must be entered on the keyboord with o key comblnotlon. If o mochine can't support this. It con't be sold ot oil here, ond I suspect thot the some is cose In most other Europeon notions.

 PROGRESSIVE
ST/386
 BENCHMARKS

 u8ers386/compot.hord #21, from mwerner. Wed Nov 26 05:47:00

 Well here go's o very unscientific test, of the rough performonce figures for the Progressive Electronics ST/386 AT compotible. First o short description of the system. The Progressive ST/386 that we hove here at our firm ore from Computer Clossifleds In MIomI Florldo.

 The ST/306 comes In on XT form factor mother boord with 3 elght-bit slots and 3 16-bIt slots for PC compatible cords. There ore two unique slots on the right bond

 202 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 side of the card, which accomodate the 80386 cpu card and the 640k ram card. The board It designed to allow the user to plug In either a 12 Mhz 80286 or 14.8 Mhz 80386 depending on your needs. The RAM card Is composed of 640k of 120 ns RAM, and I am told that a 4 megabyte card will soon be ready. A 16 megabyte card and Very High performance EGA card are also In the works. The system that I am testing hat no math coprocessor at the moment, but I wl11 add one very soon. While on the subject of math chips, the cpu card on the 80386 has
a socket for one and jumpers that allow the user to select several different clock speeds at which to run the coprocessor. One very nice feature of the ST/386 Is that all of the setup procedures ore contained In the BIOS ROM and If no setup Is stored In the battery backed up RAM, the system presents the operator with a setup menu thot covers all of the varolous stuff you need to setup such as video card type, time/date, floppy drive types, hard drive type, speed of cpu and number of wait states, and smooth scroll and screen blanking time. There's a lot more stuff to mention but this Is really not a revlewl Now for some benchmark times. I used several common programs that exist In the public / end ere easily obtained from most RBBS systems. If anyone has something better, and would like me to run It I would be glad to do so, just send a disk to my resume address and I'll run It end get back to you. The Times ore os follows;

 #1 Norton's SI shows 18.0 to 18.7

 #2 CPU2 By S.Davis end K.Levitt Mixed Test 1.21

 sec.

 Clock - 39.42

 Sieve of Eratosthenes 10 reps 00.44 seconds #3 P.C. Magazine Prime Number Test 50 primes

 00:00:06 seconds

 #4 Looping test 50,000 Loops 2.5 seconds #5 Long Integer Factoring Program 1394761 et 871

 Iterations 2.8 seconds

 #6 Fibonacci Number Generator 10 Iterations

 FIbonoccl(24)«46368 7 seconds #7 MIcroDesIgns Benchmark Program reports a 729%

 ^ Increase In

 performance over a standard PC.

 Well that's It for now. If you got any more questions either bix mall them or call me at the office. MWerner P.S. The text editor on the bIx system Is real crapl so for the real name of the vendor of this product read the following. Computer Classifieds Inc. They ere In Byte This Month.

 SPEAKING OF RF
_

 users386/compat.hard #30, from meed. Wed Dec 31

 00:12:15 1986.

 I would suspect that a lot of the problems people are seeing with 80386s ere similar to those I'm more fomlllor with In graphics products - In the cose of the TI 34010, I'm deoling with a CPU running at 50 MHzl EspecialIv In RAM Interfaces, the Intel chips (80386 and 82786) run fast, sharp clock signals containing edges with lots of really high-frequency harmonic components. Nasty, noisy stuff If you're not careful.

 users386/compet.hard #31, from skluger. Wed Dec 31 11:44:13 1986. A comment to message 30.

 Our new graphics board was originally designed with up to 100 MHz clocks. When the prototype stopped smoking and the oscillator worked, I tuned It to 72 MHz, then walked down the street o hundred yards with my 2 meter HT and It still had a strong signal at 144 MHz (and lotsa noise +-250 kHz. yes, them beostles ore nolsyl monI tor...

 80386 ACCELERATOR BOARDS_

 users386/compat.hard #35, from rduncon, Thu Jan 8 03:38:43 1987.

 Talked to a lady at Intel today who said the ship date

 for the Inboard 386 has slipped to late February.

 KInda strange since working ond very 'productionlooking' boards were demonstrated at Comdex Nov 86. Whats the holdup, Intel? In contrast, a spokesman for Orchid Technology said today that shipments of their Jet 386 board will begin on January 28th and that
a limited number of boards will be available directly from Orchid at an Introductory price of $1199. The Intel
&
 Orchid boards both have 64 KB cache memory but the Intel board can accept up to 3 MB additional fast RAM. The Intel board requires that you remove the 80286 from your AT or clone altogether, while the Orchid board leaves the 80286 also In the system and you can switch between them If necessary for software compatibility reasons.

 users386/compat.hard #36, from Inboard, Thu Jan 8

 17:07:41 1987. A comment to message 35.

 Well, It took
0
 bit longer thon expected to polish off the lost of the compatibility Issues In AT clones.

 (Some of those systems don't use the best design practices.) Don't worry though. It'll be solid when It does ship next month. [Those boards you saw running at Comdex where all In IBMs - not clones.]

 The biggest obvious difference between the Orchid boord and ours Is the extra memory. With Jet 386, except for the cache, all memory Is either on the motherboord or on expansion boords. With Inboard, the extra memory Is 32-blt. It's not just limited to being extended memory; you con configure It to supply from 256KB to 640KB.

 In the 1MB configuration of Inboard, you can split the memory Into 256-640K conventional and 1-1.5 (or 1.5-2)MB extended memory. For both Jet and Inboard, there's a big penalty for going to the motherboard memory. It's why we give the user the option of making as much of the Inboard memory as useable as possible.

 I'm not sure but I don't think Jet 386 will work In anything other than an IBM. Unless they've changed their cable scheme since Comdex, It precludes anything other than a PGA-style 286 and only IBM uses those. Inboard's cabling supports all types of 286.

 COMPAQ ROLLS OUT 386_

 microbytes/lterns #453, from microbytes, Tue Sep 9 16:57:22

 Compaq Computer Corp. (Houston) todoy officially rolled out Its 32-bIt machine, the Deskpro 386. Bosed on Intel's 80386 microprocessor, the system runs at 16 MHz but can also use add- ons and peripherals designed for 8-MHz 80286—based computers without modifications.

 At
0
 press conference at the Palladium In New York City, attended by executives from software houses supporting the new machine, Compaq CEO Rod Conlon sold shipments to US and Canadian dealers have already begun. Canlon said Microsoft will hove XENIX System V/386 ready for the new mochine In the first half of 1987. Bill Gates, Microsoft chairman, said a software development toolkit for XENIX Is reody now. The Deskpro 386 Is packaged In two versions. The Model 40 comes with 1 megabyte of RAM, 1.2-megabyte disk drive. 40- megabyte fixed disk drive, parallel and serial Interfaces, three available 8-/16-blt and three 8-blt slots, and keyboard. Suggested retail price Is $6499. The Model 130 differs by having a 130-megabyte fixed disk drive end one less 8-/16-blt slot. Suggested retail Is $8799.

 COMPAQ CHIEF TALKS

 microbytes/ltesM #456. from microbytes. Wed Sep 10 16:04:43

 At yesterday's debut of Compaq's Deskpro 386, Rod Canlon. Compaq president and CEO, claimed the new machine would perform most tasks two to three times foster thon on IBM PC AT; If the computer were running 32-bit software. It could perform ot ten times the speed of the AT, he said.

 Conlon sold Compaq chose to use the standard 16-bIt but over
0
 new 32-blt bus because the 32-bltter was recJly required only for memory. The Deskpro supports

 continued

 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 203

 up to 10 megabytes of memory on cards attached to the system via a proprietary 32-blt connector. Conlon sold the performance of disk drive adopters and display adapters Is limited not by their bus connectors but by associated drive characteristics or on-board dedicated processors. These cords would gain no benefit from a 32-blt connector.

 When asked about the option of Installing 80386 coprocessor boards in existing computers, Conlon sold the company hod studied this Idea and dismissed It os not being a very good approach. An 8-MHz 286 computer with
0
 386 board Installed, he sold, would still hove pretty much the some performonce oe a 286 machine.

 Asked If a portable 386 machine might soon be available, Conlon would only soy, **That*s on Interesting question." Queried about introducing a 386 computer before IBM hod set a standard, Conlon sold that a need existed for the computer and that the 386 repreeented a critical value right now. He recognized that some buyers may wait to see what extra features IBM Incorporates Into its 386-ba8ed system but sold such feotures would probably be Implemented on Industry-standard 16-bIt-bus expons Ion cards and would be compatible with all Industry- standard machines.

 Conlon predicted that In six months the 80386 will be established so well that IBM will hove a problem getting users to occept a new proprietary system.

 - Rich Molloy

 PRODUCT
 PREVIEW:
_

 microbytes/feotures #4, frosi mlcrobytes, Tue Sep 9 17:17:24

 The Compaq Deskpro 386

 A high-performonce PC AT-compatIble system based on Intel's 80386

 by Dennis Allen ft Tom Thompson

 About a year ago, Intel began selling samples of Its latest- generation mioroprocessor, the 80386 (see the November 1985 BYTE, page 9). After much anticipation this processor hos finally made Its way Into the design of several new microcomputer systems. Compaq, the Houston-based manufacturer widely known for Its IBMcompatible computers, has Introduced one of the first such systems, the Compaq Deskpro 386. The new Compaq machine was designed to be compatible with 80286-based systems, such as the IBM PC AT, yet take advantage of the 80386*s processing power for better performance. Like the PC AT, the Deskpro 386 was also designed to run much of the existing software written for the older 3086/8088 Intel microprocessors.

 System Description

 From the outside, the Deskpro 386 Is spartan In design. The system Is housed In on IBM PC AT-style box with Indicator lights, a security key, and space for up to four half-height disk drives or other storage devices. The back panel of the system unit has a 9-pln serial port and a 25-pln parallel printer port. The system comes with your choice of a standard 84—key PC keyboard or the Compoq Enhanced Keyboard, an IBM RT PC-style 101-key keyboard.

 The standard confIgurotIon, called the Model 40, sells for $6499 and Includes 1 megabyte of RAM, a 1.2megabyte floppy disk drive, and a 40-megabyte hard disk. Compaq also offers a system configured with a 130-megabyte hard disk (Instead of the 40- megabyte hard disk) called the Model 130, which sells for $8799.

 Because no production machines were available ot press time, we examined a preproduction Model 40 that had an additional megabyte of RAM (for a total of 2 megabytes). 360K floppy disk drive. 40-megabyte tape cartridge unit, and color graphics adapter. The system used MS-DOS 3.1.

 Inside the machine Is a 192-watt power supply, a fan. and a single motherboard. The motherboard contains a real-time clock with battery backup, seven expansion slots, the CPU, and a 32- bit slot occupied by the System Memory Board. Four of the expansion slots ore full-size 8-/16-blt slots, and three are 8- bit slots, two of which are full size and one half size. Compaq's

 multipurpose disk controlfer, whfeh is Included with the bose system, occupies one of the full-size 8-/16blt expansion slots. The disk controller supports two 1.2-megobyte floppy disk drives, a 40-megobyte hard disk, and either a second 40-megobyte herd disk or a 40-megabyte tape backup unit. The Model 130 requires on additional drive controller In one of the full-size 8-/16-blt exponslon slots for the 130-megobyte hard disk.

 Unleashing the 80386

 The CPU Is
0
 version B1 80386 microprocessor running at 16 MHz. The 80386 has built-in memory management ond supports o numeric coprocessor, but the motherboard has a socket for only a 4— or 8- MHz 80287 —— not on 80387. The 80386 uses two separate 32-blt buses for addressing and doto. The processor con dynomically size Its date bus to handle 32-blt or 16-blt data bus operations.

 Also, the address bus can be pipelined: that is, the processor con perform address decoding for the next bus operotlon during the previous bus cycle, allowing for overlop of bus activity.

 To top the performance potential of the 80386,

 Compaq designed a high bandwidth CPU bus and memory bus. The CPU bus Is a 32-blt non-mult Ip Iexed address and data bus. This bus provides signals for Interfacing to both the 32-blt memory bus and the 8-/16-blt expansion bus. In the event of bus contention between the memory bus and the expansion bus, the memory bus has priority. The expansion bus Is electrically compatible with existing plug-ln cards for the PC AT. However, we did not test ony plug-ln cords In the system.

 The memory bus provides the bandwidth necessary to take advantage of the 80386's speed and bus pipelining. It uses a paged memory architecture to Improve access times. The memory bus does not Include I/O status or control signals, and It Is not Intended to be used os a general-purpose bus. The maximum physical memory this bus con address Is 16 megabytes. However, using Compaq options, you con expand the system only to 10 megabytes of RAM on the 32-blt bus.

 Faster Memory

 Naturally, a faster memory bus requires faster memory. For this, the System Memory Board Is equipped with 36 256K-bit static- column RAM chips soldered directly to the board, for a total of 1 megabyte of memory with 4 bits for parity. Using this arrangement with 100nanosecond RAM reduces the number of wait states required for memory access In the paged mode to nearly 0. Memory cells within the some physical page can be rapidly accessed by keeping the row address of the RAM constant while modifying the column address. For such consecutive memory fetches within a page, access times con be as low 50 nanoseconds. During nonpaged operations, access times are about 100 nanoseconds. A PC AT, on the other hand. Is equipped with 150-ns RAM.

 The System Memory Board has sockets for another megabyte of RAM chips, which cost $549. Additional memory must bo added In 1- megabyte Increments. When upgrading memory, you must change a set of 9-pln jumpers on the memory board. You can also set the Jumpers to reduce the 640K-byte base memory of the system to 512K or 256K.

 A special expansion board can be piggybacked on the System Memory Board to bring the total memory to 4 megabytes using 256K- bit chips. Compaq also offers a piggyback board with 4 megabytes of RAM using 1-megablt chips for $2999. This board has sockets for another 4 megabytes of RAM ($2699), again using the 1-megabIt chips. A fully populated System Memory Board (2 megabytes) and expansion board using 1-megabIt chips (8 megabytes) give you a total of 10 megabytes of 32-blt high-speed memory. You could also use two 16-blt boards configured with 2 megabytes each to bring the Deskpro 386 to a maximum of 14 megabytes using Compaq options. In doing so, however, you would lose the speed odvantoge of the 32-blt memory bus.

 204 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987

 The Virtual Machine

 An Important feature of the 80386 CPU Is Its virtual mode. This mode, combined with memory paging, allows a reol mode environment (64K-byte segments, 1 megabyte of physicol address space, no memory protection) to be emulated anywhere within the 80386*8 physical address space of 4 gigabytes. The virtual mode also features I/O protection so that the host operating system can Imitate various I/O ports. Compaq claims to have successfully "virtualized" an 8086 machine In the Oeskpro 386. In other words, MS-DOS progroms should run on the Deskpro 386 with little or no modification. More Importantly, Ill-behaved programs — that Is, programs that read or write directly to hardware I/O ports rather than using DOS functions — should operate properly.

 To access memory beyond the 640K of base memory under MS-DOS control, the Deskpro 386 uses a proprietary software driver called the Compaq Extended Memory Manager (CEMM). The CEMM takes advantage of the 80386's memory paging features to emulate the LotusIntel-MIcrosoft (LIM) expanded memory specifications In the Deskpro 386*s 32-bIt memory system. In effect. It virtualizes on Intel AboveBoard. You can Install the CEMM and define the memory size (up to the 8-megabyte LIM limit) using the MS-DOS configuration file, CONFIG.SYS. Using the CEMM with the Deskpro 386*s 32blt memory should result In favorable speeds compered to using the LIM specifications with a 16-bIt memory board.

 This virtual machine arrangement promises to resolve possible software compatibility problems with existing 8086/8088 end 80286 real mode programs, et least In the single-user mode. In fact, the 80386*s virtual mode will allow copies of different operating systems to execute real mode applications concurrently with memory protection and privilege control. But, for now at least, Compaq does not support host software that allows different operating systems to run concurrently.

 System Speed Control

 Another obstacle to software compatibility are programs using time-dependent code that relies on the computer system to be operating at a particular speed. Copyprotection schemes and certain program displays (typically games) fall In this category. Compaq's answer to this problem Is the Deskpro 386's simulated System Speed Control.

 The speed control Is accomplished by lengthening the refresh cycles on the system bus, effectively slowing the CPU. However, lengthening of the refresh cycles Is done In a way that does not Interfere with direct memory access transfers or the bus bandwidth. The Deskpro 386 normally operates In an automatic mode where the CPU speed is reduced to 8 MHz — essentially mimicking a PC AT — each time a program accesses a floppy disk drive. The system resumes Its high-speed operotlon as soon as the disk I/O Is finished. Performance Is not degroded, since the system must wait on the slower disk drive.

 An MS-DOS command, MODE, allows you to manually select a system speed. You con select 4-MHz 8088, 6- or 8-MHz 80286, or 16-MHz 80386 system speeds using this command. The speed remains the same (even through a keyboard reboot) until you alter the setting, or a power-on reset occurs.

 Fast Disk Drives

 To complement the Deskpro 386's data processing performance, Compaq selected high-speed disk drives for the system. The 40- megabyte hard disk has an average access time of under 30 milliseconds, and the 130megobyte hard disk's average access time Is under 25 milliseconds. In contrast, the PC AT's 20- megabyte herd disk has an average access time of 40 milliseconds. Data transfer rotes are 5 megobits per second (same as the PC AT's 20-megobyte hard disk), and 10 megabits per second, respectively.

 For hard disk backups, the 40-megobyte tape drive hos a transfer rate of 500 kilobits per second, which Is about twice the speed of the drive previously offered for the Deskpro line of computers. The tape drive uses a new DC2000 tape cortrldge, unlike Its

 predecessors, which used the DC1000. However, the Deskpro 386 can read, but not write to, the older tape cartrIdges.

 Display Adapters

 The system we examined was equipped with Compaq’s new Enhonced Color Grophics Board ($599), which also made use of the system's virtual mode. The graphics board provides 640 by 350 resolution with 16 simultaneous colors, end It Is also compatible with IBM's EGA. Although the graphics board has only an 8-blt data path, the system cleverly relocates the board's ROM to the 32-blt RAM area. As a result, Compaq claims, graphics execution speed is Increased by about four times. (The system also relocates the contents of Its 16-blt ROMs to the 32—bit RAM area for speed Improvement.) To go with the color board, Compaq offers 0
 13-Inch RGB color monitor for $799.

 In o departure from previous Compaq systems, the Deskpro 386 does not Include a monochrome display controller. Instead, the company sells Its Video Display Controller Board separately for $199. It provides the same video control os that found In other Compaq systems and Is compatible with IBM's Color Graphics Adapter. The controller board can be used with either an RGB monitor (such os Compaq's), a composite color monitor, or Compaq's Dual-Mode Monitor, a monochrome monitor that sells for $255.

 Compatibility and Performance

 The 80386 CPU is object-compatible with 8086/8088 and 80286 code. To examine how well Compaq Implemented this capability, we first ran several programs that we considered thorough In their use of memory and I/O operations. The BASICA on the machine accepted and ran the IBM PC tokenized versions of two BYTE benchmark programs (SIEVE and CALC) without problems. The programs conveniently provided us with a performance estimate.

 The results of these preliminary benchmarks arb Impressive when compared to a 6-MHz PC AT. Generally, the Deskpro 386 ran about three to four times faster.

 We also compared the Deskpro 386*s times to those of a PC AT specially equipped with 100-ns memory running ot 11.5 MHz, and the Deskpro 386 was about twice as fast.

 Next, we compiled several small C programs with Manx s Aztec C, version 3.20C, using the small memory model. We used the two floppy disk drives to compile and link the programs without any problems. Not only did these programs run flawlessly; they ran quicker than we had ever seen before.

 We then ran two programs that are considered Illbehoved In their use of DOS; the XyWrIte editor, version 3.05, with SIdeKIck, version 1.52A, resident.

 The XyWrIte editor responded correctly to the cursor and function keys, and SIdeKIck responded properly when Invoked.

 Admittedly, these tests were less then comprehensive. But they do Indicote a high level of software compatibility. Unfortunately, the only operating system offered for the Deskpro 386 ot press time was MS-DOS. Only a true 32—bit operating system could push the machine to Its limits. Compaq did say that It would offer Microsoft's XENIX System V/386 during the first quorter of 1987. [And Microsoft sold a software-development toolkit for XENIX 386 Is ready now.] According to Compaq, the new XENIX will be demond paged and allow multitasking operations. We did not, however, see even o preliminary version of the package.

 For
0
 Select Few

 A number of folks might benefit from using the Deskpro 386. First, there ore those who need the row processing power to run very lorge spreadsheets or simulations.

 The llneor oddress space provided by the 80386 combined with the Deskpro 386's processing speeds not only moke such work possible but also bearable. And large

 continued

 r Tc
USTINCS SUPPLEMENT • lANUARY-MARCH. 1987 205

 BIX

 complicated progrome, each at expert tyttemt, should run with respectable performance on this machine.

 There are also softwore developers who need o highperformance machine to shorten their development cycle. Here, the fast storage devices are particularly helpful. Moreover, the system’s 80386 CPU ollows developers to begin writing the next generation of software. And for others, the large storage capacity of the Model 130 and Its claimed compatibility with networking software should moke It o high-powered file server.

 But like ony new system, the Deskpro 386 Is not without some dIsoppoIntments. Although CAD ond desktop publishing ore likely candidates for development on the machine, with no I/O signols on the memory bus and the CPU’s 32-blt bandwidth to peripherals effectively halved by the expansion bus, we don’t see the Deskpro 386 as a serious threat In the high-speed graphics workstation arena. Also, the Deskpro 386 seems like overkill In single-user mode. Certainly, a multitasking 32-bit operating system would put the system to fuller use.

 Surely, more powerful 32-bIt peripherals and operating systems are coming for the 80386-based systems. For now, the Deskpro 386 appears to be a well-engineered bridge to a new generation of those machines.

 [Dennis Allen and Tom Thompson ore technical editors at BYTE.]

 FLOATING POINT PERFORMANCE_

 compaq/c386
§7t
 from ddm, Sat Nov 1 13:23:33 1986.

 I was wondering If anyone hod ony data concerning floating point calculations on the Compaq 386? I am somewhat skeptical that there will be a significant performance Improvement (over an AT) for floating point bound programs.

 After all the machine contains the very same Numeric Coprocessor that Is used In the IBM AT. In particular I want to run some 3D graphics programs I’ve written. In a couple of coses (le. Viewing Transformations and Clipping) I’ve written some assembly code that really pounds away on the numeric coprocessor. I wonder If I can expect any performance Improvement on a Compaq 386.

 compaq/c386 #8, from cdanderson. Sat Nov 1 17:52:34 1986. A comment to message 7.

 »Same coprocessor

 True, but Compaq does offer an option which, like some AT aftermarket products, speeds up the 287 to a significantly faster speed than the stock 4Mh2. I haven’t seen this option tested, however.

 C386__

 compaq/c386 #15, from Jwvincent, Fri Dec 5 07:03:22 1986.

 Con someone here, preferably someone In the know from Compaq, help me with a few questions? I hove a manufacturing program which sells for $15k+ and runs on 68020’s (Apollo, HP, Sun) and supermlnls (VAX, DG MV, and Prime) which I would like to port to the 386. The program Is fairly large (3meg object) and written entirely In FORTRAN 77. I need help with the following: Do you hove a true 32 bit UNIX Implemented so I don’t hove to segment this progrom but con just use the vertuol memory copablllty or Is my option to just buy enough real memory to allow It to all be res I dent?

 Is there a F77 compiler avail that will utilize the 32 bit capabilities of the c386?

 How does one go about becoming on official developer for your systems?

 What Is your VAR progrom like? My Intent would be to begin to sell my software and the c386 as a bundled ’•turnkey" package rather than software only as currently. If you know the answers to those questions, please respond. If the response Isn’t for all eyes, send mall. Thanks.

 compaq/c386 #20, from echln, Thu Dec 18 10:22:16 1986. A comment to message 15.

 I bellve that Microsoft wos moking available the XENIX 386 developers kit before the release of XENIX 386. There Is a Fortron 77 compiler available for XENIX 286 but I don’t know about XENIX 386.

 ADDING MEMORY_

 compaq/c386 #23, from echln, Thu Jan 1 11:31:38 1987.

 Does anyone know a CHEAP source for 386 static column 256K rams? or the specs for their 1 Mbit RAMS. I have seen 1 MBit Dynamic RAMS (100ns) advertised In BYTE for about $36 but I don’t know If they ore compatible.

 compaq/c386 #24, from cdanderson. Sat Jan 3 21:12:00 1987. A comment to message 23.

 I would think that dynamic and static ram would not be compatible, which seems confirmed by the fuss that everybody mokes over the memory design.

 compaq/c386 #25, from schin. Sat Jan 3 21:44:21 1987.

 A comment to message 24.

 The difference between dynamic RAM and static RAM Is that dynamic RAM requires to be refreshed constantly otherwise the values In the RAM will decay depending on the room temperature. This Is accomplished by a timer In the PC which sets off a DMA channel every couple of u seconds to rewrite the contents bock Into ram. static ram doesn’t require this refreshing so It requires much less power and may be faster. Evidently static column RAM Is some hybrid between static ram and dynamic ram. Does anyone know what exactly It Is? Can dynamic roms be substituted?

 compaq/c386 #26, from tonj. Sun Jon 4 04:32:44 1987. A comment to message 25.

 Static column ram Is like an extended version of "nibble mode". A static memory cell Is associated with each sense amplifier, one per row, so there Is a whole column of static cells. So long os you do not change column address you may do a RAS-only cycle which reads from the static cells rather fast. Also called "ripplemode" by Intel, see their 51C256 data sheet. I presume Compaq just have a little circuit that recognises when a memory access hits the same column as used In the previous cycle and delivers a RAS-only nowait access. It won’t work so well In a multi-user system where peripheral accesses mix In with the program, and even on a single user machine It just helps a bit with the greedy 80386 code pre- fetch, but what the heck It Is fairly cheap.

 compaq/c386 #27, from fhelIbronner, Mon Jan 5 17:19:56 1987. A comment to message 26.

 Are you saying that If I use nothing but static-col RAM In a multi-user mode (Xenix for Instonce) that I’m not really gaining anything? Could you clarify what you said about the 386 prefetch. Specifically, under what kind of Activity would the prefetch be considered "greedy"? Thanks for the Info!

 Jim Pauley - NOT(fhelIbronner)

 compaq/c386 #29, from fhelIbronner, Wed Jan 7 13:33:55 1987. A comment to message 28.

 Thonks for Info Bennettl It’ll take me a while to digest it but I’m sure appreciative of the time and thought that went In to your reply. Once again, I am amazed at the expertise I find here on BIX, and the real effort that gets put Into helping those of us with less experience. Thanks agin’ TanI! Drinks are on met Jim Pauley - NOT(fhe 11bronner)

 206 BYTE LISTINGS SUPPLEMENT •)ANUARY-MARCH. 1987

 DISKS AND DOWNLOADS
Ordering Disks of BYTE Listings
Listings that accompany BYTE articles are available in a variety of disk formats and
on Cauzin Softstrip. Each disk package (which
sooktimes consists of more than one disk) contains
an entire month’s listings. If you want to order a package from a previous month, please call (603) 924-9281 to find out how many disks it includes.
To order listings (for noncommercial use only). fiD out this form and send a check or money order in the correct amount to:
BYTE Listings
One Phoenix Mill Lane
Peterborough, NH 03458
All prices include postage. Program listings can also be downloaded via BYTEnet Listings at (617) 861-6764.
BYTE issue: __
COMMON 5«/4-INCH FORMATS All cost $8.95, $10.95 outside U.S.A. Annual subscription is $69.95, $89.95 outside U.S.A.
□ Apple II
□ IBM PC
□ Kaypro 2 CP/M
□ MS-DOS 8 Sector
□ Texas Instruments Professional
□ TRS-80 Model 4
COMMON 3‘/4-INCH FORMATS All cost $9.95, $11.95 outside U.S.A. Annual subscription is $79.95, $99.95 outside U.S.A.
□ Apple Macintosh
□ Atari 520ST
□ Amiga
□ Hewlett-Packard 150
CP/M STANDARD 8-INCH FORMAT All cost $9.95, $11.95 outside U.S.A. Annual subscription is $79.95, $99.95 outside U.S.A.
SEND TO:
Name_
Street_
City-State or Province _
Rjstal Code _Country_
Qjeck or money order enclosed for $_
Bixletin Boards in Canada
Listed below are some computer bulletin boards that cany program listings from BYTE. Programs are for noncommercial use in connection with BYTE articles only. Some BBSs may charge an annual maintenance fee. and you must pay your own telephone charges.
Western Canadian Distribution Center (3420 48th St., Edmonton, Alberta T6L 3R5) will be supplying listings to its member bulletin board systems.
Edmonton, Alberta, (403) 454-6093 Meadowlark, Alberta, (403) 435-6579 Montreal, Quebec, PComm Systems, (514) 989-9450 Prince George, British Columbia. (604) 562-9519 Regina, Saskatchewan, (306) 586-5585 Canadian Remote Systems, Toronto
Toronto, Ontario, Epson Club of Toronto (EPCOT), (416) 635-9600
Winnipeg, Manitoba, (204) 452-5529
In addition, arrangements for BYTEnet Listings have been made with one or more system operators in the following nations: Australia. Austria, Brazil, Denmark, France, Hong Kong. Indonesia. Italy, Japan, Malaysia, The Netherlands, Nigeria, Norway, Saudi Arabia, Singapore, Sweden. Switzerland, United Kingdom, and West Germany. Contact us at (603) 924-9281 for an up-to-date list. ■
BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987 207
EDITORIAL CALENDAR
1987
May — Desktop Publishing:
An exploration of the hardware and software needed for desktop publishing, from page description languages to high-resolution printers and typesetting back ends.
June — Computer-Aided Design:
The anatomy of computer-aided design/drafting software, the graphics display devices needed for CAD, and the data structures used by CAD programs to export data to other applications.
July — Local Area Networks:
 The technology of unking personal computers together to share data files, programs, and peripheral devices.
August — Prolog: a
 look at logic programming with articles on tips and techniques and explorations of the tasks Prolog is best suited for.
September — Printer Technologies:
An examination of the state of the art in primer technologies, including laser, liquid-crystal shutter, and ink-jet technologies.
October — Heuristic Algorithms:
Artificial intelligence techniques for giving computers the ability
to learn from experience.
November — High-Performance Workstations: a
 tour of the technology underlying the workstations used by scientists and engineers in computer-aided engineering/design.
December — Natural Language Processing:
 The technology of getting computers to understand
the natural language of man.
1988
January — Managing Megabytes:
Looking at the ways computers store and retrieve data in situations where disk space is measured in gigabytes and memory is measured in megabytes. Also a look at the new applications that mega-memory and storage will permit.
February
—
LISP:
a byte
reexamination of the original language of artificial intelligence research. March — Floating-Point Processors: a
look at the processors that speed the computation of
mathematical ojjerations in personal computers, including coprocessors and array processors.
April — Memory Management:
The hardware and software issues in managing a personal computer’s memory space.
May —
CPU
Architectures:
 An exploration of the latest 32-bit microprocessors, including digital signal processors and programmable graphics processors.
208 BYTE LISTINGS SUPPLEMENT • lANUARY-MARCH. 1987
Announcing BYTE’s New Subscriber Benefits
Y
Program
.our BYTE subscnpcna you a complete diet of the microcomputer technology 30 days. The kind broad-based objective coverage you read in every issue.
In addition,
 your subscription carries a wi^th
oi other benefits. Check the check list:
DISCOUNTS
El 13 issues instead of 12 if you send payment with subscription order.
El One-year subscription at $21 (50% off cover price).
El Two-year subscription at $38.
El Three-year subscription at $55.
El
One-year GROUP subscription for ten or more at $17.50 each. (Call or write for details.)
SERVICES
1^
BIX:
 BYTE’s Information Exchange puts you on-line 24 hours a day with your peers via computer conferencing and electronic mail. All you need to sign up is a microcomputer, a modem, and telecomm software.
EI
Reader Service:
 For information on products advertised in BYTE, circle the numbers on the Reader $ervice card enclosed in each issue that correspond to the numbers for the advertisers you select. Drop it in the mail and we’ll get your inquiries to the advertisers.
si
TIPS:
 BYTE’s Telephone Inquiry System is available to

 [image: Picture #12]

 subscribers who need
fast response.
 After obtaining your Subscriber I.D. Card, dial TIPS and enter your inquiries. You’ll save as much as ten days over the response to Reader Service cards.
Disks and Downloads:
Listings of programs that accompany BYTE articles are now available free on the BYTEnet bulletin board, and on disk or in quarterly printed supplements.
Microform:
 BYTE is available in microform from Lnhcrsity Microfilm ImematiaRa] m the US. and Europe.
^ BYTE’s BOMB:
 BTiTFs Ongoing Monoor
Bok
 ts your direct line a? die edaor's desk. Each monh. you can ras the arndes ru the Reader Service card.
\aai

i
e
e
d
back
 helps us
keep up to date on your information needs.
Customer Service:
 If you have a problem with, or a question about, your subscription, you may phone us during regular business hours (Eastern time) at our toll-free number: 800258-5485. You can also use Customer Service to obtain back issues and editorial indexes.
BONUSES
EI
Annual Separate Issues:
 In addition to BYTE’s 12 monthly issues, subscribers also receive our annual IBM PC issue free of charge, as wdl as any other annual issues BYTE may produce.
^
BYTE Deck:
 Subscribers receive five BYTE fjostcard deck mailings each year—a direct re^xxise system for you to obtain information on advertised products through return mail.
T) be on the leading edge of microcomputer technology
and receive all the aforementioned benefo, make a career decision nxlay. Call toll-free weekdays, 8:30am to 4:30pm Eastern time: 800-258-5485.
And. . . welcome to BYTE country!
EVTt
THE SMALL SYSTEMS JOURNAL
Jitrbo C
T
urbo
 C;
The fastest, most efficient and easyto-use C compiler at any price
Compilation speed is more than 7000 lines a minute, which makes anything less than Turbo
 C
an exercise in slow motion. Expect what only Borland delivers: Quality, Speed, Power and Price.
Turbo C: The C compiler for amateurs and professionals
If you're just beginning and you've "kinda wanted to learn C," now's your chance to do it the easy way. Like Turbo Pascal, Turbo C's got everything to get you going.
If you're already programming in C, switching to Turbo C will considerably increase your productivity and help make your programs both smaller and faster. Actually, writing in Turbo C is a highly productive and effective method— and we speak from experience. Eureka: The Solver" and our new generation of software have been developed using Turbo C.
Turbo C: a complete interactive development

 [image: Picture #13]

 with an interactive editor that will show you syntax errors right in your source code. Developing, debugging, and running a Turbo
 C program is a snap.
Turbo C: The C compiler everybody's been waiting for. Everybody but the competition
Borland's "Quality, Speed, Power and Price" commitment isn't idle corporate chatter. The $99.95 price tag on Turbo C isn't a "typo," it's real. So if you'd like to learn
 C
in a hurry, pick up the phone. If you're already using C, switch to Turbo C and see the difference for yourself
System requirements
IBM PC. XT. AT or true compatibly. PC’DOS IMS-DOS) 2.0 or later. One floppy drive. 320K.
*htroductory price—good through July 1. 1987
Technical Specifications
Compiler: One-pass compiler generating linkable object modules and inline assembler. Included is Borland's high performance "Turbo Linker." The object module is compatible with the PC-DOS linker. Supports tiny, small, compact, medium, large, and huge memory model libraries. Can mix models with near and far pointers. Includes floating f^int emulator lutilizes 8087180287 if installed).
^
Interactive Editor: The system
includes a powerful, interactive fullscreen text editor. If the compiler detects an error, the editor automatically positions the cursor appropriately in the source code.
^
Development Environment: A powerful "Make" is included so that managing Turbo C program development is highly evident Also includes pull-down menus and windows.
^
Links with relocatable object modules created using Borland's Turbo Prolog into a single program.
ANSI C compatible.
0

Start-up routine source code included.
0

Both command line and integrated environment versions included.
Turbo C snd Turbo P*sc*l vo rtgtstortd tmdtfn»rks Turbo Prolog •nd iuTfks The Solver ere iredemerks of doriervi mtemetior^l,
itk M
icrosoft C end MS-DOS ere registered tredemerks of MKrosoft Corp IBM,
 XT
end AT ere registered tredemerks of mtemetionel Business Mechines Corp Copyright 1987 Boriend mtemetionei Bi-1104
Table captionSieve benchmark (25 iterations)
	
	Turbo C
	Microsoft* C
	Lattice C

	Compile
 f/me
	3.89
	16.37
	13.90

	Compile and link time
	9.94
	29.06
	27.79

	Execution time
	5.77
	9.51
	13.79

	Object code size
	274
	297
	301

	Price
	$
99.95
	$450.00
	$500.00

Table captionBenchmark run on a 6 Mhz IBM AT using Turbo C version 1.0 and the Turbo Linker version 1.0; Microsoft C version 4.0 and the MS overlay linker version 3.51; Lattice C version 3.1 and the MS object linker version 3.05.

 [image: Picture #14]

 4585 SCOTTS VALLEY DRIVE SCOTTS VALLEY. CA 95066 (408)438-8400 TELEX 172373
TC15
BORLAND
INTERNA T I 0 N A L
For the dealer nearest you or to order by phone call
(800)255-8008
in CA 18001 742-1133 in Canada (8001237-1136

 [image: Picture #15]

 $
99
.
95
!
only
EPUB/images/img_0010.png
<50 o~

FREItIonE: TeIins rNsTInes =

mnsassssss */

[b b4 */
VOID neaatelx v dy dv)) v 3

SEANOGH b 8

EPUB/images/img_0009.png
'List Inc
2l.t Iis

do EI :
=
setc

EPUB/images/img_0006.png

EPUB/images/img_0005.png

EPUB/images/img_0008.png
c 1))

| AR
—~ooon

~0 000
® * ¥ NN

0

EPUB/images/img_0007.png
if (n==280) {
for (j=0; j<640; j++) {
ishft = (J X 2) ? i+4 : 1;
pshft = (7-j%8); LR
i 2)+(k ~
ety i

else error = =1; /» If we didn’t

EPUB/images/img_0002.png

EPUB/images/img_0001.png

EPUB/images/img_0004.png
LY ey
S)

o
£

FL0 F RN
. 2AGEITD <

EPUB/images/img_0003.png

EPUB/images/img_0011.png
[HAARA AR AR AARAAA A A AR AR KR AR AR AR K\
A o

EPUB/images/cover.png

EPUB/images/img_0015.png

EPUB/images/img_0014.png
ﬁ
{l

EPUB/images/img_0013.png
environment
Like Turbo
Pascal* and
Turbo Prolog,”
Turbo C comes

EPUB/images/img_0012.png

