Wrox Programmer to Programmer™

Beginning

Linux
Programming

4th Edition

Neil Matthew, Richard Stones

Updates, source code, and Wrox technical support at www.wrox.com







Beginning Linux® Programming 4th Edition

Acknowledgements . . . . ... .....cii ittt nnnnnna s X
Foreword. . ......... .00ttt e ittt nnnnnnnnasssnnnnnnnnnnns XXiii
Introduction. . . ......... ittt ettt s XXV
Chapter1:GettingStarted .............. .. ... it tninnnn 1
Chapter 2: Shell Programming . . . . . ... ... ... ittt nnneaarrnnnns 17
Chapter 3: Working with Files ... ............ . i ittt nnns 93
Chapter 4: The Linux Environment . . . ... ...... ... ... s 137
Chapter5:Terminals . . . ... ..... ..ttt nnestrtnnnnnnnnnnnns 175
Chapter 6: Managing Text-Based Screens withcurses ................ 211
Chapter 7: DataManagement ... ............ccciiiiinnnnnnnnnns 255
Chapter 8: MySQL . . . ... ...ttt ittt ittt s s e e e st nnnnnnnnnns 311
Chapter 9: Development Tools . . . ..... ... ...ttt nnnns 377
Chapter10:Debugging . ........ ...ttt eeeettnnnnnnnnnnnns 429
Chapter 11: Processesand Signals ...............iiiiinnnnnnanns 461
Chapter12: POSIX Threads . . . . . . . . . .t ittt ittt s nanannns 495
Chapter 13: Inter-Process Communication: Pipes . . . . . . . ............. 525
Chapter 14: Semaphores, Shared Memory, and Message Queues. . . . ..... 577
Chapter15:Sockets . . .......... i ittt st e nnnnnanns 607
Chapter 16: Programming GNOME Using GTK+. . . . . . . .. ............. 645
Chapter 17: Programming KDEUsing Qt. .. .......... .. i 701
Chapter 18: Standards forLinux. . . . . .. ... ..ottt it ittt i e aanas 747
IndeX .. ...t iiii e e esnssnnnnssnnsannaasnsnnnnnnnns 761






Beginning
Linux® Programming
4th Edition






Beginning
Linux® Programming
4th Edition

Neil Matthew
Richard Stones

1807
{| W WILEY |;
J{2007

NNNNNNNNNNNN

Wiley Publishing, Inc.



Beginning Linux® Programming, 4th Edition
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-14762-7

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at

http:/ /www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates, in the United States and other countries, and may not be used without written permission. Linux
is a trademark of Linus Torvalds. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.



www.wiley.com
http://www.wiley.com/go/permissions

About the Authors

Neil Matthew has been interested in and has programmed computers since 1974. A mathematics
graduate from the University of Nottingham, Neil is just plain keen on programming languages
and likes to explore new ways of solving computing problems. He’s written systems to program in
BCPL, FP (Functional Programming), Lisp, Prolog, and a structured BASIC. He even wrote a 6502
microprocessor emulator to run BBC microcomputer programs on UNIX systems.

In terms of UNIX experience, Neil has used almost every flavor since the late 1970s, including BSD
UNIX, AT&T System V, Sun Solaris, IBM AIX, many others, and of course Linux. He can claim to
have been using Linux since August 1993 when he acquired a floppy disk distribution of Soft
Landing (SLS) from Canada, with kernel version 0.99.11. He’s used Linux-based computers for
hacking C, C++, Icon, Prolog, Tcl, and Java at home and at work.

All of Neil’s “home” projects are developed using Linux. He says Linux is much easier because it
supports quite a lot of features from other systems, so that both BSD- and System V-targeted pro-
grams will generally compile with little or no change.

Neil is currently working as an Enterprise Architect specializing in IT strategy at Celesio AG. He
has a background in technical consultancy, software development techniques, and quality assur-
ance. Neil has also programmed in C and C++ for real-time embedded systems.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted
barn in Northamptonshire, England. His interests include solving puzzles by computer, music,
science fiction, squash, mountain biking, and not doing it yourself.

Rick Stones started programming at school (more years ago than he cares to remember) on a
6502-powered BBC micro, which, with the help of a few spare parts, continued to function for the
next 15 years. He graduated from Nottingham University with a degree in Electronic Engineering,
but decided software was more fun.

Over the years he has worked for a variety of companies, from the very small with just a dozen
employees, to the very large, including the IT services giant EDS. Along the way he has worked on
a range of projects, from real-time communications to accounting systems, to very large help desk
systems. He is currently working as an IT architect, acting as a technical authority on various major
projects for a large pan-European company.

Abit of a programming linguist, he has programmed in various assemblers, a rather neat proprietary
telecommunications language called SL-1, some FORTRAN, Pascal, Perl, SQL, and smidgeons of
Python and C++, as well as C. (Under duress he even admits that he was once reasonably proficient
in Visual Basic, but tries not to advertise this aberration.)

Rick lives in a village in Leicestershire, England, with his wife Ann, children Jennifer and Andrew,
and a cat. Outside work his main interests are classical music, especially early religious music, and
photography, and he does his best to find time for some piano practice.






Acquisitions Editor
Jenny Watson

Development Editor
Sara Shlaer

Technical Editor
Timothy Boronczyk

Production Editor
William A. Barton

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Adrienne Martinez

Graphics and Production Specialists
Mike Park, Happenstance-Type-O-Rama
Craig Woods, Happenstance-Type-O-Rama

Proofreader
Amy McCarthy, Word One

Indexer
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico



Acknowledgments

The authors would like to record their thanks to the many people who helped to make this
book possible.

Neil would like to thank his wife, Christine, for her understanding and children Alex and Adrian
for not complaining too loudly at Dad spending so long in The Den writing.

Rick would like to thank his wife, Ann, and their children, Jennifer and Andrew, for their very con-
siderable patience during the evenings and weekends while Dad was yet again “doing book work.”

As for the publishing team, we’d like to thank the folks at Wiley who helped us get this fourth edition
into print. Thanks to Carol Long for getting the process started and sorting out the contracts, and
especially to Sara Shlaer for her exceptional editing work and Timothy Boronczyk for his excellent
technical reviews. We also wish to thank Jenny Watson for chasing down all those odd bits of extras
and generally guiding the book through the administrative layers, Bill Barton for ensuring proper
organization and presentation, and Kim Cofer for a thorough copyedit. We are very grateful also to
Eric Foster-Johnson for his fantastic work on Chapters 16 and 17. We can say that this is a better book
than it would have been without the efforts of all of you.

We would also like to thank our employers, Scientific Generics, Mobicom, and Celesio for their
support during the production of all four editions of this book.

Finally we would also like to pay homage to two important motivators who have helped make this
book possible. Firstly, Richard Stallman for the excellent GNU tools and the idea of a free software
environment, which is now a reality with GNU/Linux, and secondly, Linus Torvalds for starting and
continuing to inspire the co-operative development that gives us the ever-improving Linux kernel.



Contents

Acknowledgements X
Foreword XXiii
Introduction XXV
Chapter 1: Getting Started 1
An Introduction to UNIX, Linux, and GNU 1
What Is UNIX? 1
What Is Linux? 3
The GNU Project and the Free Software Foundation 3
Linux Distributions 4
Programming Linux 4
Linux Programs 5
Text Editors 6
The C Compiler 7
Development System Roadmap 8
Getting Help 14
Summary 16
Chapter 2: Shell Programming 17
Why Program with a Shell? 18
A Bit of Philosophy 18
What Is a Shell? 19
Pipes and Redirection 21
Redirecting Output 21
Redirecting Input 22
Pipes 22
The Shell as a Programming Language 23
Interactive Programs 23
Creating a Script 24
Making a Script Executable 25
Shell Syntax 27
Variables 27
Conditions 31
Control Structures 34
Functions 46
Commands 49

Command Execution 68



Contents

Here Documents 73
Debugging Scripts 74
Going Graphical — The dialog Utility 75
Putting It All Together 81
Requirements 82
Design 82
Summary 91
Chapter 3: Working with Files 93
Linux File Structure 94
Directories 94
Files and Devices 95
System Calls and Device Drivers 96
Library Functions 97
Low-Level File Access 98
write 98
read 99
open 100
Initial Permissions 101
Other System Calls for Managing Files 106
The Standard 1/0 Library 109
fopen 110
fread 110
fwrite 111
fclose 111
fflush 111
fseek 112
fgetc, getc, and getchar 112
fpute, putc, and putchar 112
fgets and gets 113
Formatted Input and Output 113
printf, fprintf, and sprintf 113
scanf, fscanf, and sscanf 115
Other Stream Functions 117
Stream Errors 119
Streams and File Descriptors 119
File and Directory Maintenance 120
chmod 120
chown 120
unlink, link, and symlink 121
mkdir and rmdir 121
chdir and getcwd 122

Xii



Contents

Scanning Directories 122
opendir 123
readdir 123
telldir 123
seekdir 124
closedir 124

Errors 127
strerror 127
perror 127

The /proc File System 128

Advanced Topics: fcntl and mmap 132
fentl 132
mmap 133

Summary 135

Chapter 4: The Linux Environment 137

Program Arguments 137
getopt 140
getopt_long 142

Environment Variables 144
Use of Environment Variables 146
The environ Variable 147

Time and Date 148

Temporary Files 156

User Information 158

Host Information 161

Logging 163

Resources and Limits 167

Summary 173

Chapter 5: Terminals 175

Reading from and Writing to the Terminal 175

Talking to the Terminal 180

The Terminal Driver and the General Terminal Interface 182
Overview 183
Hardware Model 183

The termios Structure 184
Input Modes 186
Output Modes 186
Control Modes 187
Local Modes 188

Xiii



Contents

Special Control Characters

Terminal Speed

Additional Functions
Terminal Output

Terminal Type

Identify Your Terminal Type

Using terminfo Capabilities
Detecting Keystrokes

Virtual Consoles

Pseudo-Terminals
Summary

Chapter 6: Managing Text-Based Screens with curses

Compiling with curses
Curses Terminology and Concepts
The Screen
Output to the Screen
Reading from the Screen
Clearing the Screen
Moving the Cursor
Character Attributes
The Keyboard
Keyboard Modes
Keyboard Input
Windows
The WINDOW Structure
Generalized Functions
Moving and Updating a Window
Optimizing Screen Refreshes
Subwindows
The Keypad
Using Color
Redefining Colors
Pads
The CD Collection Application

Starting a New CD Collection Application

Looking at main

Building the Menu

Database File Manipulation

Querying the CD Database
Summary

Xiv

188
192
192
196
197
197
200
205
207
208
209

211

212
213
216
216
217
218
218
218
221
221
222
224
224
225
225
229
230
232
235
238
238
240
240
243
243
245
250
254



Contents

Chapter 7: Data Management 255
Managing Memory 255
Simple Memory Allocation 256
Allocating Lots of Memory 257
Abusing Memory 260
The Null Pointer 261
Freeing Memory 262
Other Memory Allocation Functions 264
File Locking 264
Creating Lock Files 265
Locking Regions 268
Use of read and write with Locking 271
Competing Locks 276
Other Lock Commands 280
Deadlocks 280
Databases 281
The dbm Database 281
The dbm Routines 283
dbm Access Functions 283
Additional dbm Functions 287
The CD Application 289
Updating the Design 289
The CD Database Application Using dom 290
Summary 309
Chapter 8: MySQL 311
Installation 312
MySQL Packages 312
Post-Install Configuration 314
Post-Installation Troubleshooting 319
MySQL Administration 320
Commands 320
Creating Users and Giving Them Permissions 325
Passwords 327
Creating a Database 328
Data Types 329
Creating a Table 330
Graphical Tools 333
Accessing MySQL Data from C 335
Connection Routines 337
Error Handling 341

XV



Contents

Executing SQL Statements 342
Miscellaneous Functions 357
The CD Database Application 358
Creating the Tables 359
Adding Some Data 362
Accessing the Application Data from C 364
Summary 375
Chapter 9: Development Tools 377
Problems of Multiple Source Files 377
The make Command and Makefiles 378
The Syntax of Makefiles 378
Options and Parameters to make 379
Comments in a Makefile 382
Macros in a Makefile 382
Multiple Targets 384
Built-in Rules 387
Suffix and Pattern Rules 388
Managing Libraries with make 389
Advanced Topic: Makefiles and Subdirectories 391
GNU make and gcc 391
Source Code Control 392
RCS 393
SCCS 399
Comparing RCS and SCCS 399
Cvs 400
CVS Front Ends 404
Subversion 405
Writing a Manual Page 406
Distributing Software 409
The patch Program 410
Other Distribution Utilities 411
RPM Packages 413
Working with RPM Package Files 414
Installing RPM Packages 415
Building RPM Packages 415
Other Package Formats 424
Development Environments 424
KDevelop 425
Other Environments 425
Summary 427

Xvi



Contents

Chapter 10: Debugging 429
Types of Errors 429
General Debugging Techniques 430

A Program with Bugs 430
Code Inspection 433
Instrumentation 434
Controlled Execution 436
Debugging with gdb 437
Starting gdb 437
Running a Program 438
Stack Trace 438
Examining Variables 439
Listing the Program 440
Setting Breakpoints 441
Patching with the Debugger 444
Learning More about gdb 445
More Debugging Tools 445
Lint: Removing the Fluff from Your Programs 446
Function Call Tools 449
Execution Profiling with prof/gprof 451
Assertions 452
Memory Debugging 453
ElectricFence 454
valgrind 455
Summary 459

Chapter 11: Processes and Signals 461
What Is a Process? 461
Process Structure 462

The Process Table 463
Viewing Processes 463
System Processes 464
Process Scheduling 467
Starting New Processes 468
Waiting for a Process 475
Zombie Processes 477
Input and Output Redirection 479
Threads 480

Xvii



Contents

Signals 481
Sending Signals 484
Signal Sets 489

Summary 493

Chapter 12: POSIX Threads 495

What Is a Thread? 495

Advantages and Drawbacks of Threads 496

A First Threads Program 497

Simultaneous Execution 501

Synchronization 503
Synchronization with Semaphores 503
Synchronization with Mutexes 508

Thread Attributes 512

Canceling a Thread 517

Threads in Abundance 520

Summary 524

Chapter 13: Inter-Process Communication: Pipes 525

What Is a Pipe? 525

Process Pipes 526

Sending Output to popen 528
Passing More Data 529
How popen Is Implemented 530

The Pipe Call 531

Parent and Child Processes 535
Reading Closed Pipes 536
Pipes Used as Standard Input and Output 537

Named Pipes: FIFOs 540
Accessing a FIFO 542
Advanced Topic: Client/Server Using FIFOs 549

The CD Database Application 553
Aims 554
Implementation 555
Client Interface Functions 558
The Server Interface, server.c 565
The Pipe 569
Application Summary 574

Summary 575

xviii



Contents

Chapter 14: Semaphores, Shared Memory, and Message Queues 577
Semaphores 577
Semaphore Definition 579

A Theoretical Example 579
Linux Semaphore Facilities 580
Using Semaphores 582
Shared Memory 586
shmget 588
shmat 588
shmdt 589
shmctl 589
Message Queues 594
msgget 594
msgsnd 595
msgrcv 595
msgctl 596
The CD Database Application 599
Revising the Server Functions 600
Revising the Client Functions 602
IPC Status Commands 604
Displaying Semaphore Status 604
Displaying Shared Memory Status 604
Displaying Message Queue Status 605
Summary 605
Chapter 15: Sockets 607
What Is a Socket? 608
Socket Connections 608
Socket Attributes 612
Creating a Socket 614
Socket Addresses 615
Naming a Socket 616
Creating a Socket Queue 617
Accepting Connections 617
Requesting Connections 618
Closing a Socket 619
Socket Communications 619
Host and Network Byte Ordering 622
Network Information 624
The Internet Daemon (xinetd/inetd) 629
Socket Options 631

Xix



Contents

Multiple Clients 632
select 635
Multiple Clients 638

Datagrams 642

Summary 644

Chapter 16: Programming GNOME Using GTK+ 645

Introducing X 645
X Server 646
X Client 646
X Protocol 646
Xlib 647
Toolkits 647
Window Managers 647
Other Ways to Create a GUI — Platform-Independent Windowing APls 648

Introducing GTK+ 648
GLib Type System 649
GTK+ Object System 650
Introducing GNOME 651
Installing the GNOME/GTK+ Development Libraries 652

Events, Signals, and Callbacks 655

Packing Box Widgets 658

GTK+ Widgets 661
GtkWindow 662
GtkEntry 663
GtkSpinButton 666
GtkButton 668
GtkTreeView 672

GNOME Widgets 676

GNOME Menus 677

Dialogs 682
GtkDialog 682
Modal Dialog Box 684
Nonmodal Dialogs 685
GtkMessageDialog 686

CD Database Application 687

Summary 699

XX



Contents

Chapter 17: Programming KDE Using Qt 701
Introducing KDE and Qt 701
Installing Qt 702
Signals and Slots 705
Qt Widgets 712

QLineEdit 712
Qt Buttons 716
QComboBox 721
QListView 724
Dialogs 727
QDialog 728
QMessageBox 730
QlInputDialog 731
Using gmake to Simplify Writing Makefiles 733
Menus and Toolbars with KDE 733
CD Database Application Using KDE/Qt 738
MainWindow 738
AddCdDialog 742
LogonDialog 743
main.cpp 745
Summary 746

Chapter 18: Standards for Linux 747

The C Programming Language 748
A Brief History Lesson 748
The GNU Compiler Collection 749
gce Options 749

Interfaces and the Linux Standards Base 751
LSB Standard Libraries 752
LSB Users and Groups 754
LSB System Initialization 754

The Filesystem Hierarchy Standard 755

Further Reading about Standards 758

Summary 759

Index 761

XXi






Foreword

All computer programmers have their own piles of notes and scribbles. They have their code examples
saved from the past heroic dive into the manuals or from Usenet, where sometimes even fools fear to follow.
(The other body of opinion is that fools all get free Usenet access and use it nonstop.) It is therefore perhaps
strange that so few books follow such a style. In the online world there are a lot of short, to-the-point docu-
ments about specific areas of programming and administration. The Linux documentation project released
a whole pile of documents covering everything from installing Linux and Windows on the same machine

to wiring your coffee machine to Linux. Seriously. Take a look at The Linux Documentation Project on
http://www.tldp.org.

The book world, on the other hand, seems to consist mostly of either learned tomes, detailed and very com-
plete works that you don’t have time to read, or books for complete beginners that you buy for friends as a
joke. There are very few books that try to cover the basics of a lot of useful areas. This book is one of them,
a compendium of those programmers’ notes and scribbles, deciphered (try reading a programmer’s hand-
writing), edited, and brought together coherently as a book.

This edition of Beginning Linux Programming has been reviewed and updated to reflect today’s Linux
developments.

—Alan Cox


http://www.tldp.org




Introduction

Welcome to Beginning Linux Programming, 4th Edition, an easy-to-use guide to developing programs for
Linux and other UNIX-style operating systems.

In this book we aim to give you an introduction to a wide variety of topics important to you as a developer
using Linux. The word Beginning in the title refers more to the content than to your skill level. We’ve struc-
tured the book to help you learn more about what Linux has to offer, however much experience you have
already. Linux programming is a large field and we aim to cover enough about a wide range of topics to
give you a good “beginning” in each subject.

Who’s This Book For?

If you're a programmer who wishes to get up to speed with the facilities that Linux (or UNIX) offers
software developers, to maximize your programming time and your application’s use of the Linux sys-
tem, you've picked up the right book. Clear explanations and a tried and tested step-by-step approach
will help you progress rapidly and pick up all the key techniques.

We assume you have some experience in C and/or C++ programming, perhaps in Windows or some
other system, but we try to keep the book’s examples simple so that you don’t need to be an expert C
coder to follow this book. Where direct comparisons exist between Linux programming and C/C++
programming, these are indicated in the text.

Watch out if you're totally new to Linux. This isn’t a book on installing or configur-
ing Linux. If you want to learn more about administering a Linux system, you may
wish to look at some complementary books such as Linux Bible 2007 Edition, by
Christopher Negus (Wiley, ISBN 978-0470082799).

Because it aims to be a tutorial guide to the various tools and sets of functions/libraries available to you
on most Linux systems as well as a handy reference you can return to, this book is unique in its straight-
forward approach, comprehensive coverage, and extensive examples.

What’s Covered in the Book

The book has a number of aims:

Q  To teach the use of the standard Linux C libraries and other facilities as specified by the various
Linux and UNIX standards.

Q  To show how to make the most of the standard Linux development tools.
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0  To give a concise introduction to data storage under Linux using both the DBM and MySQL
database systems.

QO  To show how to build graphical user interfaces for the X Window System. We will use both the
GTK (the basis of the GNOME environment) and Qt (the basis of the KDE environment)
libraries.

QO  To encourage and enable you to develop your own real-world applications.

As we cover these topics, we introduce programming theory and then illustrate it with appropriate
examples and a clear explanation. In this way you can learn quickly on a first read and look back over
things to brush up on all the essential elements if you need to.

Though the small examples are designed mainly to illustrate a set of functions or some new theory in
action, throughout the book lies a larger sample project: a simple database application for recording audio
CD details. As your knowledge expands, you can develop, re-implement, and extend the project to your
heart’s content. That said, however, the CD application doesn’t dominate any chapter, so you can skip it if
you want to, but we feel that it provides additional useful, in-depth examples of the techniques that we
discuss. It certainly provides an ideal way to illustrate each of the more advanced topics as they are intro-
duced. Our first discussion of this application occurs at the end of Chapter 2 and shows how a fairly large
shell script is organized, how the shell deals with user input, and how it can construct menus and store
and search data.

After recapping the basic concepts of compiling programs, linking to libraries, and accessing the online
manuals, you will take a sojourn into shells. You then move into C programming, where we cover work-
ing with files, getting information from the Linux environment, dealing with terminal input and output,
and the curses library (which makes interactive input and output more tractable). You're then ready to
tackle re-implementing the CD application in C. The application design remains the same, but the code
uses the curses library for a screen-based user interface.

From there, we cover data management. Meeting the dbm database library is sufficient cause for us to
re-implement the application, but this time with a design that will re-emerge in some later chapters. In a
later chapter we look at how the data could be stored in a relational database using MySQL, and we also
reuse this data storage technique later in the chapter, so you can see how the techniques compare. The
size of these recent applications means that we then need to deal with such nuts-and-bolts issues as
debugging, source code control, software distribution, and makefiles.

You will also look at how different Linux processes can communicate, using a variety of techniques, and
at how Linux programs can use sockets to support TCP/IP networking to different machines, including
the issues of talking to machines that use different processor architectures.

After getting the foundations of Linux programming in place, we cover the creation of graphical programs.
We do this over two chapters, looking first at the GTK+ toolkit, which underlies the GNOME environment,
and then at the Qt toolkit, which underlies the KDE environment.

We finish off with a brief look at the standards that keep Linux systems from different vendors similar
enough that we can move between them easily and write programs that will work on different distribu-
tions of Linux.

As you’d expect, there’s a fair bit more in between, but we hope that this gives you a good idea of the

material we’ll be discussing.

XXVi



Introduction

What You Need to Use This Book

In this book, we’ll give you a taste of programming for Linux. To help you get the most from the chap-
ters, you should try out the examples as you read. These also provide a good base for experimentation
and will hopefully inspire you to create programs of your own. We hope you will read this book in con-
junction with experimenting on your own Linux installation.

Linux is available for many different systems. Its adaptability is such that enterprising souls have per-
suaded it to run in one form or another on just about anything with a processor in it! Examples include
systems based on the Alpha, ARM, IBM Cell, Itanium, PA-RISC, PowerPC, SPARC, SuperH, and 68k
CPUs as well as the various x86-class processors, in both 32- and 64-bit versions.

We wrote this book and developed the examples on two Linux systems with different specifications, so
we’re confident that if you can run Linux, you can make good use of this book. Furthermore, we tested
the code on other versions of Linux during the book’s technical review.

To develop this book we primarily used x86-based systems, but very little of what we cover is x86 specific.
Although it is possible to run Linux on a 486 with 8MB RAM, to run a modern Linux distribution success-
fully and follow the examples in this book, we recommend that you pick a recent version of one of the
more popular Linux distributions such as Fedora, openSUSE, or Ubuntu and check the hardware recom-
mendations they give.

As for software requirements, we suggest that you use a recent version of your preferred Linux distribu-
tion and apply the current set of updates, which most vendors make available online by way of auto-
mated updates, to keep your system current and up-to-date with the latest bug fixes. Linux and the GNU
toolset are released under the GNU General Public License (GPL). Most other components of a typical
Linux distribution use either the GPL or one of the many other Open Source licenses, and this means they
have certain properties, one of which is freedom. They will always have the source code available, and no
one can take that freedom away. See http://www.gnu.org/licenses/ for more details of the GPL, and
http://www.opensource.org/ for more details of the definition of Open Source and the different
licenses in use. With GNU/Linux, you will always have the option of support — either doing it yourself
with the source code, hiring someone else, or going to one of the many vendors offering pay-for support.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-14762-7.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you can
go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.
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A Note on the Code Downloads

We have tried to provide example programs and code snippets that best illustrate the concepts being dis-
cussed in the text. Please note that, in order to make the new functionality being introduced as clear as
possible, we have taken one or two liberties with coding style.

In particular, we do not always check that the return results from every function we call are what we
expect. In production code for real applications we would certainly do this check, and you too should
adopt a rigorous approach toward error handling. (We discuss some of the ways that errors can be
caught and handled in Chapter 3.)

The GNU General Public License

The source code in the book is made available under the terms of the GNU General Public License ver-
sion 2, http://www.gnu.org/licenses/old-1licenses/gpl-2.0.html. The following permission
statement applies to all the source code available in this book:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book:

Boxes like this one hold important, not-to-be-forgotten, mission-critical information
that is directly relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

When we introduce them, we highlight important words in italics. Characters we want you to type are in
bold font. We show keyboard strokes like this: Ctrl+A.
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We present code and terminal sessions in three different ways:

$ who
root ttyl Sep 10 16:12
rick tty2 Sep 10 16:10

When the command line is shown, it’s in the style at the top of the code, whereas output is in the regular
style. The $ is the prompt (if the superuser is required for the command, the prompt will be a # instead)
and the bold text is what you type in and press Enter (or Return) to execute. Any text following that in
the same font but in non-bold is the output of the bolded command. In the preceding example you type
in the command who, and you see the output below the command.

Prototypes of Linux-defined functions and structures are shown in bold as follows:
#include <stdio.h>
int printf (const char *format, ...);
In our code examples, the code foreground style shows new, important material, such as
/* This is what new, important, and pertinent code looks like. */
whereas code that looks like this (code background style) is less important:
/* This is what code that has been seen before looks like. */

And often when a program is added to throughout a chapter, code that is added later is in foreground
style first and background style later. For example, a new program would look like this:

/* Code example */
/* That ends here. */

And if we add to that program later in the chapter, it looks like this instead:

/* Code example */

/* New code added */
/* on these lines */
/* That ends here. */

The last convention we’ll mention is that we presage example code with a “Try It Out” heading that
aims to split the code up where it’s helpful, highlight the component parts, and show the progression of
the application. When it’s important, we also follow the code with a “How It Works” section to explain
any salient points of the code in relation to previous theory. We find these two conventions help break
up the more formidable code listings into palatable morsels.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
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piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.comand locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On this
page you can view all errata that has been submitted for this book and posted by Wrox editors. A com-
plete book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.comyou will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3.  Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4.  You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.
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Getting Started

In this chapter, you discover what Linux is and how it relates to its inspiration, UNIX. You take a
guided tour of the facilities provided by a Linux development system, and write and run your first
program. Along the way, you'll be looking at

O  UNIX, Linux, and GNU
Programs and programming languages for Linux
How to locate development resources

a

a

Q  Static and shared libraries
Q  The UNIX philosophy

An Introduction to UNIX, Linux, and GNU

In recent years Linux has become a phenomenon. Hardly a day goes by without Linux cropping
up in the media in some way. We’ve lost count of the number of applications that have been made
available on Linux and the number of organizations that have adopted it, including some govern-
ment departments and city administrations. Major hardware vendors like IBM and Dell now sup-
port Linux, and major software vendors like Oracle support their software running on Linux.
Linux truly has become a viable operating system, especially in the server market.

Linux owes its success to systems and applications that preceded it: UNIX and GNU software.
This section looks at how Linux came to be and what its roots are.

What Is UNIX?

The UNIX operating system was originally developed at Bell Laboratories, once part of the
telecommunications giant AT&T. Designed in the 1970s for Digital Equipment PDP computers,
UNIX has become a very popular multiuser, multitasking operating system for a wide variety of
hardware platforms, from PC workstations to multiprocessor servers and supercomputers.
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A Brief History of UNIX

Strictly, UNIX is a trademark administered by The Open Group, and it refers to a computer operating
system that conforms to a particular specification. This specification, known as The Single UNIX
Specification, defines the names of, interfaces to, and behaviors of all mandatory UNIX operating sys-
tem functions. The specification is largely a superset of an earlier series of specifications, the P1003, or
POSIX (Portable Operating System Interface) specifications, developed by the IEEE (Institute of
Electrical and Electronic Engineers).

Many UNIX-like systems are available commercially, such as IBM’s AIX, HP’s HP-UX, and Sun’s Solaris.
Some have been made available for free, such as FreeBSD and Linux. Only a few systems currently con-
form to The Open Group specification, which allows them to be marketed with the name UNIX.

In the past, compatibility among different UNIX systems has been a real problem, although POSIX was a
great help in this respect. These days, by following a few simple rules it is possible to create applications
that will run on all UNIX and UNIX-like systems. You can find more details on Linux and UNIX standards
in Chapter 18.

UNIX Philosophy

In the following chapters we hope to convey a flavor of Linux (and therefore UNIX) programming.
Although programming in C is in many ways the same whatever the platform, UNIX and Linux devel-
opers have a special view of program and system development.

The UNIX operating system, and hence Linux, encourages a certain programming style. Following are a
few characteristics shared by typical UNIX programs and systems:

Q  Simplicity: Many of the most useful UNIX utilities are very simple and, as a result, small and
easy to understand. KISS, “Keep It Small and Simple,” is a good technique to learn. Larger, more
complex systems are guaranteed to contain larger, more complex bugs, and debugging is a chore
that we’d all like to avoid!

0  Focus: It’s often better to make a program perform one task well than to throw in every feature
along with the kitchen sink. A program with “feature bloat” can be difficult to use and difficult
to maintain. Programs with a single purpose are easier to improve as better algorithms or inter-
faces are developed. In UNIX, small utilities are often combined to perform more demanding
tasks when the need arises, rather than trying to anticipate a user’s needs in one large program.

O  Reusable Components: Make the core of your application available as a library. Well-documented
libraries with simple but flexible programming interfaces can help others to develop variations or
apply the techniques to new application areas. Examples include the dbm database library, which
is a suite of reusable functions rather than a single database management program.

Q  Filters: Many UNIX applications can be used as filters. That is, they transform their input and
produce output. As you'll see, UNIX provides facilities that allow quite complex applications
to be developed from other UNIX programs by combining them in novel ways. Of course, this
kind of reuse is enabled by the development methods that we’ve previously mentioned.

0  Open File Formats: The more successful and popular UNIX programs use configuration files
and data files that are plain ASCII text or XML. If either of these is an option for your program
development, it’s a good choice. It enables users to use standard tools to change and search for
configuration items and to develop new tools for performing new functions on the data files.
A good example of this is the ctags source code cross-reference system, which records symbol
location information as regular expressions suitable for use by searching programs.
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Q  Flexibility: You can’t anticipate exactly how ingeniously users will use your program. Try to be
as flexible as possible in your programming. Try to avoid arbitrary limits on field sizes or num-
ber of records. If you can, write the program so that it’s network-aware and able to run across a
network as well as on a local machine. Never assume that you know everything that the user
might want to do.

What Is Linux?

As you may already know, Linux is a freely distributed implementation of a UNIX-like kernel, the low-
level core of an operating system. Because Linux takes the UNIX system as its inspiration, Linux and
UNIX programs are very similar. In fact, almost all programs written for UNIX can be compiled and run
on Linux. Also, some commercial applications sold for commercial versions of UNIX can run unchanged
in binary form on Linux systems.

Linux was developed by Linus Torvalds at the University of Helsinki, with the help of UNIX program-
mers from across the Internet. It began as a hobby inspired by Andy Tanenbaum’s Minix, a small UNIX-
like system, but has grown to become a complete system in its own right. The intention is that the Linux
kernel will not incorporate proprietary code but will contain nothing but freely distributable code.

Versions of Linux are now available for a wide variety of computer systems using many different types
of CPUs, including PCs based on 32-bit and 64-bit Intel x86 and compatible processors; workstations and
servers using Sun SPARC, IBM PowerPC, AMD Opteron, and Intel Itanium; and even some handheld
PDAs and Sony’s Playstations 2 and 3. If it’s got a processor, someone somewhere is trying to get Linux
running on it!

The GNU Project and the Free Software Foundation

Linux owes its existence to the cooperative efforts of a large number of people. The operating system kernel
itself forms only a small part of a usable development system. Commercial UNIX systems traditionally come
bundled with applications that provide system services and tools. For Linux systems, these additional pro-
grams have been written by many different programmers and have been freely contributed.

The Linux community (together with others) supports the concept of free software, that is, software that
is free from restrictions, subject to the GNU General Public License (the name GNU stands for the recur-
sive GNU'’s Not Unix). Although there may be a cost involved in obtaining the software, it can thereafter
be used in any way desired and is usually distributed in source form.

The Free Software Foundation was set up by Richard Stallman, the author of GNU Emacs, one of the
best-known text editors for UNIX and other systems. Stallman is a pioneer of the free software concept
and started the GNU Project, an attempt to create an operating system and development environment
that would be compatible with UNIX, but not suffer the restrictions of the proprietary UNIX name and
source code. GNU may one day turn out to be very different from UNIX in the way it handles the hard-
ware and manages running programs, but it will still support UNIX-style applications.

The GNU Project has already provided the software community with many applications that closely mimic
those found on UNIX systems. All these programs, so-called GNU software, are distributed under the terms
of the GNU General Public License (GPL); you can find a copy of the license at http: //www.gnu.org. This
license embodies the concept of copyleft (a takeoff on “copyright”). Copyleft is intended to prevent others
from placing restrictions on the use of free software.
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A few major examples of software from the GNU Project distributed under the GPL follow:

0O  GCC: The GNU Compiler Collection, containing the GNU C compiler
G++: A C++ compiler, included as part of GCC

GDB: A source code-level debugger

GNU make: A version of UNIX make

Bison: A parser generator compatible with UNIX yacc

bash: A command shell

I T By I O I

GNU Emacs: A text editor and environment

Many other packages have been developed and released using free software principles and the GPL,
including spreadsheets, source code control tools, compilers and interpreters, Internet tools, graphical
image manipulation tools such as the Gimp, and two complete object-based environments: GNOME and
KDE. We discuss GNOME and KDE in Chapters 16 and 17.

There is now so much free software available that with the addition of the Linux kernel it could be said
that the goal of a creating GNU, a free UNIX-like system, has been achieved with Linux. To recognize the
contribution made by GNU software, many people now refer to Linux systems in general as
GNU/Linux.

You can learn more about the free software concept at http: //www.gnu. org.

Linux Distributions

As we have already mentioned, Linux is actually just a kernel. You can obtain the sources for the kernel
to compile and install it on a machine and then obtain and install many other freely distributed software
programs to make a complete Linux installation. These installations are usually referred to as Linux sys-
tems, because they consist of much more than just the kernel. Most of the utilities come from the GNU
Project of the Free Software Foundation.

As you can probably appreciate, creating a Linux system from just source code is a major undertaking.
Fortunately, many people have put together ready-to-install distributions (often called flavors), usually
downloadable or on CD-ROMs or DVDs, that contain not just the kernel but also many other program-
ming tools and utilities. These often include an implementation of the X Window System, a graphical
environment common on many UNIX systems. The distributions usually come with a setup program
and additional documentation (normally all on the CD[s]) to help you install your own Linux system.
Some well-known distributions, particularly on the Intel x86 family of processors, are Red Hat
Enterprise Linux and its community-developed cousin Fedora, Novell SUSE Linux and the free
openSUSE variant, Ubuntu Linux, Slackware, Gentoo, and Debian GNU/Linux. Check out the
DistroWatch site at http: //distrowatch. com for details on many more Linux distributions.

Programming Linux

Many people think that programming Linux means using C. It’s true that UNIX was originally written
in C and that the majority of UNIX applications are written in C, but C is not the only option available to
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Linux programmers, or UNIX programmers for that matter. In the course of the book, we’ll mention a
couple of the alternatives.

In fact, the first version of UNIX was written in PDP 7 assembler language in 1969. C
was conceived by Dennis Ritchie around that time, and in 1973 he and Ken Thompson
rewrote essentially the entire UNIX kernel in C, quite a feat in the days when system
software was written in assembly language.

A vast range of programming languages are available for Linux systems, and many of them are free and
available on CD-ROM collections or from FTP archive sites on the Internet. Here’s a partial list of pro-
gramming languages available to the Linux programmer:

Ada C C++

Eiffel Forth Fortran

Icon Java JavaScript
Lisp Modula 2 Modula 3
Oberon Objective C Pascal

Perl PostScript Prolog
Python Ruby Smalltalk
PHP Tel/Tk Bourne Shell

We show how you can use a Linux shell (bash) to develop small- to medium-sized applications in
Chapter 2. For the rest of the book, we mainly concentrate on C. We direct our attention mostly toward
exploring the Linux programming interfaces from the perspective of the C programmer, and we assume
knowledge of the C programming language.

Linux Programs

Linux applications are represented by two special types of files: executables and scripts. Executable files
are programs that can be run directly by the computer; they correspond to Windows . exe files. Scripts
are collections of instructions for another program, an interpreter, to follow. These correspond to
Windows .bat or .cmd files, or interpreted BASIC programs.

Linux doesn’t require executables or scripts to have a specific filename or any extension whatsoever. File
system attributes, which we discuss in Chapter 2, are used to indicate that a file is a program that may
be run. In Linux, you can replace scripts with compiled programs (and vice versa) without affecting
other programs or the people who call them. In fact, at the user level, there is essentially no difference
between the two.

When you log in to a Linux system, you interact with a shell program (often bash) that runs programs in
the same way that the Windows command prompt does. It finds the programs you ask for by name by
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searching for a file with the same name in a given set of directories. The directories to search are stored
in a shell variable, PATH, in much the same way as with Windows. The search path (to which you can
add) is configured by your system administrator and will usually contain some standard places where
system programs are stored. These include:

0  /bin: Binaries, programs used in booting the system

QO  /usr/bin: User binaries, standard programs available to users

a /usr/local/bin: Local binaries, programs specific to an installation

An administrator’s login, such as root, may use a PATH variable that includes directories where system
administration programs are kept, such as /sbin and /usr/sbin.

Optional operating system components and third-party applications may be installed in subdirectories
of /opt, and installation programs might add to your PATH variable by way of user install scripts.

It's not a good idea to delete directories from PATH unless you are sure that you
understand what will result if you do.

Note that Linux, like UNIX, uses the colon (:) character to separate entries in the PATH variable, rather
than the semicolon (;) that MS-DOS and Windows use. (UNIX chose : first, so ask Microsoft why
Windows is different, not why UNIX is different!) Here’s a sample PATH variable:

/usr/local/bin:/bin:/usr/bin:.:/home/neil/bin: /usr/X11R6/bin

Here the PATH variable contains entries for the standard program locations, the current directory (.), a
user’s home directory, and the X Window System.

Remember, Linux uses a forward slash (/) to separate directory names in a filename
rather than the backslash (\) of Windows. Again, UNIX got there first.

Text Editors

To write and enter the code examples in the book, you'll need to use an editor. There are many to choose
from on a typical Linux system. The vi editor is popular with many users.

Both of the authors like Emacs, so we suggest you take the time to learn some of the features of this
powerful editor. Almost all Linux distributions have Emacs as an optional package you can install, or
you can get it from the GNU website at http: //www.gnu.org or a version for graphical environments
at the XEmacs site at http: //www.xemacs .org.

To learn more about Emacs, you can use its online tutorial. To do this, start the editor by running the
emacs command, and then type Ctrl+H followed by t for the tutorial. Emacs also has its entire manual
available. When in Emacs, type Ctrl+H and then i for information. Some versions of Emacs may have
menus that you can use to access the manual and tutorial.
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The C Compiler

On POSIX-compliant systems, the C compiler is called c89. Historically, the C compiler was simply
called cc. Over the years, different vendors have sold UNIX-like systems with C compilers with differ-
ent facilities and options, but often still called cc.

When the POSIX standard was prepared, it was impossible to define a standard cc command with
which all these vendors would be compatible. Instead, the committee decided to create a new standard
command for the C compiler, c89. When this command is present, it will always take the same options,
independent of the machine.

On Linux systems that do try to implement the standards, you might find that any or all of the com-
mands c89, cc, and gec refer to the system C compiler, usually the GNU C compiler, or gcc. On UNIX
systems, the C compiler is almost always called cc.

In this book, we use gcc because it’s provided with Linux distributions and because it supports the
ANSI standard syntax for C. If you ever find yourself using a UNIX system without gcc, we recommend
that you obtain and install it. You can find it at http: //www.gnu.org. Wherever we use gcc in the
book, simply substitute the relevant command on your system.

Try It Out Your First Linux C Program

In this example you start developing for Linux using C by writing, compiling, and running your first
Linux program. It might as well be that most famous of all starting points, Hello World.
1. Here's the source code for the file hello.c:
#include <stdio.h>

#include <stdlib.h>

int main()
{
printf (“Hello World\n”) ;
exit (0);
}
2. Now compile, link, and run your program.

$ gcc -o hello hello.c
$ ./hello

Hello World

$
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How It Works

You invoked the GNU C compiler (on Linux this will most likely be available as cc too) that translated
the C source code into an executable file called hello. You ran the program and it printed a greeting.
This is just about the simplest example there is, but if you can get this far with your system, you should
be able to compile and run the remainder of the examples in the book. If this did not work for you, make
sure that the C compiler is installed on your system. For example, many Linux distributions have an
install option called Software Development (or something similar) that you should select to make sure
the necessary packages are installed.

Because this is the first program you’ve run, it’s a good time to point out some basics. The hello pro-
gram will probably be in your home directory. If PATH doesn’t include a reference to your home direc-
tory, the shell won’t be able to find hello. Furthermore, if one of the directories in PATH contains
another program called hello, that program will be executed instead. This would also happen if such a
directory is mentioned in PATH before your home directory. To get around this potential problem, you
can prefix program names with . / (for example, . /hello). This specifically instructs the shell to execute
the program in the current directory with the given name. (The dot is an alias for the current directory.)

If you forget the -o name option that tells the compiler where to place the executable, the compiler will
place the program in a file called a. out (meaning assembler output). Just remember to look for an
a.out if you think you’ve compiled a program and you can’t find it! In the early days of UNIX, people
wanting to play games on the system often ran them as a . out to avoid being caught by system adminis-
trators, and some UNIX installations routinely delete all files called a . out every evening.

Development System Roadmap

For a Linux developer, it can be important to know a little about where tools and development resources
are located. The following sections provide a brief look at some important directories and files.

Applications

Applications are usually kept in directories reserved for them. Applications supplied by the system for
general use, including program development, are found in /usr/bin. Applications added by system
administrators for a specific host computer or local network are often found in /usr/local/bin or /opt.

Administrators favor /opt and /usr/local, because they keep vendor-supplied files and later addi-
tions separate from the applications supplied by the system. Keeping files organized in this way may
help when the time comes to upgrade the operating system, because only /opt and /usr/local need
be preserved. We recommend that you compile your applications to run and access required files from
the /usr/local hierarchy for system-wide applications. For development and personal applications it’s
best just to use a folder in your home directory.

Additional features and programming systems may have their own directory structures and program
directories. Chief among these is the X Window System, which is commonly installed in the /usr/x11 or
/usr/bin/X11 directory. Linux distributions typically use the X.Org Foundation version of the X Window
System, based on Revision 7 (X11R7). Other UNIX-like systems may choose different versions of the X
Window System installed in different locations, such as /usr/openwin for Sun’s Open Windows provided
with Solaris.



Chapter 1: Getting Started

The GNU compiler system’s driver program, gcc (which you used in the preceding programming
example), is typically located in /usr/bin or /usr/local/bin, but it will run various compiler-
support applications from another location. This location is specified when you compile the compiler
itself and varies with the host computer type. For Linux systems, this location might be a version-
specific subdirectory of /usr/1ib/gcc/. On one of the author’s machines at the time of writing it is
/usr/lib/gcc/1i586-suse-1linux/4.1.3. The separate passes of the GNU C/C++ compiler, and
GNU-specific header files, are stored here.

Header Files

For programming in C and other languages, you need header files to provide definitions of constants and
declarations for system and library function calls. For C, these are almost always located in /usr/include
and subdirectories thereof. You can normally find header files that depend on the particular incarnation of
Linux that you are running in /usr/include/sys and /usr/include/linux.

Other programming systems will also have header files that are stored in directories that get searched
automatically by the appropriate compiler. Examples include /usr/include/x11 for the X Window
System and /usr/include/c++ for GNU C++.

You can use header files in subdirectories or nonstandard places by specifying the - I flag (for include)
to the C compiler. For example,

$ gcc -I/usr/openwin/include fred.c

will direct the compiler to look in the directory /usr/openwin/include, as well as the standard places,
for header files included in the fred. c program. Refer to the manual page for the C compiler (man gcc) for
more details.

It’s often convenient to use the grep command to search header files for particular definitions and func-
tion prototypes. Suppose you need to know the name of the #def ines used for returning the exit status
from a program. Simply change to the /usr/include directory and grep for a probable part of the
name like this:

$ grep EXIT *.h

stdlib.h:#define EXIT FAILURE 1 /* Failing exit status. */
stdlib.h:#define EXIT SUCCESS 0 /* Successful exit status. */
$

Here grep searches all the files in the directory with a name ending in . h for the string EXIT . In this
example, it has found (among others) the definition you need in the file stdlib.h.

Library Files

Libraries are collections of precompiled functions that have been written to be reusable. Typically, they con-
sist of sets of related functions to perform a common task. Examples include libraries of screen-handling
functions (the curses and ncurses libraries) and database access routines (the dbm library). We show you
some libraries in later chapters.
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Standard system libraries are usually stored in /1ib and /usr/1lib. The C compiler (or more exactly, the
linker) needs to be told which libraries to search, because by default it searches only the standard C library.
This is a remnant of the days when computers were slow and CPU cycles were expensive. It’s not enough
to put a library in the standard directory and hope that the compiler will find it; libraries need to follow a
very specific naming convention and need to be mentioned on the command line.

Alibrary filename always starts with 1ib. Then follows the part indicating what library this is (like ¢ for
the C library, or m for the mathematical library). The last part of the name starts with a dot (. ), and specifies
the type of the library:

Q .a for traditional, static libraries
Q  .so for shared libraries (see the following)
The libraries usually exist in both static and shared formats, as a quick 1s /usr/1ib will show. You

can instruct the compiler to search a library either by giving it the full path name or by using the -1
flag. For example,

$ gece -o fred fred.c /usr/lib/libm.a
tells the compiler to compile file fred. ¢, call the resulting program file fred, and search the mathematical
library in addition to the standard C library to resolve references to functions. A similar result is achieved
with the following command:

$ gece -o fred fred.c -1m

The -1m (no space between the 1 and the m) is shorthand (shorthand is much valued in UNIX circles)
for the library called 1ibm. a in one of the standard library directories (in this case /usr/1ib). An addi-
tional advantage of the - 1m notation is that the compiler will automatically choose the shared library
when it exists.

Although libraries are usually found in standard places in the same way as header files, you can add to
the search directories by using the -L (uppercase letter) flag to the compiler. For example,

$ gece -o xllfred -L/usr/openwin/lib x1llfred.c -1X11

will compile and link a program called x11fred using the version of the library 1ibx11 found in the
/usr/openwin/1ib directory.

Static Libraries
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The simplest form of library is just a collection of object files kept together in a ready-to-use form. When a
program needs to use a function stored in the library, it includes a header file that declares the function.
The compiler and linker take care of combining the program code and the library into a single executable
program. You must use the -1 option to indicate which libraries other than the standard C runtime library
are required.

Static libraries, also known as archives, conventionally have names that end with .a. Examples are /usr/
lib/libc.aand /usr/1ib/1ibX11.a for the standard C library and the X11 library, respectively.
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You can create and maintain your own static libraries very easily by using the ar (for archive) program
and compiling functions separately with gcc -c. Try to keep functions in separate source files as much
as possible. If functions need access to common data, you can place them in the same source file and use
static variables declared in that file.

Try It Out Static Libraries

In this example, you create your own small library containing two functions and then use one of them in
an example program. The functions are called fred and bill and just print greetings.

1.  First, create separate source files (imaginatively called fred.c and bill.c) for each function.
Here’s the first:

#include <stdio.h>

void fred(int arg)
{
printf (“fred: we passed %d\n”, arg);
1
And here’s the second:

#include <stdio.h>

void bill (char *arg)
{
printf (“bill: we passed %$s\n”, arg);
1
2. Youcan compile these functions individually to produce object files ready for inclusion into a

library. Do this by invoking the C compiler with the -c option, which prevents the compiler
from trying to create a complete program. Trying to create a complete program would fail
because you haven’t defined a function called main.

$gce -c bill.c fred.c

Sls *.o

bill.o fred.o

3. Now writea program that calls the function bil1. First, it's a good idea to create a header file
for your library. This will declare the functions in your library and should be included by all
applications that want to use your library. It’s a good idea to include the header file in the files
fred.cand bill.c too. This will help the compiler pick up any errors.

/*

This is lib.h. It declares the functions fred and bill for users

11
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*/

void bill (char *);
void fred(int) ;
4. The calling program (program.c) can be very simple. It includes the library header file and
calls one of the functions from the library.
#include <stdlib.hs>

#include “1lib.h”

int main()

{
bill (“Hello World”) ;
exit (0) ;

}

5. You can now compile the program and test it. For now, specify the object files explicitly to the
compiler, asking it to compile your file and link it with the previously compiled object module
bill.o.

$ gece -c program.c

$gcc -o program program.o bill.o
$ ./program

bill: we passed Hello World

$

6. Now you'll create and use a library. Use the ar program to create the archive and add your
object files to it. The program is called ar because it creates archives, or collections, of individual
files placed together in one large file. Note that you can also use ar to create archives of files of
any type. (Like many UNIX utilities, ar is a generic tool.)

$ar crv libfoo.a bill.o fred.o

a - bill.o

a - fred.o

7. Thelibrary is created and the two object files added. To use the library successfully, some sys-
tems, notably those derived from Berkeley UNIX, require that a table of contents be created for
the library. Do this with the ranlib command. In Linux, this step isn’t necessary (but it is harm-
less) when you're using the GNU software development tools.

$ ranlib libfoo.a

12
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Your library is now ready to use. You can add to the list of files to be used by the compiler to create your
program like this:

$ gcec -o program program.o libfoo.a
$ ./program

bill: we passed Hello World

$

You could also use the -1 option to access the library, but because it is not in any of the standard places,
you have to tell the compiler where to find it by using the -L option like this:

$ gecc -o program program.o -L. -1lfoo

The -L. option tells the compiler to look in the current directory (.) for libraries. The -1foo option tells
the compiler to use a library called 1ibfoo.a (or a shared library, 1ibfoo. so, if one is present). To see
which functions are included in an object file, library, or executable program, you can use the nm com-
mand. If you take a look at programand 1ib.a, you see that the library contains both fred and bill,
but that program contains only bi11l. When the program is created, it includes only functions from the
library that it actually needs. Including the header file, which contains declarations for all of the func-
tions in the library, doesn’t cause the entire library to be included in the final program.

If you're familiar with Windows software development, there are a number of direct analogies here,
illustrated in the following table.

Item UNIX Windows
object module func.o FUNC.OBJ
static library lib.a LIB.LIB
program program PROGRAM. EXE

Shared Libraries

One disadvantage of static libraries is that when you run many applications at the same time and they
all use functions from the same library, you may end up with many copies of the same functions in
memory and indeed many copies in the program files themselves. This can consume a large amount of
valuable memory and disk space.

Many UNIX systems and Linux-support shared libraries can overcome this disadvantage. A complete
discussion of shared libraries and their implementation on different systems is beyond the scope of this
book, so we'll restrict ourselves to the visible implementation under Linux.

Shared libraries are stored in the same places as static libraries, but shared libraries have a different filename
suffix. On a typical Linux system, the shared version of the standard math library is /1ib/1libm. so.

When a program uses a shared library, it is linked in such a way that it doesn’t contain function code
itself, but references to shared code that will be made available at run time. When the resulting program
is loaded into memory to be executed, the function references are resolved and calls are made to the
shared library, which will be loaded into memory if needed.

13
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In this way, the system can arrange for a single copy of a shared library to be used by many applications
at once and stored just once on the disk. An additional benefit is that the shared library can be updated
independently of the applications that rely on it. Symbolic links from the /1ib/1libm. so file to the actual
library revision (/1ib/1libm.so.N where N represents a major version number — 6 at the time of writing)
are used. When Linux starts an application, it can take into account the version of a library required by the
application to prevent major new versions of a library from breaking older applications.

The following example outputs are taken from a SUSE 10.3 distribution. Your output
may differ slightly if you are not using this distribution.

For Linux systems, the program (the dynamic loader) that takes care of loading shared libraries and resolv-
ing client program function references is called 1d. so and may be made available as 1d-1inux.so.2 or
1d-1sb.so.2 or 1d-1sb.so.3. The additional locations searched for shared libraries are configured in the
file /etc/1d. so.conf, which needs to be processed by 1dconfig if changed (for example, if X11 shared
libraries are added when the X Window System is installed).

You can see which shared libraries are required by a program by running the utility 1dd. For example, if
you try running it on your example application, you get the following:

$ 1dd program
linux-gate.so.l => (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7db4000)
/1ib/1ld-1linux.so0.2 (0xb7efc000)

In this case, you see that the standard C library (1ibc) is shared (. so). The program requires major
Version 6. Other UNIX systems will make similar arrangements for access to shared libraries. Refer to
your system documentation for details.

In many ways, shared libraries are similar to dynamic-link libraries used under Windows. The . so
libraries correspond to .DLL files and are required at run time, and the . a libraries are similar to . LIB
files included in the program executable.

Getting Help
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The vast majority of Linux systems are reasonably well documented with respect to the system program-
ming interfaces and standard utilities. This is true because, since the earliest UNIX systems, programmers
have been encouraged to supply a manual page with their applications. These manual pages, which are
sometimes provided in a printed form, are invariably available electronically.

The man command provides access to the online manual pages. The pages vary considerably in quality
and detail. Some may simply refer the reader to other, more thorough documentation, whereas others
give a complete list of all options and commands that a utility supports. In either case, the manual page
is a good place to start.

The GNU software suite and some other free software use an online documentation system called info.
You can browse full documentation online using a special program, info, or via the info command of
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the emacs editor. The benefit of the info system is that you can navigate the documentation using links
and cross-references to jump directly to relevant sections. For the documentation author, the info system
has the benefit that its files can be automatically generated from the same source as the printed, typeset
documentation.

Try It Out

Manual Pages and info

Let’s look for documentation of the GNU C compiler (gcc).

1.  First take a look at the manual page.

$ man gcc

GCC (1)

NAME

GNU GCC (1)

gcc - GNU project C and C++ compiler

SYNOPSIS

gcc [-c|-S|-E] [-std=standard]
[-g] [-pg] [-Olevel]

[-Wwarn...] [-pedantic]

[-Idir...] [-Ldir...]
[-Dmacro[=defn] ...] [-Umacro]
[-foption...] [-mmachine-option...]

[-0 outfile] infile...

Only the most useful options are listed here; see below
for the remainder. g++ accepts mostly the same options as
gcc.

DESCRIPTION

When you invoke GCC, it normally does preprocessing, com
pilation, assembly and linking. The ~“overall options’‘
allow you to stop this process at an intermediate stage.
For example, the -c option says not to run the linker.
Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing.
Some options control the preprocessor and others the com
piler itself. Yet other options control the assembler and
linker; most of these are not documented here, since we
rarely need to use any of them.

If you want, you can read about the options that the compiler supports. The manual page in this case is
quite long, but it forms only a small part of the total documentation for GNU C (and C++).

When reading manual pages, you can use the spacebar to read the next page, Enter (or Return if your
keyboard has that key instead) to read the next line, and ¢ to quit altogether.

15
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2. To get more information on GNU C, you can try info.
$ info gcc

File: gcc.info, ©Node: Top, Next: G++ and GCC, Up: (DIR)
Introduction
EEE R RS SRR R RS

This manual documents how to use the GNU compilers, as well as their
features and incompatibilities, and how to report bugs. It corresponds
to GCC version 4.1.3. The internals of the GNU compilers, including how
to port them to new targets and some information about how to write
front ends for new languages, are documented in a separate manual.

*Note Introduction: (gccint)Top.

* Menu:

* G++ and GCC:: You can compile C or C++ Applications.

* Standards:: Language standards supported by GCC.

* Invoking GCC:: Command options supported by “gcc’.

* C Implementation:: How GCC implements the ISO C specification.
* C Extensions:: GNU extensions to the C language family.

* C++ Extensions:: GNU extensions to the C++ language.

* Objective-C:: GNU Objective-C runtime features.

* Compatibility:: Binary Compatibility

--zz-Info: (gcc.info.gz)Top, 39 lines --TOp---------------=-——----—-~———-~-~———-
Welcome to Info version 4.8. Type ? for help, m for menu item.

You're presented with a long menu of options that you can select to move around a complete text ver-
sion of the documentation. Menu items and a hierarchy of pages allow you to navigate a very large doc-
ument. On paper, the GNU C documentation runs to many hundreds of pages.

The info system also contains its own help page in info form pages, of course. If you type Ctrl+H,
you'll be presented with some help that includes a tutorial on using info. The info program is avail-
able with many Linux distributions and can be installed on other UNIX systems.

Summary
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In this introductory chapter, we've looked at Linux programming and the things Linux holds in com-
mon with proprietary UNIX systems. We’ve noted the wide variety of programming systems available
to UNIX developers. We’ve also presented a simple program and library to demonstrate the basic C
tools, comparing them with their Windows equivalents.



Shell Programming

Having started this book on programming Linux using C, we now take a detour into writing shell
programs. Why? Well, Linux isn’t like systems where the command-line interface is an afterthought to
the graphical interface. UNIX, Linux’s inspiration, originally had no graphical interface at all; every-
thing was done from the command line. Consequently, the command-line system of UNIX underwent
a lot of development and became a very powerful feature. This has been carried into Linux, and some
of the most powerful things that you can do are most easily done from the shell. Because the shell is so
important to Linux, and is so useful for automating simple tasks, shell programming is covered early.

Throughout this chapter, we’ll be showing you the syntax, structures, and commands available to you
when you’re programming the shell, usually making use of interactive (screen-based) examples.
These should serve as a useful synopsis of most of the shell’s features and their effects. We will also
sneak a look at a couple of particularly useful command-line utilities often called from the shell: grep
and £ind. While looking at grep, we also cover the fundamentals of regular expressions, which crop
up in Linux utilities and in programming languages such as Perl, Ruby, and PHP. At the end of the
chapter, you'll learn how to program a real-life script, which is reprogrammed and extended in C
throughout the book. This chapter covers the following:

U

What a shell is

Basic considerations

The subtleties of syntax: variables, conditions, and program control
Lists

Functions

Commands and command execution

Here documents

Debugging

grep and regular expressions

[E S T N A H A N N

find

Whether you're faced with a complex shell script in your system administration, or you want to
prototype your latest big (but beautifully simple) idea, or just want to speed up some repetitive
task, this chapter is for you.
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Why Program with a Shell?

A
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One reason to use the shell for programming is that you can program the shell quickly and simply.
Moreover, a shell is always available even on the most basic Linux installation, so for simple prototyp-
ing you can find out if your idea works. The shell is also ideal for any small utilities that perform some
relatively simple task for which efficiency is less important than easy configuration, maintenance, and
portability. You can use the shell to organize process control, so that commands run in a predeter-
mined sequence dependent on the successful completion of each stage.

Although the shell has superficial similarities to the Windows command prompt, it’s much more powerful,
capable of running reasonably complex programs in its own right. Not only can you execute commands
and call Linux utilities, you can also write them. The shell executes shell programs, often referred to as
scripts, which are interpreted at runtime. This generally makes debugging easier because you can easily
execute single lines, and there’s no recompile time. However, this can make the shell unsuitable for time-
critical or processor-intensive tasks.

Bit of Philosophy

Here we come to a bit of UNIX — and of course Linux — philosophy. UNIX is built on and depends
on a high level of code reuse. You build a small and simple utility and people use it as one link in a
string of others to form a command. One of the pleasures of Linux is the variety of excellent tools
available. A simple example is this command:

$ 1s -al | more

This command uses the 1s and more utilities and pipes the output of the file listing to a screen-at-a-time
display. Each utility is one more building block. You can often use many small scripts together to create
large and complex suites of programs.

For example, if you want to print a reference copy of the bash manual pages, then use
$ man bash | col -b | lpr

Furthermore, because of Linux’s automatic file type handling, the users of these utilities usually don’t
need to know what language the utilities are written in. If the utility needs to run faster, it’s quite com-
mon to prototype utilities in the shell and reimplement them later in C or C++, Perl, Python, or some
other language that executes more swiftly once an idea has proven its worth. Conversely, if the utility
works adequately in the shell, you can leave well enough alone.

Whether or not you ever reimplement the script depends on whether it needs optimizing, whether it
needs to be portable, whether it should be easy to change, and whether (as usually happens) it outgrows
its original purpose.

Numerous examples of shell scripts are already loaded on your Linux system in case you're curious,
including package installers, .xinitrc and startx, and the scripts in /etc/rc.d to configure the
system on boot-up.
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What Is a Shell?

Before jumping in and discussing how to program using a shell, let’s review the shell’s function and the
different shells available for Linux. A shell is a program that acts as the interface between you and the Linux
system, enabling you to enter commands for the operating system to execute. In that respect, it resembles
the Windows command prompt, but as mentioned earlier, Linux shells are much more powerful. For exam-
ple, input and output can be redirected using < and >, data piped between simultaneously executing pro-
grams using |, and output from a subprocess grabbed by using $ (. . .). On Linux it’s quite feasible to have
multiple shells installed, with different users able to pick the one they prefer. Figure 2-1 shows how the shell
(two shells actually, both bash and csh) and other programs sit around the Linux kernel.

Other

csh programs
ernel
The
bash X Window

System

Figure 2-1

Because Linux is so modular, you can slot in one of the many different shells in use, although most of
them are derived from the original Bourne shell. On Linux, the standard shell that is always installed as
/bin/shis called bash (the GNU Bourne-Again SHell), from the GNU suite of tools. Because this is an
excellent shell that is always installed on Linux systems, is open source, and is portable to almost all
UNIX variants, bash is the shell we will be using. This chapter uses bash version 3 and mostly uses the
features common to all POSIX-compatible shells. We assume that the shell has been installed as /bin/sh
and that it is the default shell for your login. On most Linux distributions, the program /bin/sh, the
default shell, is actually a link to the program /bin/bash.

You can check the version of bash you have with the following command:

$ /bin/bash --version
GNU bash, version 3.2.9(1)-release (i686-pc-linux-gnu)
Copyright (C) 2005 Free Software Foundation, Inc.

To change to a different shell — if bash isn’t the default on your system, for example —
just execute the desired shell’s program (e.g., /bin/bash) to run the new shell and
change the command prompt. If you are using UNIX, and bash isn’t installed, you

can download it free from the GNU Web site at www.gnu. org. The sources are highly
portable, and chances are good that it will compile on your version of UNIX straight
out of the box.
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When you create Linux users, you can set the shell that they will use, either when the user is created or
afterwards by modifying their details. Figure 2-2 shows the selection of the shell for a user using Fedora.

& User Manager (=)
File Edit Help
Add User Add Group Properties Delete Refresh Help
Search filter: [ ] IApp\yﬁIter
Users Grgups|
User Name User ID
O
00 —
User Data |Account InfolEasswurd Info lgroups|
neil 501
User Name: [rick ]
Full Name: [R|ck Stones ]
Password: [***** ]
Confirm Password: [***** ]
Home Directory: [,‘homefrick ]
Login Shell: Jbin/bash ~ ]
;bm!bash
injcsh
/binfsh
J/binftcsh
Jshin/nologin
Figure 2-2

Many other shells are available, either free or commercially. The following table offers a brief summary
of some of the more common shells available:

Shell Name A Bit of History
sh (Bourne) The original shell from early versions of UNIX
csh, tesh, zsh The C shell, and its derivatives, originally created by Bill Joy of

Berkeley UNIX fame. The C shell is probably the third most popular
type of shell after bash and the Korn shell.

ksh, pdksh The Korn shell and its public domain cousin. Written by David
Korn, this is the default shell on many commercial UNIX versions.

bash The Linux staple shell from the GNU project. bash, or Bourne Again
SHell, has the advantage that the source code is freely available, and
even if it’s not currently running on your UNIX system, it has proba-
bly been ported to it. bash has many similarities to the Korn shell.
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Except for the C shell and a small number of derivatives, all of these are very similar and are closely aligned
with the shell specified in the X/Open 4.2 and POSIX 1003.2 specifications. POSIX 1003.2 provides the mini-
mum specification for a shell, but the extended specification in X/Open provides a more friendly and pow-
erful shell. X/Open is usually the more demanding specification, but it also yields a friendlier system.

Pipes and Redirection

Before we get down to the details of shell programs, we need to say a little about how inputs and out-
puts of Linux programs (not just shell programs) can be redirected.

Redirecting Output

You may already be familiar with some redirection, such as
$ 1s -1 > lsoutput.txt
which saves the output of the 1s command into a file called 1soutput. txt.

However, there is much more to redirection than this simple example reveals. You'll learn more about the
standard file descriptors in Chapter 3, but for now all you need to know is that file descriptor 0 is the stan-
dard input to a program, file descriptor 1 is the standard output, and file descriptor 2 is the standard error
output. You can redirect each of these independently. In fact, you can also redirect other file descriptors, but
it’s unusual to want to redirect any other than the standard ones: 0, 1, and 2.

The preceding example redirects the standard output into a file by using the > operator. By default, if the
file already exists, then it will be overwritten. If you want to change the default behavior, you can use
the command set -o noclobber (or set -C), which sets the noclobber option to prevent a file from
being overwritten using redirection. You can cancel this option using set +o noclobber. You'll see
more options for the set command later in the chapter.

To append to the file, use the >> operator. For example,

S ps >> lsoutput.txt
will append the output of the ps command to the end of the specified file.
To redirect the standard error output, preface the > operator with the number of the file descriptor you
wish to redirect. Because the standard error is on file descriptor 2, use the 2> operator. This is often use-
ful to discard error information and prevent it from appearing on the screen.
Suppose you want to use the ki1l command to kill a process from a script. There is always a slight risk
that the process will die before the ki1l command is executed. If this happens, k111 will write an error
message to the standard error output, which, by default, will appear on the screen. By redirecting both the
standard output and the error, you can prevent the kill command from writing any text to the screen.
The command

$ kill -HUP 1234 >killout.txt 2>killerr.txt

will put the output and error information into separate files.
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If you prefer to capture both sets of output into a single file, you can use the >& operator to combine the
two outputs. Therefore,

$ kill -1 1234 >killouterr.txt 2>&1

will put both the output and error outputs into the same file. Notice the order of the operators. This
reads as “redirect standard output to the file killouterr. txt, and then direct standard error to the
same place as the standard output.” If you get the order wrong, the redirect won’t work as you expect.

Because you can discover the result of the ki1l command using the return code (discussed in more
detail later in this chapter), you don’t often want to save either standard output or standard error. You
can use the Linux universal “bit bucket” of /dev/null to efficiently discard the entire output, like this:

$ kill -1 1234 >/dev/null 2>&l

Redirecting Input

Rather like redirecting output, you can also redirect input. For example,
$ more < killout.txt

Obviously, this is a rather trivial example under Linux; the Linux more command is quite happy to
accept filenames as parameters, unlike the Windows command-line equivalent.

Pipes
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You can connect processes using the pipe operator ( | ). In Linux, unlike in MS-DOS, processes connected
by pipes can run simultaneously and are automatically rescheduled as data flows between them. As a
simple example, you could use the sort command to sort the output from ps.

If you don’t use pipes, you must use several steps, like this:

S ps > psout.txt
$ sort psout.txt > pssort.out

A much more elegant solution is to connect the processes with a pipe:
$ ps | sort > pssort.out

Because you probably want to see the output paginated on the screen, you could connect a third process,
more, all on the same command line:

$ ps | sort | more

There’s practically no limit to the permissible number of connected processes. Suppose you want to see
all the different process names that are running excluding shells. You could use

$ ps -xo comm | sort | uniq | grep -v sh | more

This takes the output of ps, sorts it into alphabetical order, extracts processes using unigq, uses grep -v
sh to remove the process named sh, and finally displays it paginated on the screen.
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As you can see, this is a much more elegant solution than a string of separate commands, each with its
own temporary file. However, be wary of one thing here: If you have a string of commands, the output
file is created or written to immediately when the set of commands is created, so never use the same file-
name twice in a string of commands. If you try to do something like

cat mydata.txt | sort | uniq > mydata.txt

you will end up with an empty file, because you will overwrite the mydata. txt file before you read it.

The Shell as a Programming Language

Now that you’ve seen some basic shell operations, it’s time to move on to some actual shell programs. There
are two ways of writing shell programs. You can type a sequence of commands and allow the shell to exe-
cute them interactively, or you can store those commands in a file that you can then invoke as a program.

Interactive Programs

Just typing the shell script on the command line is a quick and easy way of trying out small code frag-
ments, and is very useful while you are learning or just testing things out.

Suppose you have a large number of C files and wish to examine the files that contain the string POSIX.
Rather than search using the grep command for the string in the files and then list the files individually,
you could perform the whole operation in an interactive script like this:

for file in *

do

if grep -1 POSIX $file

then

more $file

fi

> done

posix

This is a file with POSIX in it - treat it well
$

vV V. V VvV VvV Ur

Note how the normal $ shell prompt changes to a > when the shell is expecting further input. You can
type away, letting the shell decide when you're finished, and the script will execute immediately.

In this example, the grep command prints the files it finds containing P0S1X and then more displays
the contents of the file to the screen. Finally, the shell prompt returns. Note also that you called the shell
variable that deals with each of the files to self-document the script. You could equally well have used 1,
but file is more meaningful for humans to read.

The shell also performs wildcard expansion (often referred to as globbing). You are almost certainly
aware of the use of * ** as a wildcard to match a string of characters. What you may not know is that
you can request single-character wildcards using ?, while [set] allows any of a number of single char-
acters to be checked. [*set] negates the set — that is, it includes anything but the set you've specified.
Brace expansion using {} (available on some shells, including bash) allows you to group arbitrary
strings together in a set that the shell will expand. For example,

$ 1s my {finger,toe}s

23



Chapter 2: Shell Programming

will list the filesmy_ fingers and my_toes. This command uses the shell to check every file in the cur-
rent directory. We will come back to these rules for matching patterns near the end of the chapter when
we look in more detail at grep and the power of regular expressions.

Experienced Linux users would probably perform this simple operation in a much more efficient way,
perhaps with a command such as

$ more “grep -1 POSIX *°
or the synonymous construction

$ more $(grep -1 POSIX *)
In addition,

$ grep -1 POSIX * | more
will output the name of the file whose contents contained the string POSIX. In this script, you see the
shell making use of other commands, such as grep and more, to do the hard work. The shell simply
enables you to glue several existing commands together in new and powerful ways. You will see wild-
card expansion used many times in the following scripts, and we’ll look at the whole area of expansion
in more detail when we look at regular expressions in the section on the grep command.
Going through this long rigmarole every time you want to execute a sequence of commands is a bore.

You need to store the commands in a file, conventionally referred to as a shell script, so you can execute
them whenever you like.

Creating a Script
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Using any text editor, you need to create a file containing the commands; create a file called first that
looks like this:

#!/bin/sh

# first

# This file looks through all the files in the current

# directory for the string POSIX, and then prints the names of

# those files to the standard output.

for file in *

do
if grep -gq POSIX sfile
then
echo $file
fi
done
exit 0

Comments start with a # and continue to the end of a line. Conventionally, though, # is kept in the first col-
umn. Having made such a sweeping statement, we next note that the first line, #! /bin/sh, is a special form
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of comment; the #! characters tell the system that the argument that follows on the line is the program to be
used to execute this file. In this case, /bin/sh is the default shell program.

Note the absolute path specified in the comment. It is conventional to keep this shorter than 32 charac-
ters for backward compatibility, because some older UNIX versions can only use this limited number of
characters when using # !, although Linux generally does not have this limitation.

Since the script is essentially treated as standard input to the shell, it can contain any Linux commands
referenced by your PATH environment variable.

The exit command ensures that the script returns a sensible exit code (more on this later in the chapter).
This is rarely checked when programs are run interactively, but if you want to invoke this script from
another script and check whether it succeeded, returning an appropriate exit code is very important.
Even if you never intend to allow your script to be invoked from another, you should still exit with a
reasonable code. Have faith in the usefulness of your script: Assume it may need to be reused as part of
another script someday:.

A zero denotes success in shell programming. Since the script as it stands can’t detect any failures, it
always returns success. We'll come back to the reasons for using a zero exit code for success later in the
chapter, when we look at the exit command in more detail.

Notice that this script does not use any filename extension or suffix; Linux, and UNIX in general, rarely
makes use of the filename extension to determine the type of a file. You could have used .sh or added a
different extension, but the shell doesn’t care. Most preinstalled scripts will not have any filename exten-
sion, and the best way to check if they are scripts or not is to use the £ile command — for example,
file firstorfile /bin/bash. Use whatever convention is applicable where you work, or suits you.

Making a Script Executable

Now that you have your script file, you can run it in two ways. The simpler way is to invoke the shell
with the name of the script file as a parameter:

$ /bin/sh first
This should work, but it would be much better if you could simply invoke the script by typing its name,
giving it the respectability of other Linux commands. Do this by changing the file mode to make the file

executable for all users using the chmod command:

$ chmod +x first

Of course, this isn’t the only way to use chmod to make a file executable. Use man
chmod to find out more about octal arguments and other options.

You can then execute it using the command

$ first
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You may get an error saying the command wasn’t found. This is almost certainly because the shell envi-
ronment variable PATH isn’t set to look in the current directory for commands to execute. To change this,
either type PATH=$PATH: . on the command line or edit your .bash_profile file to add this command
to the end of the file; then log out and log back in again. Alternatively, type . /first in the directory
containing the script, to give the shell the full relative path to the file.

Specifying the path prepended with . / does have one other advantage: It ensures that you don’t acci-
dentally execute another command on the system with the same name as your script file.

You shouldn’t change the PATH variable like this for the superuser, conventionally
the user name root. It’s a security loophole, because the system administrator
logged in as root can be tricked into invoking a fake version of a standard command.
One of the authors admits to doing this once — just to prove a point to the system
administrator about security, of course! It’s only a slight risk on ordinary accounts to
include the current directory in the path, so if you are particularly concerned, just
get into the habit of prepending ./ to all commands that are in the local directory.

Once you're confident that your script is executing properly, you can move it to a more appropriate loca-
tion than the current directory. If the command is just for your own use, you could create a bin directory
in your home directory and add that to your path. If you want the script to be executable by others, you
could use /usr/local/bin or another system directory as a convenient location for adding new pro-
grams. If you don’t have root permissions on your system, you could ask the system administrator to
copy your file for you, although you may have to convince them of its worth first. To prevent other users
from changing the script, perhaps accidentally, you should remove write access from it. The sequence of
commands for the administrator to set ownership and permissions would be something like this:

cp first /usr/local/bin

chown root /usr/local/bin/first
chgrp root /usr/local/bin/first
chmod 755 /usr/local/bin/first

HH H H

Notice that rather than alter a specific part of the permission flags, you use the absolute form of the
chmod here because you know exactly what permissions you require.

If you prefer, you can use the rather longer, but perhaps more obvious, form of the chmod command:
# chmod u=rwx,go=rx /usr/local/bin/first

Check the manual page of chmod for more details.

In Linux you can delete a file if you have write permission on the directory that
contains it. To be safe, ensure that only the superuser can write to directories con-
taining files that you want to keep safe. This makes sense because a directory is just
another file, and having write permission to a directory file allows users to add and
remove names.
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Shell Syntax

Now that you've seen an example of a simple shell program, it’s time to look in greater depth at the pro-
gramming power of the shell. The shell is quite an easy programming language to learn, not least because
it’s easy to test small program fragments interactively before combining them into bigger scripts. You can
use the bash shell to write quite large, structured programs. The next few sections cover the following:

Q  Variables: strings, numbers, environments, and parameters
Q Conditions: shell Booleans
Q  Program control: if, elif, for, while, until, case
Q Lists
0  Functions
O Commands built into the shell
0  Getting the result of a command
0  Here documents
Variables

You don’t usually declare variables in the shell before using them. Instead, you create them by simply
using them (for example, when you assign an initial value to them). By default, all variables are consid-
ered and stored as strings, even when they are assigned numeric values. The shell and some utilities will
convert numeric strings to their values in order to operate on them as required. Linux is a case-sensitive
system, so the shell considers the variable foo to be different from Foo, and both to be different from Foo.

Within the shell you can access the contents of a variable by preceding its name with a $. Whenever you
extract the contents of a variable, you must give the variable a preceding $. When you assign a value to a
variable, just use the name of the variable, which is created dynamically if necessary. An easy way to check
the contents of a variable is to echo it to the terminal, preceding its name with a $.

On the command line, you can see this in action when you set and check various values of the variable
salutation:

$ salutation=Hello

S echo $salutation
Hello

$ salutation="Yes Dear”
$ echo $salutation

Yes Dear

$ salutation=7+5

S echo $salutation

7+5

Note how a string must be delimited by quote marks if it contains spaces. In addition,
there can’t be any spaces on either side of the equals sign.
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You can assign user input to a variable by using the read command. This takes one parameter, the
name of the variable to be read into, and then waits for the user to enter some text. The read normally
completes when the user presses Enter. When reading a variable from the terminal, you don’t usually
need the quote marks:

$ read salutation
Wie geht’s?
$ echo $salutation
Wie geht’s?

Quoting

Before moving on, you should be clear about one feature of the shell: the use of quotes.

Normally, parameters in scripts are separated by whitespace characters (e.g., a space, a tab, or a newline
character). If you want a parameter to contain one or more whitespace characters, you must quote the
parameter.

The behavior of variables such as $foo inside quotes depends on the type of quotes you use. If you
enclose a $ variable expression in double quotes, then it’s replaced with its value when the line is exe-
cuted. If you enclose it in single quotes, then no substitution takes place. You can also remove the special
meaning of the $ symbol by prefacing it with a \.

Usually, strings are enclosed in double quotes, which protects variables from being separated by white
space but allows $ expansion to take place.

Try It Out Playing with Variables
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This example shows the effect of quotes on the output of a variable:
#!/bin/sh
myvar="Hi there”

echo Smyvar

echo “$myvar”
echo ‘S$myvar’
echo \$Smyvar

echo Enter some text
read myvar

echo ‘$myvar’ now equals S$myvar
exit 0

This behaves as follows:

$ ./variable
Hi there

Hi there
Smyvar
Smyvar
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Enter some text
Hello World

Smyvar now equals Hello World

How It Works

The variable myvar is created and assigned the string Hi there. The contents of the variable are dis-
played with the echo command, showing how prefacing the variable with a $ character expands the
contents of the variable. You see that using double quotes doesn’t affect the substitution of the variable,
while single quotes and the backslash do. You also use the read command to get a string from the user.

Environment Variables

When a shell script starts, some variables are initialized from values in the environment. These are nor-
mally in all uppercase form to distinguish them from user-defined (shell) variables in scripts, which are
conventionally lowercase. The variables created depend on your personal configuration. Many are listed
in the manual pages, but the principal ones are listed in the following table:

Environment Variable
SHOME
$PATH

$PS1

$PS2

$IFS

S0

SH

$s

Description
The home directory of the current user
A colon-separated list of directories to search for commands

A command prompt, frequently $, but in bash you can use some
more complex values; for example, the string [\ue\h \W]$isa
popular default that tells you the user, machine name, and current
directory, as well as providing a $ prompt.

A secondary prompt, used when prompting for additional
input; usually >.

An input field separator. This is a list of characters that are used to
separate words when the shell is reading input, usually space, tab,
and newline characters.

The name of the shell script
The number of parameters passed

The process ID of the shell script, often used inside a script for gener-
ating unique temporary filenames; for example /tmp/tmpfile $$

If you want to check out how the program works in a different environment by run-
ning the env <commands, try looking at the env manual pages. Later in the chapter
you'll see how to set environment variables in subshells using the export command.
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Parameter Variables

If your script is invoked with parameters, some additional variables are created. If no parameters are
passed, the environment variable $# still exists but has a value of 0.

The parameter variables are listed in the following table:

Parameter Variable Description
$1, $2, . The parameters given to the script
$* Alist of all the parameters, in a single variable, separated by the first

character in the environment variable IFS. If IFS is modified, then
the way $* separates the command line into parameters will change.

s@ A subtle variation on $*; it doesn’t use the IFS environment vari-
able, so parameters are not run together even if IFS is empty.

It’s easy to see the difference between $@ and $* by trying them out:

$ IFS='"

S set foo bar bam
S echo “$@“

foo bar bam

S echo “§*“
foobarbam

S unset IFS

S echo “§*“

foo bar bam

As you can see, within double quotes, $@ expands the positional parameters as separate fields, regard-
less of the 1FS value. In general, if you want access to the parameters, $@ is the sensible choice.

In addition to printing the contents of variables using the echo command, you can also read them by
using the read command.

Try It Out Manipulating Parameter and Environment Variables

The following script demonstrates some simple variable manipulation. Once you've typed the script and
saved it as try_var, don’t forget to make it executable with chmod +x try var.

#!/bin/sh

salutation="Hello”

echo $salutation

echo “The program $0 is now running”

echo “The second parameter was $2”

echo “The first parameter was $1”

echo “The parameter list was $*"

echo “The user’s home directory is $HOME”
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echo “Please enter a new greeting”
read salutation

echo $salutation
echo “The script is now complete”
exit 0

If you run this script, you get the following output:

$ ./try var foo bar baz

Hello

The program ./try var is now running
The second parameter was bar

The first parameter was foo

The parameter list was foo bar baz
The user’s home directory is /home/rick
Please enter a new greeting

Sire

Sire

The script is now complete

$

How It Works

This script creates the variable salutation, displays its contents, and then shows how various parame-
ter variables and the environment variable $HOME already exist and have appropriate values.

We'll return to parameter substitution in more detail later in the chapter.

Conditions

Fundamental to all programming languages is the ability to test conditions and perform different actions
based on those decisions. Before we talk about that, though, let’s look at the conditional constructs that
you can use in shell scripts and then examine the control structures that use them.

A shell script can test the exit code of any command that can be invoked from the command line, includ-
ing the scripts that you have written yourself. That’s why it’s important to always include an exit com-
mand with a value at the end of any scripts that you write.

The test or [ Command

In practice, most scripts make extensive use of the [ or test command, the shell’s Boolean check.
On some systems, the [ and test commands are synonymous, except that when the [ command is
used, a trailing ] is also used for readability. Having a [ command might seem a little odd, but within
the code it does make the syntax of commands look simple, neat, and more like other programming
languages.
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These commands call an external program in some older UNIX shells, but they tend
to be built in to more modern ones. We’ll come back to this when we look at com-
mands in a later section.

Because the test command is infrequently used outside shell scripts, many Linux
users who have never written shell scripts try to write simple programs and call
them test. If such a program doesn’t work, it’s probably conflicting with the shell’s
test command. To find out whether your system has an external command of a
given name, try typing something like which test, to check which test command
is being executed, or use . /test to ensure that you execute the script in the current
directory. When in doubt, just get into the habit of executing your scripts by preced-
ing the script name with ./ when invoking them.

We'll introduce the test command using one of the simplest conditions: checking to see whether a file
exists. The command for this is test -f <filenames, so within a script you can write

if test -f fred.c
then

fi
You can also write it like this:

if [ -f fred.c ]
then

fi
The test command’s exit code (whether the condition is satisfied) determines whether the conditional
code is run.

Note that you must put spaces between the [ braces and the condition being checked.
You can remember this by remembering that [ is just the same as writing test, and
you would always leave a space after the test command.

If you prefer putting then on the same line as if, you must add a semicolon to separate
the test from the then:

if [ -f fred.c ]; then

fi

The condition types that you can use with the test command fall into three types: string comparison,
arithmetic comparison, and file conditionals. The following table describes these condition types:
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String Comparison

stringl = string2

stringl != string2

-n string

-z string

Arithmetic Comparison

expressionl -eqg
expressionl -ne
expressionl -gt

expressionl -ge

expressionl -1t

expressionl -le

! expression
File Conditional
-d file

-e file

-f file
-g file
-r file
-s file
-u file
-w file

-x file

expression?2
expression2
expression?

expression2

expression2

expression?

Result

True if the strings are equal

True if the strings are not equal

True if the string is not null

True if the string is null (an empty string)

Result

True if the expressions are equal

True if the expressions are not equal

True if expressionl is greater than expression2

True if expressionl is greater than or equal to
expression2

True if expressioni is less than expression2

True if expressionl is less than or equal to
expression2

True if the expression is false, and vice versa
Result
True if the file is a directory

True if the file exists. Note that historically the -e option
has not been portable, so - £ is usually used.

True if the file is a regular file

True if set-group-idisseton file
True if the file is readable

True if the file has nonzero size

True if set-user-idisseton file
True if the file is writable

True if the file is executable
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You may be wondering what the set -group-id and set-user-1id (also known as
set-gid and set-uid) bits are. The set-uid bit gives a program the permissions of
its owner, rather than its user, while the set-gid bit gives a program the permissions
of its group. The bits are set with chmod, using the s and g options. The set-gid
and set-uid flags have no effect on files containing shell scripts, only on executable
binary files.

We're getting ahead of ourselves slightly, but following is an example of how you would test the state of

the file /bin/bash, just so you can see what these look like in use:
#!/bin/sh
if [ -f /bin/bash ]
then
echo “file /bin/bash exists”

fi

if [ -d /bin/bash ]

then

echo “/bin/bash is a directory”
else

echo “/bin/bash is NOT a directory”
fi

Before the test can be true, all the file conditional tests require that the file also exists. This list contains
just the more commonly used options to the test command, so for a complete list refer to the manual
entry. If you're using bash, where test is built in, use the help test command to get more details.

We’ll use some of these options later in the chapter.

Now that you know about conditions, you can look at the control structures that use them.

Control Structures

The shell has a set of control structures, which are very similar to other programming languages.

In the following sections, the statements are the series of commands to perform
when, while, or until the condition is fulfilled.

The if statement is very simple: It tests the result of a command and then conditionally executes a
group of statements:

if condition

then
statements

34




Chapter 2: Shell Programming

else
statements
fi
A common use for if is to ask a question and then make a decision based on the answer:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [ stimeofday = “yes” ]; then
echo “Good morning”

else
echo “Good afternoon”

fi

exit 0

This would give the following output:

Is it morning? Please answer yes Or no
yes
Good morning

$

This script uses the [ command to test the contents of the variable timeofday. The result is evaluated by
the if command, which then allows different lines of code to be executed.

Notice that you use extra white space to indent the statements inside the if. This is
just a convenience for the human reader; the shell ignores the additional white space.

elif
Unfortunately, there are several problems with this very simple script. For one thing, it will take any

answer except yes as meaning no. You can prevent this by using the elif construct, which allows you
to add a second condition to be checked when the else portion of the if is executed.

Try It Out Doing Checks with an elif

You can modify the previous script so that it reports an error message if the user types in anything other
than yes or no. Do this by replacing the else with elif and then adding another condition:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [ Stimeofday = “yes” ]

then
echo “Good morning”
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elif [ stimeofday = “no” ]; then
echo “Good afternoon”

else
echo “Sorry, S$timeofday not recognized. Enter yes or no”
exit 1

fi

exit 0

How It Works

This is quite similar to the previous example, but now the elif command tests the variable again if
the first 1 £ condition is not true. If neither of the tests is successful, an error message is printed and the
script exits with the value 1, which the caller can use in a calling program to check whether the script
was successful.

A Problem with Variables
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This fixes the most obvious defect, but a more subtle problem is lurking. Try this new script, but just press
Enter (or Return on some keyboards), rather than answering the question. You'll get this error message:

[: =: unary operator expected

What went wrong? The problem is in the first 1 f clause. When the variable t imeofday was tested, it
consisted of a blank string. Therefore, the 1 £ clause looks like

if [ = “yes” ]
which isn’t a valid condition. To avoid this, you must use quotes around the variable:
if [ “Stimeofday” = ‘yes” ]
An empty variable then gives the valid test:
if [ Y = “yes” ]
The new script is as follows:
#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

if [ “Stimeofday” = “yes” ]

then
echo “Good morning”

elif [ “S$timeofday” = “no” ]; then
echo “Good afternoon”

else

echo “Sorry, S$timeofday not recognized. Enter yes or no”
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exit 1
fi

exit 0

This is safe should a user just press Enter in answer to the question.

If you want the echo command to delete the trailing new line, the most portable
option is to use the printf command (see the printf section later in this chapter),
rather than the echo command. Some shells use echo -e, but that’s not supported on
all systems. bash allows echo -n to suppress the new line, so if you are confident
your script needs to work only on bash, we suggest using that syntax.

echo -n “Is it morning? Please answer yes or no: “

Note that you need to leave an extra space before the closing quotes so that there is a gap before the user-
typed response, which looks neater.

for
Use the for construct to loop through a range of values, which can be any set of strings. They could be
simply listed in the program or, more commonly, the result of a shell expansion of filenames.

The syntax is simple:

for variable in values
do

statements
done

Try It Out Using a for Loop with Fixed Strings
The values are normally strings, so you can write the following;:
#!/bin/sh

for foo in bar fud 43
do
echo $foo
done
exit 0

That results in the following output:
bar

fud
43
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What would happen if you changed the first line from for foo in bar fud 43
to for foo in “bar fud 43”? Remember that adding the quotes tells the shell to
consider everything between them as a single string. This is one way of getting
spaces to be stored in a variable.

How It Works

This example creates the variable foo and assigns it a different value each time around the for loop.
Since the shell considers all variables to contain strings by default, it’s just as valid to use the string 43 as
the string fud.

Try It Out Using a for Loop with Wildcard Expansion

As mentioned earlier, it’s common to use the for loop with a shell expansion for filenames. This means
using a wildcard for the string value and letting the shell fill out all the values at run time.

You've already seen this in the original example, £irst. The script used shell expansion, the * expand-
ing to the names of all the files in the current directory. Each of these in turn is used as the variable
$file inside the for loop.

Let’s quickly look at another wildcard expansion. Imagine that you want to print all the script files start-
ing with the letter “f” in the current directory, and you know that all your scripts end in .sh. You could
do it like this:

#!/bin/sh
for file in $(ls f*.sh); do
lpr sfile

done
exit 0

How It Works

This illustrates the use of the $ (command) syntax, which is covered in more detail later (in the section on
command execution). Basically, the parameter list for the for command is provided by the output of the
command enclosed in the $ () sequence.

The shell expands £*. sh to give the names of all the files matching this pattern.

Remember that all expansion of variables in shell scripts is done when the script is
executed, never when it’s written, so syntax errors in variable declarations are found
only at execution time, as shown earlier when we were quoting empty variables.
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while

Because all shell values are considered strings by default, the for loop is good for looping through a
series of strings, but is not so useful when you don’t know in advance how many times you want the
loop to be executed.

When you need to repeat a sequence of commands, but don’t know in advance how many times they
should execute, you will normally use a while loop, which has the following syntax:

while condition do
statements
done

For example, here is a rather poor password-checking program:
#!/bin/sh

echo “Enter password”
read trythis

while [ “S$trythis” != “secret” ]; do
echo “Sorry, try again”
read trythis

done

exit 0

An example of the output from this script is as follows:

Enter password
password

Sorry, try again
secret

$

Clearly, this isn’t a very secure way of asking for a password, but it does serve to illustrate the while
statement. The statements between do and done are continuously executed until the condition is no
longer true. In this case, you're checking whether the value of trythis is equal to secret. The loop will
continue until $trythis equals secret. You then continue executing the script at the statement imme-
diately following the done.

until

The until statement has the following syntax:

until condition
do

statements
done

This is very similar to the while loop, but with the condition test reversed. In other words, the loop con-
tinues until the condition becomes true, not while the condition is true.
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In general, if a loop is expected to execute at least once use an until loop, if it may
not need to execute at all use a while loop.

As an example of an until loop, you can set up an alarm that is initiated when another user, whose
login name you pass on the command line, logs on:

#!/bin/bash
until who | grep “$1” > /dev/null
do
sleep 60
done

# now ring the bell and announce the expected user.

echo -e ‘\a’
echo “**** $1 has just logged in ****“

exit 0

If the user is already logged on, the loop doesn’t need to execute at all, so using until is a more natural
choice than while.

case
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The case construct is a little more complex than those you have encountered so far. Its syntax is as follows:

case variable in

pattern [ | pattern] ...) statements;;
pattern [ | pattern] ...) statements;;
esac

This may look a little intimidating, but the case construct enables you to match the contents of a variable
against patterns in quite a sophisticated way and then allows execution of different statements, depending
on which pattern was matched. It is much simpler than the alternative way of checking several conditions,
which would be to use multiple i £, elif, and else statements.

Notice that each pattern line is terminated with double semicolons (; ;). You can put multiple state-
ments between each pattern and the next, so a double semicolon is needed to mark where one statement
ends and the next pattern begins.

The capability to match multiple patterns and then execute multiple related statements makes the case
construct a good way of dealing with user input. The best way to see how case works is with an example.
We'll develop it over three Try It Out examples, improving the pattern matching each time.

1%4

Be careful with the case construct if you are using wildcards such as “** in the pat-
tern. The problem is that the first matching pattern will be taken, even if a later
pattern matches more exactly.
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Try It Out Case I: User Input

You can write a new version of the input-testing script and, using the case construct, make it a little
more selective and forgiving of unexpected input:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “Stimeofday” in
yes) echo “Good Morning”;;

no ) echo “Good Afternoon”;;
y ) echo “Good Morning”;;
n ) echo “Good Afternoon”;;
* ) echo “Sorry, answer not recognized”;;
esac
exit 0
How It Works

When the case statement is executing, it takes the contents of timeofday and compares it to each
string in turn. As soon as a string matches the input, the case command executes the code following
the ) and finishes.

The case command performs normal expansion on the strings that it’s using for comparison. You can
therefore specify part of a string followed by the * wildcard. Using a single * will match all possible
strings, so always put one after the other matching strings to ensure that the case statement ends with
some default action if no other strings are matched. This is possible because the case statement com-
pares against each string in turn. It doesn’t look for a best match, just the first match. The default condi-
tion often turns out to be the impossible condition, so using * can help in debugging scripts.

Try It Out Case lI: Putting Patterns Together

The preceding case construction is clearly more elegant than the multiple if statement version, but by
putting the patterns together, you can make a much cleaner version:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “Stimeofday” in

ves | y | Yes | YES ) echo “Good Morning”; ;

n* | N* ) echo “Good Afternoon”;;

* ) echo “Sorry, answer not recognized”;;
esac
exit 0
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How It Works

This script uses multiple strings in each entry of the case so that case tests several different strings for
each possible statement. This makes the script both shorter and, with practice, easier to read. This code
also shows how the * wildcard can be used, although this may match unintended patterns. For exam-
ple, if the user enters never, then this will be matched by n* and Good Afternoon will be displayed,
which isn’t the intended behavior. Note also that the * wildcard expression doesn’t work within quotes.

Try It Out Case lll: Executing Multiple Statements

Finally, to make the script reusable, you need to have a different exit value when the default pattern is
used because the input was not understood:

#!/bin/sh

echo “Is it morning? Please answer yes or no”
read timeofday

case “S$timeofday” in
ves | y | Yes | YES )
echo “Good Morning”
echo “Up bright and early this morning”

[nN] *)

echo “Good Afternoon”

echo “Sorry, answer not recognized”
echo “Please answer yes or no”
exit 1

esac

exit 0

How It Works
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To show a different way of pattern matching, this code changes the way in which the no case is matched.
You also see how multiple statements can be executed for each pattern in the case statement. You must
be careful to put the most explicit matches first and the most general match last. This is important
because case executes the first match it finds, not the best match. If you put the *) first, it would always
be matched, regardless of what was input.

Note that the ; ; before esac is optional. Unlike C programming, where leaving out a break is poor pro-
gramming practice, leaving out the final ; ; is no problem if the last case is the default because no other
cases will be considered.

To make the case matching more powerful, you could use something like this:

yyl | [vy] [Ee][Ss] )
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This restricts the permitted letters while allowing a variety of answers, and offers more control than the
* wildcard.

Lists

Sometimes you want to connect commands in a series. For instance, you may want several different con-
ditions to be met before you execute a statement:

if [ -f this file ]; then
if [ -f that file ]; then
if [ -f the other file ]; then
echo “All files present, and correct”
fi
fi
fi

Or you might want at least one of a series of conditions to be true:

if [ -f this file ]; then
foo="True”

elif [ -f that file ]; then
foo="True”

elif [ -f the other file ]; then
foo="True”

else
foo="False”

fi

if [ “$foo” = “True” ]; then
echo “One of the files exists”

fi

Although these can be implemented using multiple if statements, you can see that the results are awk-
ward. The shell has a special pair of constructs for dealing with lists of commands: the AND list and the
OR list. These are often used together, but we’ll review their syntax separately.

The AND List

The AND list construct enables you to execute a series of commands, executing the next command only
if all the previous commands have succeeded. The syntax is

statementl && statement2 && statement3 && ...

Starting at the left, each statement is executed; if it returns true, the next statement to the right is executed.
This continues until a statement returns false, after which no more statements in the list are executed. The
&& tests the condition of the preceding command.

Each statement is executed independently, enabling you to mix many different commands in a single

list, as the following script shows. The AND list as a whole succeeds if all commands are executed suc-
cessfully, but it fails otherwise.
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Try It Out AND Lists

In the following script, you touch file_one (to check whether it exists and create it if it doesn’t) and
then remove £ile two. Then the AND list tests for the existence of each of the files and echoes some
text in between.

#!/bin/sh

touch file one
rm -f file two

if [ -f file one ] && echo “hello” && [ -f file two ] && echo “ there”
then
echo “in if”
else
echo “in else”
fi
exit 0

Try the script and you'll get the following result:

hello
in else

How It Works

The touch and rm commands ensure that the files in the current directory are in a known state. The &s list
then executes the [ -f file one ] statement, which succeeds because you just made sure that the file
existed. Because the previous statement succeeded, the echo command is executed. This also succeeds
(echo always returns true). The third test, [ -f file two 1], is then executed. It fails because the file
doesn’t exist. Because the last command failed, the final echo statement isn’t executed. The result of the &&
list is false because one of the commands in the list failed, so the if statement executes its else condition.

The OR List

The OR list construct enables us to execute a series of commands until one succeeds, and then not exe-
cute any more. The syntax is as follows:

statementl || statement2 || statement3 ||

Starting at the left, each statement is executed. If it returns false, then the next statement to the right is
executed. This continues until a statement returns true, at which point no more statements are executed.

The | | list is very similar to the && list, except that the rule for executing the next statement is that the
previous statement must fail.
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Try It Out OR Lists

Copy the previous example and change the shaded lines in the following listing:
#!/bin/sh

rm -f file one

if [ -f file one ] || echo “hello” || echo “ there”
then
echo “in if”
else
echo “in else”
fi
exit 0

This results in the following output:

hello
in if

How It Works

The first two lines simply set up the files for the rest of the script. The first command, [ -f file one ],
fails because the file doesn’t exist. The echo statement is then executed. Surprise, surprise — this returns
true, and no more commands in the | | list are executed. The if succeeds because one of the commands
in the | | list (the echo) was true.

The result of both of these constructs is the result of the last statement to be executed.
These list-type constructs execute in a similar way to those in C when multiple conditions are being
tested. Only the minimum number of statements is executed to determine the result. Statements that
can’t affect the result are not executed. This is commonly referred to as short circuit evaluation.
Combining these two constructs is a logician’s heaven. Try out the following:

[ -f file one ] && command for true || command for false
This will execute the first command if the test succeeds and the second command otherwise. It's always

best to experiment with these more unusual lists, and in general you should use braces to force the order
of evaluation.

Statement Blocks

If you want to use multiple statements in a place where only one is allowed, such as in an AND or OR
list, you can do so by enclosing them in braces {} to make a statement block. For example, in the appli-
cation presented later in this chapter, you'll see the following code:

get confirm && {
grep -v “Scdcatnum” S$tracks file > Stemp file
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cat $temp file > S$tracks file
echo
add record tracks

}

Functions

You can define functions in the shell; and if you write shell scripts of any size, you'll want to use them to
structure your code.

As an alternative, you could break a large script into lots of smaller scripts, each of
which performs a small task. This has some drawbacks: Executing a second script
from within a script is much slower than executing a function. It's more difficult to
pass back results, and there can be a very large number of small scripts. You should
consider the smallest part of your script that sensibly stands alone and use that as
your measure of when to break a large script into a collection of smaller ones.

To define a shell function, simply write its name followed by empty parentheses and enclose the state-
ments in braces:

function name () {
statements

}
Try It Out A Simple Function
Let’s start with a really simple function:
#!/bin/sh
foo() {

echo “Function foo is executing”

echo “script starting”
foo
echo “script ended”

exit 0
Running the script will output the following;:
script starting

Function foo is executing
script ending
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How It Works

This script starts executing at the top, so nothing is different there, but when it finds the foo () { con-
struct, it knows that a function called foo is being defined. It stores the fact that foo refers to a function
and continues executing after the matching }. When the single line foo is executed, the shell knows to
execute the previously defined function. When this function completes, execution resumes at the line
after the call to foo.

You must always define a function before you can invoke it, a little like the Pascal style of function defi-
nition before invocation, except that there are no forward declarations in the shell. This isn’t a problem,
because all scripts start executing at the top, so simply putting all the functions before the first call of any
function will always cause all functions to be defined before they can be invoked.

When a function is invoked, the positional parameters to the script, $*, $@, $#, $1, $2, and so on, are
replaced by the parameters to the function. That’s how you read the parameters passed to the function.
When the function finishes, they are restored to their previous values.

Some older shells may not restore the value of positional parameters after functions
execute. It's wise not to rely on this behavior if you want your scripts to be portable.

You can make functions return numeric values using the return command. The usual way to make
functions return strings is for the function to store the string in a variable, which can then be used after
the function finishes. Alternatively, you can echo a string and catch the result, like this:

foo () { echo JAY;}

result="$ (foo)"

Note that you can declare local variables within shell functions by using the 1ocal keyword. The variable is
then only in scope within the function. Otherwise, the function can access the other shell variables that are
essentially global in scope. If a local variable has the same name as a global variable, it overlays that variable,
but only within the function. For example, you can make the following changes to the preceding script to see
this in action:

#!/bin/sh
sample text="global variable”
foo() {
local sample_text="local variable”

echo “Function foo is executing”
echo $sample text

}

echo “script starting”
echo $sample text
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foo

echo “script ended”
echo $sample text

exit 0

In the absence of a return command specifying a return value, a function returns the exit status of the
last command executed.

Try It Out Returning a Value

The next script, my_name, shows how parameters to a function are passed and how functions can return
a true or false result. You call this script with a parameter of the name you want to use in the ques-
tion.

1.  After the shell header, define the function yes or no:
#!/bin/sh

yes or no() {
echo “Is your name $* ?2”
while true
do
echo -n “Enter yes or no: “
read x
case “$x” in
y | ves ) return 0;;

n | no) return 1;;
2 ) echo “Answer yes or no”
esac
done

}
2. Then the main part of the program begins:
echo “Original parameters are $*“

if yes or no “$1”

then
echo “Hi $1, nice name”
else
echo “Never mind”
fi
exit 0

Typical output from this script might be as follows:
$ ./my name Rick Neil

Original parameters are Rick Neil
Is your name Rick ?
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Enter yes or no: yes
Hi Rick, nice name

$

How It Works

As the script executes, the function yes_or_no is defined but not yet executed. In the i f statement, the
script executes the function yes_or_no, passing the rest of the line as parameters to the function after sub-
stituting the $1 with the first parameter to the original script, Rick. The function uses these parameters,
which are now stored in the positional parameters $1, $2, and so on, and returns a value to the caller.
Depending on the return value, the if construct executes the appropriate statement.

As you've seen, the shell has a rich set of control structures and conditional statements. You need to
learn some of the commands that are built into the shell; then you'll be ready to tackle a real program-
ming problem with no compiler in sight!

Commands

You can execute two types of commands from inside a shell script. There are “normal” commands that
you could also execute from the command prompt (called external commands), and there are “built-in” com-
mands (called internal commands), as mentioned earlier. Built-in commands are implemented internally to
the shell and can’t be invoked as external programs. However, most internal commands are also provided
as standalone programs — this requirement is part of the POSIX specification. It generally doesn’t matter if
the command is internal or external, except that internal commands execute more efficiently.

Here we'll cover only the main commands, both internal and external, that we use when we’re program-
ming scripts. As a Linux user, you probably know many other commands that are valid at the command
prompt. Always remember that you can use any of these in a script in addition to the built-in commands
presented here.

break

Use break for escaping from an enclosing for, while, or until loop before the controlling condition has
been met. You can give break an additional numeric parameter, which is the number of loops to break out
of, but this can make scripts very hard to read, so we don’t suggest you use it. By default, break escapes a
single level.

#!/bin/sh

rm -rf fred*
echo > fredl
echo > fred2
mkdir fred3

echo > fred4

for file in fredx*
do
if [ -d “$file” ]; then
break;
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fi
done

echo first directory starting fred was sfile

rm -rf fred*
exit 0

The : Command

The colon command is a null command. It’s occasionally useful to simplify the logic of conditions, being
an alias for true. Since it’s built-in, : runs faster than true, though its output is also much less readable.

You may see it used as a condition for while loops; while : implements an infinite loop in place of the
more common while true.

The : construct is also useful in the conditional setting of variables. For example,
${var:=value}

Without the :, the shell would try to evaluate $var as a command.

In some, mostly older, shell scripts, you may see the colon used at the start of a line
to introduce a comment, but modern scripts should always use # to start a comment
line because this executes more efficiently.

#!/bin/sh

rm -f fred
if [ -f fred ]; then

else
echo file fred did not exist
fi

exit 0

continue

Rather like the C statement of the same name, this command makes the enclosing for, while, or until
loop continue at the next iteration, with the loop variable taking the next value in the list:

#!/bin/sh

rm -rf fred*
echo > fredl
echo > fred2
mkdir fred3

echo > fred4
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for file in fredx*

do
if [ -d “$file” ]; then
echo “skipping directory sfile”
continue
fi
echo file is $file
done

rm -rf fred*
exit 0

continue can take the enclosing loop number at which to resume as an optional parameter so that you
can partially jump out of nested loops. This parameter is rarely used, as it often makes scripts much
harder to understand. For example,

for x in 1 2 3
do
echo before $x
continue 1
echo after $x
done

The output for the preceding will be

before 1
before 2
before 3

The . Command

The dot (.) command executes the command in the current shell:
./shell script

Normally, when a script executes an external command or script, a new environment (a subshell) is cre-
ated, the command is executed in the new environment, and the environment is then discarded apart
from the exit code that is returned to the parent shell. However, the external source and the dot com-
mand (two more synonyms) run the commands listed in a script in the same shell that called the script.

Because, by default, a new environment is created when a shell script is executed, any changes to environ-
ment variables that the script makes are lost. The dot command, on the other hand, allows the executed
script to change the current environment. This is often useful when you use a script as a wrapper to set up
your environment for the later execution of some other command. For example, when you're working on
several different projects at the same time, you may find you need to invoke commands with different
parameters, perhaps to invoke an older version of the compiler for maintaining an old program.

In shell scripts, the dot command works a little like the #include directive in C or C++. Though it doesn’t

literally include the script, it does execute the command in the current context, so you can use it to incor-
porate variable and function definitions into a script.
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Try It Out The Dot Command

The following example uses the dot command on the command line, but you can just as well use it
within a script:

1. Suppose you have two files containing the environment settings for two different development
environments. To set the environment for the old, classic commands, classic_set, you could

use the following:
#!/bin/sh
version=classic

PATH=/usr/local/old bin:/usr/bin:/bin:.
PSl="classic> ™

2. For the new commands, use latest set:
#!/bin/sh
version=latest

PATH=/usr/local/new bin:/usr/bin:/bin:.
PS1=" latest version> “

You can set the environment by using these scripts in conjunction with the dot command, as in the fol-

lowing sample session:

$ . ./classic set

classic> echo $version
classic

classic> . /latest set

latest version> echo $version
latest

latest version>

How It Works

The scripts are executed using the dot command, so each script is executed in the current shell. This
enables the script to change environment settings in the current shell, which remains changed even
when the script finishes executing.

echo
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Despite the X/Open exhortation to use the printf command in modern shells, we’ve been following
common practice by using the echo command to output a string followed by a newline character.

A common problem is how to suppress the newline character. Unfortunately, different versions of UNIX

have implemented different solutions. The common method in Linux is to use

echo -n “string to output”
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but you'll often come across
echo -e “string to output\c”

The second option, echo -e, ensures that the interpretation of backslashed escape characters, such as \c
for suppressing a newline, \t for outputting a tab and \n for outputting carriage returns, is enabled. In
older versions of bash this was often set by default, but more recent versions often default to not interpret-
ing backslashed escape characters. See the manual pages for details of the behavior on your distribution.

If you need a portable way to remove the trailing newline, you can use the external
tr command to get rid of it, but it will execute somewhat more slowly. If you need
portability to UNIX systems, it’s generally better to stick to printf if you need to
lose the newline. If your scripts need to work only on Linux and bash, echo -n
should be fine, though you may need to start the file with #! /bin/bash, to make it
explicit that you desire bash-style behavior.

eval

The eval command enables you to evaluate arguments. It’s built into the shell and doesn’t normally
exist as a separate command. It’s probably best demonstrated with a short example borrowed from the
X/Open specification itself:

foo=10
x=foo
y='8"8x
echo Sy

This gives the output $foo. However,
foo=10
x=foo
eval y='8$'$x
echo Sy

gives the output 10. Thus, eval is a bit like an extra $: It gives you the value of the value of a variable.

The eval command is very useful, enabling code to be generated and run on-the-fly. It does complicate
script debugging, but it enables you to do things that are otherwise difficult or even impossible.

exec

The exec command has two different uses. Its typical use is to replace the current shell with a different
program. For example,

exec wall “Thanks for all the fish”

in a script will replace the current shell with the wall command. No lines in the script after the exec
will be processed, because the shell that was executing the script no longer exists.
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The second use of exec is to modify the current file descriptors:

exec 3< afile

This causes file descriptor three to be opened for reading from file afile. It’s rarely used.

exit n

The exit command causes the script to exit with exit code n. If you use it at the command prompt of
any interactive shell, it will log you out. If you allow your script to exit without specifying an exit status,
then the status of the last command executed in the script is used as the return value. It’s always good
practice to supply an exit code.

In shell script programming, exit code 0 is success, and codes 1 through 125, inclusive, are error codes that
can be used by scripts. The remaining values have reserved meanings, as shown in the following table:

Exit Code Description

126 The file was not executable
127 A command was not found
128 and above A signal occurred

Using zero as success may seem a little unusual to many C or C++ programmers. The big advantage in
scripts is that they enable you to use 125 user-defined error codes without the need for a global error
code variable.

Here’s a simple example that returns success if a file called .profile exists in the current directory:
#!/bin/sh
if [ -f .profile ]; then
exit 0
fi

exit 1

If you're a glutton for punishment, or at least for terse scripts, you can rewrite this script using the com-
bined AND and OR list shown earlier, all on one line:

[ -f .profile ] && exit 0 || exit 1

export
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The export command makes the variable named as its parameter available in subshells. By default,
variables created in a shell are not available in further (sub)shells invoked from that shell. The export
command creates an environment variable from its parameter that can be seen by other scripts and pro-
grams invoked from the current program. More technically, the exported variables form the environ-
ment variables in any child processes derived from the shell. This is best illustrated with an example of
two scripts, exportl and export2.
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Try It Out Exporting Variables

1.  First, list export2:
#!/bin/sh

echo “S$foo”
echo “Sbar”

2. Now for exportl. At the end of this script, invoke export2:
#!/bin/sh

foo="The first meta-syntactic variable”
export bar="The second meta-syntactic variable”

. /export2
If you run these, you get the following;:
$ ./exportl

The second meta-syntactic variable

$

How It Works

The export2 script simply echoes the values of the two variables. The export1 script sets both the vari-
ables, but only marks bar as exported, so when it subsequently invokes export2, the value of foo has
been lost, but the value of bar has been exported to the second script. The blank line occurs because
$foo evaluated to nothing, and echoing a null variable gives a newline.

Once a variable has been exported from a shell, it’s exported to any scripts invoked from that shell and
to any shell they invoke in turn, and so on. If the script export2 called another script, it would also have
the value of bar available to it.

The commands set -a or set -allexport will export all variables thereafter.

expr

The expr command evaluates its arguments as an expression. It’s most commonly used for simple arith-
metic in the following form:

x="expr $x + 1°
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The ~~ (backtick) characters make x take the result of executing the command expr $x + 1.You could
also write it using the syntax $ ( ) rather than backticks, like this:

X=S$ (expr $x + 1)

The expr command is powerful and can perform many expression evaluations. The principal ones are
shown in the following table:

Expression Evaluation Description
exprl | expr2 exprl if expril is nonzero, otherwise expr2
exprl & expr2 Zero if either expression is zero, otherwise expri
exprl = expr2 Equal
exprl > expr2 Greater than
exprl >= expr2 Greater than or equal to
exprl < expr2 Less than
exprl <= expr2 Less than or equal to
exprl != expr2 Not equal
exprl + expr2 Addition
exprl - expr2 Subtraction
exprl * expr2 Multiplication
exprl / expr2 Integer division
exprl % expr2 Integer modulo
In newer scripts, the use of expr is normally replaced with the more efficient $ ( (..) ) syntax, which is

covered later in the chapter.

printf
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The printf command is available only in more recent shells. X/Open suggests that it should be used in
preference to echo for generating formatted output, though few people seem to follow this advice.

The syntax is

printf “format string"“ parameterl parameter2
The format string is very similar to that used in C or C++, with some restrictions. Principally, floating
point isn’t supported, because all arithmetic in the shell is performed as integers. The format string con-

sists of any combination of literal characters, escape sequences, and conversion specifiers. All characters
in the format string other than % and \ appear literally in the output.
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The following escape sequences are supported:

Escape Sequence Description

A\ Double quote

\\ Backslash character

\a Alert (ring the bell or beep)

\b Backspace character

\c Suppress further output

\f Form feed character

\n Newline character

\r Carriage return

\t Tab character

\v Vertical tab character

\ooo The single character with octal value coo
\xHH The single character with the hexadecimal value HH

The conversion specifier is quite complex, so we list only the common usage here. More details can be
found in the bash online manual or in the printf pages from section 1 of the online manual (man 1
printf). (If you can’t find it in section 1 of the manual, try section 3 as an alternative). The conversion
specifier consists of a % character, followed by a conversion character. The principal conversions are
shown in the following table:

Conversion Specifier Description

D Output a decimal number.
c Output a character.

S Output a string.

5 Output the % character.

The format string is then used to interpret the remaining parameters and output the result, as shown in
the following example,

$ printf “%s\n” hello

hello

$ printf “%s %d\t%s” “Hi There” 15 people
Hi There 15 people
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Notice you must use * * to protect the Hi There string and make it a single parameter.

return

The return command causes functions to return, as mentioned when we looked at functions earlier.
return takes a single numeric parameter that is available to the script calling the function. If no parame-
ter is specified, then return defaults to the exit code of the last command.

set

The set command sets the parameter variables for the shell. It can be a useful way of using fields in
commands that output space-separated values.

Suppose you want to use the name of the current month in a shell script. The system provides a date com-
mand, which contains the month as a string, but you need to separate it from the other fields. You can do
this using a combination of the set command and the $ (. . .) construct to execute the date command and
return the result (described in more detail very soon). The date command output has the month string as
its second parameter:

#!/bin/sh

echo the date is $(date)
set $(date)
echo The month is $2

exit 0

This program sets the parameter list to the date command’s output and then uses the positional param-
eter $2 to get at the month.

Notice that we used the date command as a simple example to show how to extract positional parameters.
Since the date command is sensitive to the language locale, in reality you would have extracted the name
of the month using date +%B. The date command has many other formatting options; see the manual
page for more details.

You can also use the set command to control the way the shell executes by passing it parameters. The
most commonly used form of the command is set -x, which makes a script display a trace of its cur-
rently executing command. We discuss set and more of its options when we look at debugging, later in
the chapter.

shift
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The shift command moves all the parameter variables down by one, so that $2 becomes $1, $3 becomes
$2, and so on. The previous value of $1 is discarded, while $0 remains unchanged. If a numerical parame-
ter is specified in the call to shift, the parameters move that many spaces. The other variables, $*, $@, and
$#, are also modified in line with the new arrangement of parameter variables.

shift is often useful for scanning through parameters passed into a script, and if your script requires
10 or more parameters, you'll need shift to access the tenth and beyond.
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For example, you can scan through all the positional parameters like this:
#!/bin/sh

while [ “$1” = “ ]; do
echo “$1”
shift

done

exit 0

trap

The trap command is used to specify the actions to take on receipt of signals, which you’ll meet in more
detail later in the book. A common use is to tidy up a script when it is interrupted. Historically, shells
always used numbers for the signals, but new scripts should use names taken from the #include file
signal.h, with the SIG prefix omitted. To see the signal numbers and associated names, you can just
type trap -1 atacommand prompt.

For those not familiar with signals, they are events sent asynchronously to a pro-
gram. By default, they normally cause the program to terminate.

The trap command is passed the action to take, followed by the signal name (or names) to trap on:
trap command signal

Remember that the scripts are normally interpreted from top to bottom, so you must specify the trap
command before the part of the script you wish to protect.

To reset a trap condition to the default, simply specify the command as -. To ignore a signal, set the com-
mand to the empty string *’. A trap command with no parameters prints out the current list of traps
and actions.

The following table lists the more important signals covered by the X/Open standard that can be caught
(with the conventional signal number in parentheses). More details can be found in the signal manual
pages in section 7 of the online manual (man 7 signal).

Signal Description

HUP (1) Hang up; usually sent when a terminal goes offline, or a user logs out
INT (2) Interrupt; usually sent by pressing Ctrl+C

QUIT (3) Quit; usually sent by pressing Ctrl+\

ABRT (6) Abort; usually sent on some serious execution error

ALRM (14) Alarm; usually used for handling timeouts

TERM (15) Terminate; usually sent by the system when it’s shutting down
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Try It Out Trapping Signals

The following script demonstrates some simple signal handling:
#!/bin/sh

trap ‘rm -f /tmp/my tmp file $$’ INT
echo creating file /tmp/my tmp file $s
date > /tmp/my tmp file $$

echo “press interrupt (control-C) to interrupt ....”
while [ -f /tmp/my tmp file $$ 1; do
echo File exists
sleep 1
done
echo The file no longer exists

trap - INT
echo creating file /tmp/my tmp file $$
date > /tmp/my tmp file $$

echo “press interrupt (control-C) to interrupt ....”
while [ -f /tmp/my tmp file $$ 1; do

echo File exists

sleep 1
done

echo we never get here
exit 0

If you run this script, holding down Ctrl and then pressing C (or whatever your interrupt key combina-
tion is) in each of the loops, you get the following output:

creating file /tmp/my tmp file 141

press interrupt (control-C) to interrupt
File exists

File exists

File exists

File exists

The file no longer exists

creating file /tmp/my tmp file 141

press interrupt (control-C) to interrupt
File exists

File exists

File exists

File exists
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How It Works

This script uses the trap command to arrange for the command rm -f /tmp/my tmp file $$ tobe exe-
cuted when an INT (interrupt) signal occurs. The script then enters a while loop that continues while the
file exists. When the user presses Ctrl+C, the statement rm -f /tmp/my tmp file $$ is executed, and
then the while loop resumes. Since the file has now been deleted, the first while loop terminates normally.

The script then uses the trap command again, this time to specify that no command be executed when
an INT signal occurs. It then re-creates the file and loops inside the second while statement. When the
user presses Ctrl+C this time, no statement is configured to execute, so the default behavior occurs,
which is to immediately terminate the script. Because the script terminates immediately, the final echo
and exit statements are never executed.

unset

The unset command removes variables or functions from the environment. It can’t do this to read-only
variables defined by the shell itself, such as IFS. It's not often used.

The following script writes Hello World once and a newline the second time:
#!/bin/sh

foo="Hello World”
echo $foo

unset foo
echo $foo

Writing foo= would have a very similar, but not identical, effect to unset in the pre-
ceding program. Writing foo= has the effect of setting foo to null, but foo still exists.
Using unset foo has the effect of removing the variable foo from the environment.

Two More Useful Commands and Regular Expressions

Before you see how to put this new knowledge of shell programming to use, let’s look at a couple of
other very useful commands, which, although not part of the shell, are often useful when writing shell
programs. Along the way we will also be looking at regular expressions, a pattern-matching feature that
crops up all over Linux and its associated programs.

The find Command

The first command you will look at is £ind. This command, which you use to search for files, is extremely
useful, but newcomers to Linux often find it a little tricky to use, not least because it takes options, tests, and
action-type arguments, and the results of one argument can affect the processing of subsequent arguments.
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Before delving into the options, tests, and arguments, let’s look at a very simple example for the file test
on your local machine. Do this as root to ensure that you have permissions to search the whole machine:

# find / -name test -print
/usr/bin/test
#

Depending on your installation, you may well find several other files also called test. As you can prob-
ably guess, this says “search starting at / for a file named test and then print out the name of the file.”
Easy, wasn’t it? Of course.

However, it did take quite a while to run on our machine, and the disk on our Windows machine on the
network rattled away as well. This is because our Linux machine mounts (using SAMBA) a chunk of
the Windows machine’s file system. It seems like that might have been searched as well, even though

we knew the file we were looking for would be on the Linux machine.

This is where the first of the options comes in. If you specify -mount, you can tell £ind not to search
mounted directories:

# find / -mount -name test -print
/usr/bin/test
#

We still find the file on our machine, but faster this time, and without searching other mounted file sys-
tems.

The full syntax for the find command is as follows:
find [path] [options] [tests] [actions]

The path part is nice and easy: You can use either an absolute path, such as /bin, or a relative path,
such as .. If you need to, you can also specify multiple paths — for example, find /var /home.

There are several options; the main ones are shown in the following table:

Option Meaning

-depth Search the contents of a directory before looking at the directory itself.
-follow Follow symbolic links.

-maxdepth N Search at most N levels of the directory when searching.

-mount (or -xdev) Don’t search directories on other file systems.

Now for the tests. A large number of tests can be given to £ind, and each test returns either true or
false. When £ind is working, it considers each file it finds in turn and applies each test, in the order
they were defined, on that file. If a test returns false, then £ind stops considering the file it is currently
looking at and moves on; if the test returns true, then £ind processes the next test or action on the cur-
rent file. The tests listed in the following table are just the most common; consult the manual pages for
the extensive list of possible tests you can apply using f£ind.
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Test

-atime N

-mtime N

-name pattern

-newer otherfile

-type C

-user username

Meaning
The file was last accessed N days ago.
The file was last modified N days ago.

The name of the file, excluding any path, matches the pattern pro-
vided. To ensure that the pattern is passed to £ind, and not evaluated
by the shell immediately, the pattern must always be in quotes.

The file is newer than the file otherfile.
The file is of type C, where C can be of a particular type; the most
common are “d” for a directory and “f” for a regular file. For other

types consult the manual pages.

The file is owned by the user with the given name.

You can also combine tests using operators. Most have two forms: a short form and a longer form, as

shown in the following table:

Operator, Short Form

Operator, Long Form Meaning

-not Invert the test.

-and Both tests must be true.
-or Either test must be true.

You can force the precedence of tests and operators by using parentheses. Since these have a special
meaning to the shell, you also have to quote the braces using a backslash. In addition, if you use a pat-
tern for the filename, then you must use quotes so that the name is not expanded by the shell but passed
directly to the find command. For example, if you wanted to write the test “newer than file X or called a
name that starts with an underscore,” you could write the following test:

\ (-newer X -o -name “ *"“ \)

We present an example just after the next “How it Works” section.

Try It Out Using find with Tests

Try searching in the current directory for files modified more recently than the file while2:

$ find . -newer while2 -print
./elif3

./words.txt

. /words2.txt

./ _trap

$
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That looks good, except that you also find the current directory, which you didn’t want. You were inter-
ested only in regular files, so you add an additional test, -type £:

$ find . -newer while2 -type f -print
./elif3

. /words.txt

. /words2.txt

./_trap

$

How It Works
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How did it work? You specified that £ ind should search in the current directory (.), for files newer than
the file while2 (-newer while2)and that, if that test passed, then to also test that the file was a regular file
(-type £). Finally, you used the action you already met, -print, just to confirm which files were found.

Now find files that either start with an underscore or are newer than the file while2, but must in either
case be regular files. This will show you how to combine tests using parentheses:

$ find . \( -name “ *“ -or -newer while2 \) -type f -print
./elif3

. /words.txt
. /words2.txt
./ _break

./ _if

./ _set

./ _shift

./ _trap
./_unset

./ _until

$

That wasn’t so hard, was it? You had to escape the parentheses so that they were not processed by the
shell, and quote the * so that it was passed directly into £ind as well.

Now that you can reliably search for files, look at the actions you can perform when you find a file matching
your specification. Again, this is just a list of the most common actions; the manual page has the full set.

Action Meaning

-exec command Execute a command. This is one of the most common actions. See the
explanation following this table for how parameters may be passed to
the command. This action must be terminated with a \ ; character pair.

-ok command Like -exec, except that it prompts for user confirmation of each file on
which it will carry out the command before executing the command.
This action must be terminated with a \ ; character pair.

-print Print out the name of the file.

-1s Use the command 1s -dils on the current file.
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The -exec and -ok commands take subsequent parameters on the line as part of their parameters, until ter-
minated with a \ ; sequence. Effectively, the -exec and -ok commands are executing an embedded com-
mand, so that embedded command has to be terminated with an escaped semicolon so that the £ind
command can determine when it should resume looking for command-line options that are intended for
itself. The magic string “{ }” is a special type of parameter to an -exec or -ok command and is replaced
with the full path to the current file.

That explanation is perhaps not so easy to understand, but an example should make things clearer. Take
a look at a simple example, using a nice safe command like 1s:

$ find . -newer while2 -type £ -exec ls -1 {} \;

“TWXT-XTr-X 1 rick rick 275 Feb 8 17:07 ./elif3
-TWXY-XY-X 1 rick rick 336 Feb 8 16:52 ./words.txt
-ITWXI-Xr-X 1 rick rick 1274 Feb 8 16:52 ./words2.txt
-YWXT-XY-X 1 rick rick 504 Feb 8 18:43 ./ trap

$

As you can see, the £ind command is extremely useful; it just takes a little practice to use it well.
However, that practice will pay dividends, so do experiment with the £ind command.

The grep Command

The second very useful command to look at is grep, an unusual name that stands for general regular
expression parser. You use £ind to search your system for files, but you use grep to search files for
strings. Indeed, it’s quite common to have grep as a command passed after -exec when using find.
The grep command takes options, a pattern to match, and files to search in:

grep [options] PATTERN [FILES]

If no filenames are given, it searches standard input.

Let’s start by looking at the principal options to grep. Again we list only the principal options here; see
the manual pages for the full list.

Option Meaning

-c Rather than print matching lines, print a count of the number of lines
that match.

-E Turn on extended expressions.

-h Suppress the normal prefixing of each output line with the name of the file it was
found in.

-1 Ignore case.

-1 List the names of the files with matching lines; don’t output the actual matched line.

-V Invert the matching pattern to select nonmatching lines, rather than matching lines.
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Try It Out Basic grep Usage

Take alook at grep in action with some simple matches:

$ grep in words.txt

When shall we three meet again. In thunder, lightning, or in rain?
I come, Graymalkin!

$ grep -c in words.txt words2.txt

words.txt:2

words2.txt:14

$ grep -c -v in words.txt words2.txt

words.txt:9

words2.txt:16

$

How It Works

The first example uses no options; it simply searches for the string “in” in the file words . txt and prints
out any lines that match. The filename isn’t printed because you are searching on just a single file.

The second example counts the number of matching lines in two different files. In this case, the file-
names are printed out.

Finally, use the -v option to invert the search and count lines in the two files that don’t match.

Regular Expressions

As you have seen, the basic usage of grep is very easy to master. Now it’s time to look at the basics of
regular expressions, which enable you to do more sophisticated matching. As mentioned earlier in the
chapter, regular expressions are used in Linux and many other open-source languages. You can use them
in the vi editor and in writing Perl scripts, with the basic principles common wherever they appear.

During the use of regular expressions, certain characters are processed in a special way. The most fre-
quently used are shown in the following table:

Character Meaning
- Anchor to the beginning of a line
$ Anchor to the end of a line

Any single character

L] The square braces contain a range of characters, any one of which
may be matched, such as a range of characters like a—e or an inverted
range by preceding the range with a A symbol.
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If you want to use any of these characters as “normal” characters, precede them with a \. For example, if
you wanted to look for a literal “$” character, you would simply use \$.

There are also some useful special match patterns that can be used in square braces, as described in the

following table:

Match Pattern

[:alnum:
[:alpha:
[:ascii:
[:blank:
[:cntrl:
[:digit:
[:graph:
[:lower:
[:print:
[:punct:
[:space:

[:upper:

[:xdigit:]

]

]

]

Meaning

Alphanumeric characters
Letters

ASCII characters

Space or tab

ASCII control characters

Digits

Noncontrol, nonspace characters
Lowercase letters

Printable characters

Punctuation characters
Whitespace characters, including vertical tab
Uppercase letters

Hexadecimal digits

In addition, if the -E for extended matching is also specified, other characters that control the comple-
tion of matching may follow the regular expression (see the following table). With grep it is also neces-
sary to precede these characters with a \.

Option

2

{n}
{n,}

{n,m}

Meaning

Match is optional but may be matched at most once
Must be matched zero or more times

Must be matched one or more times

Must be matched n times

Must be matched n or more times

Must be matched between 7 or m times, inclusive
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That all looks a little complex, but if you take it in stages, you will see it’s not as complex as it perhaps
looks at first sight. The easiest way to get the hang of regular expressions is simply to try a few:

1. Start by looking for lines that end with the letter e. You can probably guess you need to use the
special character $:

$ grep e$ words2.txt

Art thou not, fatal vision, sensible

I see thee yet, in form as palpable

Nature seems dead, and wicked dreams abuse

$

As you can see, this finds lines that end in the letter e.

2. Now suppose you want to find words that end with the letter a. To do this, you need to use the
special match characters in braces. In this case, you use [ [:blank:]], which tests for a space or

a tab:

S grep all:blank:]] words2.txt

Is this a dagger which I see before me,

A dagger of the mind, a false creation,

Moves like a ghost. Thou sure and firm-set earth,

$

3.  Now look for three-letter words that start with Th. In this case, you need both [[:space:]] to
delimit the end of the word and . to match a single additional character:

$ grep Th.[[:space:]] words2.txt

The handle toward my hand? Come, let me clutch thee.
The curtain’d sleep; witchcraft celebrates

Thy very stones prate of my whereabout,

$

4, Finally, use the extended grep mode to search for lowercase words that are exactly 10 characters
long. Do this by specifying a range of characters to match a to z, and a repetition of 10 matches:

$ grep -E [a-z]\{10\} words2.txt

And such an instrument I was to use.

The curtain’d sleep; witchcraft celebrates
Thy very stones prate of my whereabout,

$

This only touches on the more important parts of regular expressions. As with most things in Linux,
there is a lot more documentation out there to help you discover more details, but the best way of learn-

ing about regular expressions is to experiment.

Command Execution

When you’re writing scripts, you often need to capture the result of a command’s execution for use in the
shell script; that is, you want to execute a command and put the output of the command into a variable.
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You can do this by using the $ (command) syntax introduced in the earlier set command example. There is
also an older form, ~command®, that is still in common usage.

Note that with the older form of the command execution, the backtick, or backquote,
(%), is used, not the single quote (‘) that we used in earlier shell quoting (to protect
against variable expansion). Use this form for shell scripts only when you need
them to be very portable.

All new scripts should use the $ (. . .) form, which was introduced to avoid some rather complex rules
covering the use of the characters $, ~, and \ inside the backquoted command. If a backtick is used
within the ~.. .~ construct, it must be escaped with a \ character. These relatively obscure characters
often confuse programmers, and sometimes even experienced shell programmers are forced to experi-
ment to get the quoting correct in backticked commands.

The result of the $ (command) is simply the output from the command. Note that this isn’t the return
status of the command but the string output, as shown here:

#!/bin/sh

echo The current directory is S$PWD
echo The current users are $(who)

exit 0

Since the current directory is a shell environment variable, the first line doesn’t need to use this com-
mand execution construct. The result of who, however, does need this construct if it is to be available to
the script.

If you want to get the result into a variable, you can just assign it in the usual way:

whoisthere=$ (who)
echo $Swhoisthere

The capability to put the result of a command into a script variable is very powerful, as it makes it easy
to use existing commands in scripts and capture their output. If you ever find yourself trying to convert
a set of parameters that are the output of a command on standard output and capture them as argu-
ments for a program, you may well find the command xargs can do it for you. Look in the manual
pages for further details.

A problem sometimes arises when the command you want to invoke outputs some white space before
the text you want, or more output than you require. In such a case, you can use the set command as
shown earlier.

Arithmetic Expansion

We've already used the expr command, which enables simple arithmetic commands to be processed,
but this is quite slow to execute because a new shell is invoked to process the expr command.
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A newer and better alternative is $ ( (..) ) expansion. By enclosing the expression you wish to evaluate in
$ ((..)), you can perform simple arithmetic much more efficiently:
#!/bin/sh
x=0
while [ “$x” -ne 10 ]; do
echo S$x
x=$(($x+1))
done
exit 0
Notice that this is subtly different from the x=$( .. ) command. The double paren-

theses are used for arithmetic substitution. The single parentheses form shown ear-
lier is used for executing commands and grabbing the output.

Parameter Expansion

You've seen the simplest form of parameter assignment and expansion:

foo=fred
echo $foo

A problem occurs when you want to append extra characters to the end of a variable. Suppose you want
to write a short script to process files called 1_tmp and 2_tmp. You could try this:

#!/bin/sh
for i in 1 2
do

my secret process $i tmp
done

But on each loop, you'll get the following:
my secret process: too few arguments
What went wrong?

The problem is that the shell tried to substitute the value of the variable $i_tmp, which doesn’t
exist. The shell doesn’t consider this an error; it just substitutes nothing, so no parameters at all were
passed to my_secret_process. To protect the expansion of the $i part of the variable, you need to
enclose the i in braces like this:

#!/bin/sh
for i in 1 2
do

my secret process ${i} tmp
done
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On each loop, the value of 1 is substituted for ${i} to give the actual filenames. You substitute the value
of the parameter into a string.

You can perform many parameter substitutions in the shell. Often, these provide an elegant solution to
many parameter-processing problems. The common ones are shown in the following table:

Parameter Expansion Description

${param:-default} If param is null, then set it to the value of default.
${#param} Gives the length of param

${paramsword} From the end, removes the smallest part of param that

matches word and returns the rest

${param%sword} From the end, removes the longest part of param that
matches word and returns the rest

$ {param#fword} From the beginning, removes the smallest part of param that
matches word and returns the rest

$ {param##word} From the beginning, removes the longest part of param that

matches word and returns the rest

These substitutions are often useful when you’re working with strings. The last four, which remove parts
of strings, are especially useful for processing filenames and paths, as the following example shows.

Try It Out Parameter Processing

Each portion of the following script illustrates the parameter-matching operators:
#!/bin/sh

unset foo
echo ${foo:-bar}

foo=fud
echo ${foo:-bar}

foo=/usr/bin/X11/startx

echo ${foo#*/}

echo ${foo#i#*/}
bar=/usr/local/etc/local/networks
echo ${bar%local*}

echo ${bar%%local*}

exit 0
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This gives the following output:

bar

fud
usr/bin/X11/startx
startx
/usr/local/etc/
/usr/

How It Works

The first statement, $ { foo: -bar}, gives the value bar, because foo had no value when the statement
was executed. The variable foo is unchanged, as it remains unset.

${foo:=bar}, however, would set the variable to $foo. This string operator checks
that foo exists and isn’t null. If it isn’t null, then it returns its value, but otherwise
it sets foo to bar and returns that instead.

${foo:?bar} will print foo: bar and abort the command if foo doesn’t exist or is
set to null. Lastly, $ {foo: +bar} returns bar if foo exists and isn’t null. What a set
of choices!

The {foo#+/} statement matches and removes only the left / (remember * matches zero or more char-
acters). The {foo##*/} matches and removes as much as possible, so it removes the rightmost / and all
the characters before it.

The {bar%local*} statement matches characters from the right until the first occurrence of local (fol-
lowed by any number of characters) is matched, but the {bar%%local+*} matches as many characters as
possible from the right until it finds the leftmost 1ocal.

Since both UNIX and Linux are based heavily around the idea of filters, the result of one operation
must often be redirected manually. Let’s say you want to convert a GIF file into a JPEG file using the
cjpeg program:

$ cjpeg image.gif > image.jpg

Sometimes you may want to perform this type of operation on a large number of files. How do you
automate the redirection? It’s as easy as this:

#!/bin/sh
for image in *.gif
do

cjpeg $image > ${image%%gif}jpg
done

This script, giftojpeg, creates a JPEG file for each GIF file in the current directory.
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Here Documents

One special way of passing input to a command from a shell script is to use a here document. This docu-
ment allows a command to execute as though it were reading from a file or the keyboard, whereas in fact
it's getting input from the script.

Ahere document starts with the leader <<, followed by a special sequence of characters that is repeated
at the end of the document. << is the shell’s label redirector, which in this case forces the command input
to be the here document. This special sequence acts as a marker to tell the shell where the here document
ends. The marker sequence must not appear in the lines to be passed to the command, so it’s best to
make them memorable and fairly unusual.

Try It Out Using Here Documents

The simplest example is simply to feed input to the cat command:
#!/bin/sh

cat <<!FUNKY!
hello

this is a here
document
I'FUNKY !

This gives the following output:

hello
this is a here
document

Here documents might seem a rather curious feature, but they’re very powerful because they enable you
to invoke an interactive program such as an editor and feed it some predefined input. However, they're
more commonly used for outputting large amounts of text from inside a script, as you saw previously,
and avoiding having to use echo statements for each line. You can use exclamation marks (!) on each
side of the identifier to ensure that there’s no confusion.

If you wish to process several lines in a file in a predetermined way, you could use the ed line editor and
feed it commands from a here document in a shell script.

Try It Out Another Use for a Here Document

1. Start with a file called a_text file that contains the following lines:

That is line
That is line
That is line
That is line

TR

2. You can edit this file using a combination of a here document and the ed editor:

#!/bin/sh
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ed a text file <<!FunkyStuff!
3

d

., \$s/is/was/

w

q
!FunkyStuff!

exit 0
If you run this script, the file now contains the following;:

That is line 1
That is line 2
That was line 4

How It Works

The shell script simply invokes the ed editor and passes to it the commands that it needs to move to
the third line, delete the line, and then replace it with what was in the current line (because line 3 was
deleted, the current line is now what was the last line). These ed commands are taken from the lines in
the script that form the here document — the lines between the markers ! FunkyStuff!.

Notice the \ inside the here document to protect the $ from shell expansion. The \
escapes the $, so the shell knows not to try to expand $s/is/was/ to its value, which
of course it doesn’t have. Instead, the shell passes the text \$ as $, which can then be
interpreted by the ed editor.

Debugging Scripts

Debugging shell scripts is usually quite easy, but there are no specific tools to help. In this section we’ll
quickly summarize the common methods.

When an error occurs, the shell will normally print out the line number of the line containing the error. If
the error isn’t immediately apparent, you can add some extra echo statements to display the contents of
variables and test code fragments by simply typing them into the shell interactively.

Since scripts are interpreted, there’s no compilation overhead in modifying and retrying a script. The
main way to trace more complicated errors is to set various shell options. To do this, you can either use
command-line options after invoking the shell or use the set command. The following table summa-
rizes the options:
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Command Line Option set Option Description

sh -n <script> set -o noexec Checks for syntax errors only;
set -n doesn’t execute commands

sh -v <script> set -o verbose Echoes commands before
set -v running them

sh -x <script> set -o xtrace Echoes commands after pro-
set -x cessing on the command line

sh -u <script> set -o nounset Gives an error message when
set -u an undefined variable is used

You can set the set option flags on, using -o, and off, using +o, and likewise for the abbreviated ver-
sions. You can achieve a simple execution trace by using the xtrace option. For an initial check, you can
use the command-line option, but for finer debugging, you can put the xtrace flags (setting an execu-
tion trace on and off) inside the script around the problem code. The execution trace causes the shell to
print each line in the script, with variables expanded, before executing the line.
Use the following command to turn xtrace on:

set -o xtrace
Use this command to turn xtrace off again:

set +o xtrace

The level of expansion is denoted (by default) by the number of + signs at the start of each line. You can
change the + to something more meaningful by setting the Ps4 shell variable in your shell configuration file.

In the shell, you can also find out the program state wherever it exits by trapping the EXIT signal with a
line something like the following placed at the start of the script:

trap ‘echo Exiting: critical variable = S$Scritical variable’ EXIT

Going Graphical — The dialog Utility

Before we finish discussing shell scripts, there is one more feature that, although not strictly part of the
shell, is generally useful only from shell programs, so we cover it here.

If you know that your script will only ever need to run on the Linux console, there is a rather neat way

to brighten up your scripts using a utility command called dialog. This command uses text mode
graphics and color, but it still looks pleasantly graphical.
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On some distributions dialog is not installed by default; for example, on Ubuntu
you may have to add the publicly maintained repositories to find a ready-built ver-
sion. On other distributions you may find already installed an alternative, gdialog.
This is very similar, but relies on the GNOME user interface to display its dialog.
However, in return you get a true graphical interface. In general, you can take any
program that uses dialog and replace all calls to gdialog, and you will get a graph-
ical version of your program. We show an example of a program using gdialog at
the end of this section.

The whole idea of dialog is beautifully simple — a single program with a variety of parameters and
options that allows you to display various types of graphical boxes, ranging from simple Yes/No boxes
to input boxes and even menu selections. The utility generally returns when the user has made some
sort of input, and the result can be found either from the exit status or if text was entered by retrieving
the standard error stream.

Before we move on to more detail, let’s look at a very simple use of dialog in operation. You can use
dialog directly from the command line, which is great for prototyping, so let’s create a simple message

box to display the traditional first program:

dialog --msgbox “Hello World” 9 18

On the screen appears a graphical information box, complete with OK dialog (see Figure 2-3).

--E-—r]gk@uhumu-}ms-l:—-}hlpilajzha

File Edit Wiew Terminal Tabs Help

-

Figure 2-3

Now that you have seen how easy dialog is, let’s look at the possibilities in more detail. The principal
types of dialogs you can create are described in the following table:
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Type Option Used to Create Type Meaning

Check boxes --checklist Allows you to display a list of items,
each of which may be individually
selected

Info boxes --infobox A simple display in a box that
returns immediately, without clearing
the screen

Input boxes --inputbox Allows the user to type in text

Menu boxes --menu Allow the user to pick a single item
from a list

Message boxes - -msgbox Displays a message to users, with an

OK button when they wish to continue

Radio selection boxes --radiolist Allows the user to select an option
from a list

Text boxes --textbox Allows you to display a file in a scroll-
ing box

Yes/No boxes --yesno Allows you to ask a question, to which

the user can select either yes or no

Some additional dialog box types are available (for example, a gauge and a password-entry box). If you
want to know more about the more unusual dialog types, details can be found, as always, in the online
manual pages.

To get the output of any type of box that allows textual input, or selections, you have to capture the stan-
dard error stream, usually by directing it to a temporary file, which you can then process afterward. To
get the result of yes/no type questions, just look at the exit code, which, like all well-behaved programs,
returns 0 for success (i.e., a “yes” selection) or 1 for failure.

All dialog types have various additional parameters to control, such as the size and shape of the dialog
presented. We list the different parameters required for each type in the following table, and then demon-
strate some of them on the command line. Finally, you'll see a simple program to combine several dialogs
into a single program.

Dialog Type Parameters

--checklist text height width list-height [tag text status] ...
--infobox text height width

--inputbox text height width [initial string]

Continued on next page
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Dialog Type Parameters

- -menu text height width menu-height [tag item ] ...

- -msgbox text height width

--radiolist text height width list-height [tag text status] ...
--textbox filename height width

--yesno text height width

In addition, all the dialog types take several options. We won't list them all here, except to mention
two: - -title, which allows you to specify a title for the box, and - -clear, which is used on its own for
clearing the screen. Check the manual page for the full list of options.

Try It Out Using the dialog Utility

Let’s leap straight in with a nice complex example. Once you understand this example, all the others will
be easy! In this example, you create a checklist-type box, with a title Check me and the instructions Pick
Numbers. The checklist box will be 15 characters high by 25 characters wide, and each option will
occupy 3 characters of height. Last, but not least, you list the options to be displayed, along with a
default on/off selection.

dialog --title “Check me” --checklist “Pick Numbers” 15 25 3 1 “one” “off” 2 “two”
“Ol’l" 3 \\three" “Off”

Figure 2-4 shows the result onscreen.

How It Works
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In this example, the - -checklist parameter specifies that you are to create a checklist-type dialog. You
use the --title option to set the title to Check me, and the next parameter is the prompt message of
Pick Numbers.

You then move on to set the size of the dialog. It will be 15 lines high by 25 characters wide, and 3 lines
will be used for the menu. It’s not a perfect sizing, but it does enable you to see how things are laid out.

The options look a little tricky, but all you have to remember is that each menu item has three values:

Q  Bullet number
a Text
0  Status

The first item has a number of 1, and text display of “one” and is set to “of£”. You then start on the next
menu item, which is 2, ”two” and selected. This continues until you run out of menu items.
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Figure 2-4

Easy, wasn’t it? Just try some out on the command line and see how easy it is to use. In order to put this
together in a program, you need to be able to access the results of the user input. This is quite easy; simply
redirect the standard error stream for text input, or check the environment variable $?, which you will
recall is the exit status of the previous command.

Try It Out A More Complex Program Using dialog

Let’s look at a simple program called questions, which takes note of user responses:

1. Startoff by displaying a simple dialog box to tell the user what is happening. You don’t need to
get the result or obtain any user input, so this is nice and simple:

#!/bin/sh
# Ask some questions and collect the answer

dialog --title “Questionnaire” --msgbox “Welcome to my simple survey” 9 18

2.  Ask the user if he wants to proceed, using a simple yes/no dialog box. Use the environment
variable $? to check if the user selected yes (result code 0) or not. If he didn’t want to proceed,
use a simple infobox that requires no user input before exiting:

dialog --title “Confirm” --yesno “Are you willing to take part?” 9 18
if [ $? != 0 ]; then

dialog --infobox “Thank you anyway” 5 20

sleep 2

dialog --clear

exit 0
fi
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3. Ask the user his name, using an input box. Redirect the standard error stream, 2, into a tempo-
rary file, _1.txt, which you can then process into the variable QNAME:

dialog --title “Questionnaire” --inputbox “Please enter your name” 9 30 2> 1.txt
Q NAME=$ (cat _1.txt)

4. Here you have the menu item with four different options. Again you redirect the standard error
stream and load it into a variable:

dialog --menu “$Q NAME, what music do you like best?” 15 30 4 1 “Classical” 2
“Jazz” 3 “Country” 4 “Other” 2> 1.txt
Q MUSIC=$(cat _1.txt)

B.  The number the user selects will be stored in the temporary file _1.txt, which is grabbed in to
the variable 9_MUSIC so that you can test the result:

if [ “$Q MUSIC” = “1” 1; then
dialog --title “Likes Classical” --msgbox “Good choice!” 12 25
else
dialog --title “Doesn’t like Classical” --msgbox “Shame” 12 25
fi

6.  Finally, clear the last dialog box and exit the program:
sleep 2
dialog --clear

exit 0

Figure 2-5 shows the onscreen result.

NEKENBINLEH N SIS =Y B pE e Ehap U2 IEI@
File Edit Wiew TIerminal Tabs Help

Rick, what music do you
like best?

1 C(lassical
B EZ

3 Country
4  Other

<Cancel>

Figure 2-5
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How It Works

In this example you combine the dialog command with some simple shell programming to show how
you can build simple GUI programs using only shell script. You start with a simple welcome screen,
before asking the user if he will take part using the simple - -yesno option of dialog. You use the $?
variable to check the reply. If he agreed, you then get his name, store it in a variable 0_NAME, and ask
what sort of music he likes, using the - -menu option of dialog. By storing the numerical output in the
variable 9_MUSIC, you can see what he answered, and give an appropriate response.

If you are running a GNOME-based GUI, and are just using a terminal session within in it, you can use
the command gdialog in place of dialog. The two commands have the same parameters, so you can
use exactly the same code apart from changing the name of the command you invoke from dialog to
gdialog. Figure 2-6 shows what this script looks like when modified to use gdialog under Ubuntu.

rick@Ubuntu-RNS1: ~/blpde/chap02 [=]l=]ix]
File Edit Wiew Terminal Tabs Help

rick@Ubuntu-RNS1:~/blpde/chap02$ ./ gquestions -
rick@Ubuntu-RNS1:~/blpde/chap02$ ./ gquestions

Select items from the list below.

~ | Rick, what music do you like best? -

1 Classical
2 |Jazz

3 Country
4  Cther

I X cancel

o |

Figure 2-6

This is a very easy way of generating a usable GUI interface from a script.

Putting It All Together

Now that you've seen the main features of the shell as a programming language, it’s time to write an
example program to put some of what you have learned to use.

Throughout this book, you're going to be building a CD database application to show the techniques you've
been learning. You start with a shell script, but pretty soon you'll do it again in C, add a database, and so on.
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Requirements

Suppose you have an extensive CD collection. To make your life easier, you're going to design and
implement a program for managing CDs. An electronic catalogue seems an ideal project to implement
as you learn about programming Linux.

You want, at least initially, to store some basic information about each CD, such as the label, type of
music, and artist or composer. You would also like to store some simple track information. You want to
be able to search on any of the “per CD” items, but not on any of the track details. To make the mini-
application complete, you would also like to be able to enter, update, and delete any of the information
from within the application.

Design
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The three requirements — updating, searching, and displaying the data — suggest that a simple menu
will be adequate. All the data you need to store is textual; and assuming your CD collection isn’t too big,
you have no need for a complex database, so some simple text files will do. Storing information in text
files will keep the application simple, and if your requirements change, then it’s almost always easier to
manipulate a text file than any other sort of file. As a last resort, you could even use an editor to manu-
ally enter and delete data, rather than write a program to do it.

You need to make an important design decision about data storage: Will a single file suffice? If so, what
format should it have? Most of the information you expect to store occurs only once per CD (we’ll skip
lightly over the fact that some CDs contain the work of many composers or artists), except track infor-
mation. Just about all CDs have more than one track.

Should you fix a limit on the number of tracks you can store per CD? That seems rather an arbitrary and
unnecessary restriction, so reject that idea right away!

If you allow a flexible number of tracks, you have three options:

0  Use asingle file, with one line for the “title” type information and then 7 lines for the track
information for that CD.

O  Put all the information for each CD on a single line, allowing the line to continue until no more
track information needs to be stored.

0  Separate the title information from the track information and use a different file for each.
Only the third option enables you to easily fix the format of the files, which you’ll need to do
if you ever wish to convert your database into a relational form (more on this in Chapter 7), so
that’s the option to choose.
The next decision is what to put in the files.

Initially, for each CD title, you choose to store the following:

Q  The CD catalog number
Q  Thetitle
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Q  The type (classical, rock, pop, jazz, etc.)

Q  The composer or artist
For the tracks, you'll store simply two items:

d  Track number

d  Track name

In order to join the two files, you must relate the track information to the rest of the CD information. To
do this, you'll use the CD catalog number. Since this is unique for each CD, it will appear only once in

the titles file and once per track in the tracks file.

Take a look at an example titles file:

Catalog Title Type
CD123 Cool sax Jazz
CD234 Classic violin Classical
CD345 Hits99 Pop

Its corresponding tracks file will look like this:

Catalog Track No.
CD123 1
CD123 2
CD234 1
CD345 1

Composer
Bix
Bach
Various
Title
Some jazz
More jazz

Sonata in D minor

Dizzy

The two files join using the Catalog field. Remember that there are normally multiple rows in the tracks

file for a single entry in the titles file.

The last thing you need to decide is how to separate the entries. Fixed-width fields are normal in a rela-
tional database, but are not always the most convenient. Another common method, used for this example,

is a comma (i.e., a comma-separated variable, or CSV, file).

In the following “Try It Out” section, just so you don’t get totally lost, you'll be using the following

functions:

get return()
get confirm()
set menu_ choice ()
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insert title()
insert track()

add record tracks()
add records ()

find cd()
update cd ()

count cds ()

remove records ()
list tracks()

Try It Out A CD Application

1. Firstin the sample script is, as always, a line ensuring that it’s executed as a shell script, fol-
lowed by some copyright information:

#!/bin/bash

# Very simple example shell script for managing a CD collection.
# Copyright (C) 1996-2007 Wiley Publishing Inc.

# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the

# Free Software Foundation; either version 2 of the License, or (at your

# option) any later version.

# This program is distributed in the hopes that it will be useful, but

# WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.

# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.

# 675 Mass Ave, Cambridge, MA 02139, USA.

2. Now ensure that some global variables that you'll be using throughout the script are set up. Set
the title and track files and a temporary file, and trap Ctrl+C, so that your temporary file will be
removed if the user interrupts the script:

menu choice=""

current cd=""

title file="title.cdb”
tracks file="tracks.cdb”
temp file=/tmp/cdb.$$

trap ‘rm -f Stemp file’ EXIT

3. Define your functions, so that the script, executing from the top line, can find all the function
definitions before you attempt to call any of them for the first time. To avoid rewriting the same
code in several places, the first two functions are simple utilities:

get return() ({
echo -e “Press return \c”
read x
return 0

}
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get confirm() {
echo -e “Are you sure? \c”
while true
do
read x
case “$x” in
y | yes | Y | Yes | YES )

return 0;;

n|no | N| No | NO)
echo
echo “Cancelled”
return 1;;

*) echo “Please enter yes or no” ;;

esac
done

}

4. Here you come to the main menu function, set_menu_choice. The contents of the menu vary
dynamically, with extra options being added if a CD entry has been selected:

Note that echo -e may not be portable to some shells.

set menu choice() {

clear
echo “Options :-“
echo
echo " a) Add new CD”
echo ™ f) Find CD”
echo ™ c) Count the CDs and tracks in the catalog”
if [ “$cdcatnum” != “” ]; then
echo " 1) List tracks on S$cdtitle”
echo " r) Remove Scdtitle”
echo " u) Update track information for S$cdtitle”
fi
echo ™ q) Quit”
echo

echo -e “Please enter choice then press return \c”
read menu choice
return

5.  Here are two more very short functions, insert_title and insert_track, for adding to
the database files. Though some people hate one-liners like these, they help make other func-
tions clearer.

They are followed by the larger add_record_track function that uses them. This function uses
pattern matching to ensure that no commas are entered (since we're using commas as a field sep-
arator) and arithmetic operations to increment the current track number as tracks are entered:

insert title() {
echo $* >> stitle file
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return

}

insert track() f{
echo $* >> Stracks file
return

}

add record tracks()
echo “Enter track information for this CD”
echo “When no more tracks enter g”
cdtrack=1
cdttitle=""
while [ “S$cdttitle” != “g” ]
do
echo -e “Track $cdtrack, track title? \c”
read tmp
cdttitle=${tmp%%, *}
if [ “Stmp” != “S$cdttitle” ]; then
echo “Sorry, no commas allowed”
continue
fi
if [ -n “Scdttitle” ] ; then
if [ “Scdttitle” != “g” ]1; then
insert track $cdcatnum,Scdtrack, Scdttitle
fi
else
cdtrack=$ ( (cdtrack-1))
fi
cdtrack=$ ( (cdtrack+1))
done

}
6. The add records function allows entry of the main CD information for a new CD:

add_records () {
# Prompt for the initial information

echo -e “Enter catalog name \c”
read tmp
cdcatnum=${tmp%%, *}

echo -e “Enter title \c¢”
read tmp
cdtitle=${tmp%%, *}

echo -e “Enter type \c”
read tmp
cdtype=${tmp%%, *}

echo -e “Enter artist/composer \c”

read tmp
cdac=${tmp%%, *}
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# Check that they want to enter the information

echo About to add new entry
echo “$Scdcatnum $cdtitle S$cdtype S$cdac”

# If confirmed then append it to the titles file

if get confirm ; then
insert title $cdcatnum, $cdtitle, $Scdtype, $cdac
add record tracks

else
remove records

fi

return

The find_cd function searches for the catalog name text in the CD title file, using the grep
command. You need to know how many times the string was found, but grep returns a value
indicating only if it matched zero times or many. To get around this, store the output in a file,
which will have one line per match, and then count the lines in the file.

The word count command, wc, has white space in its output, separating the number of lines,
words, and characters in the file. Use the $ (wc -1 $temp file) notation to extract the first
parameter from the output in order to set the 1inesfound variable. If you wanted another, later
parameter, you would use the set command to set the shell’s parameter variables to the com-
mand output.

Change the IFs (Internal Field Separator) to a comma so you can separate the comma-delimited
fields. An alternative command is cut.

find cd() {

if [ “$1” = “n” ]; then
asklist=n

else
asklist=y

fi

cdcatnum=""

echo -e “Enter a string to search for in the CD titles \c”

read searchstr

if [ “$Ssearchstr” = “” ]; then
return 0

fi

grep “$searchstr” S$title file > Stemp file

set $(wc -1 Stemp file)
linesfound=$1

case “$linesfound” in

0) echo “Sorry, nothing found”
get return
return 0

i
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1) 8 B

2) echo “Sorry, not unique.”
echo “Found the following”
cat Stemp file
get return
return 0

esac

IFS=","

read cdcatnum cdtitle cdtype cdac < $temp file

IFS=" “

if [ -z “Scdcatnum” ]; then

echo “Sorry, could not extract catalog field from $temp file”
get return
return 0

fi

echo

echo Catalog number: $cdcatnum
echo Title: Scdtitle

echo Type: $cdtype

echo Artist/Composer: $cdac
echo

get return

if [ “Sasklist” = “y” ]; then
echo -e “View tracks for this CD? \c¢”
read x
if [ “$x” = “y” 1; then
echo
list tracks
echo
fi
fi
return 1

8. update_cd allows you to re-enter information for a CD. Notice that you search (using grep) for
lines that start (*) with the $cdcatnum followed by a , and that you need to wrap the expansion
of Scdcatnumin {} so you can search for a , with no white space between it and the catalog
number. This function also uses {} to enclose multiple statements to be executed if
get confirmreturns true.

update cd () {

if [ -z “$cdcatnum” ]; then
echo “You must select a CD first”
find cd n

fi

if [ -n “Scdcatnum” ]; then

echo “Current tracks are :-"“
list tracks
echo
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echo “This will re-enter the tracks for S$Scdtitle”
get confirm && {
grep -v “*${cdcatnum},” $tracks file > Stemp file
mv Stemp file $tracks file
echo
add record tracks

}
fi
return

}

9. count cds gives a quick count of the contents of the database:

count cds () {
set $(wc -1 Stitle file)
num titles=$1
set $(wc -1 Stracks file)
num_tracks=$§1
echo found $num titles CDs, with a total of $num tracks tracks
get return
return

}

10. remove records strips entries from the database files, using grep -v to remove all matching
strings. Notice you must use a temporary file.

If you tried to use
grep -v ““$cdcatnum” > Stitle file

the stitle_file would be set to empty by the > output redirection before grep had the chance
to execute, so grep would read from an empty file.

remove records () {

if [ -z “Scdcatnum” ]; then
echo You must select a CD first
find cd n

fi

if [ -n “Scdcatnum” ]; then

echo “You are about to delete S$Scdtitle”
get confirm && {
grep -v “"${cdcatnum},” $title file > $temp file
mv Stemp file $title file
grep -v “"${cdcatnum},” Stracks file > Stemp file
mv Stemp file S$tracks file
cdcatnum=""
echo Entry removed
}
get return
fi
return

}
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11. 1 ist_tracks again uses grep to extract the lines you want, cut to access the fields you want, and
then more to provide a paginated output. If you consider how many lines of C code it would take
to reimplement these 20-odd lines of code, you'll appreciate how powerful a tool the shell can be.

list tracks() {
if [ “Scdcatnum” = “” ]; then
echo no CD selected yet
return
else
grep ““${cdcatnum},” $tracks file > $temp file
num tracks=$(wc -1 < Stemp file)
if [ “$num tracks” = “0” ]; then
echo no tracks found for Scdtitle
else {
echo
echo “$cdtitle :-“
echo
cut -f 2- -d , Stemp file
echo
} | ${PAGER:-more}
fi
fi
get return
return

nwA

}

12. Now that all the functions have been defined, you can enter the main routine. The first few lines
simply get the files into a known state; then you call the menu function, set_menu_choice, and
act on the output.

When quit is selected, you delete the temporary file, write a message, and exit with a success-
ful completion condition:

rm -f $temp file

if [ ! -f $title file ]; then
touch $title file

fi

if [ ! -f $tracks file ]; then
touch $tracks file

fi

# Now the application proper

clear

echo

echo

echo “Mini CD manager”
sleep 1

quit=n
while [ “Squit” != “y” 1;
do
set menu choice
case “$menu choice” in
a) add records; ;
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) remove records;;
) find cd y;;
u) update cd;;
) count cds;;
) list tracks;;
)

echo
more $title file
echo
get return;;

g | Q) quit=y;;

*) echo “Sorry, choice not recognized”;;

esac
done

#Tidy up and leave

rm -f Stemp file
echo “Finished”
exit 0

Notes on the Application

The trap command at the start of the script is intended to trap the user’s pressing of Ctrl+C. This may
be either the EXIT or the INT signal, depending on the terminal setup.

There are other ways of implementing the menu selection, notably the select construct in bash and
ksh (which isn’t, however, specified in X/Open). This construct is a dedicated menu choice selector.
Check it out if your script can afford to be slightly less portable. Multiline information given to users
could also make use of here documents.

You might have noticed that there’s no validation of the primary key when a new record is started; the
new code just ignores the subsequent titles with the same code, but incorporates their tracks into the first
title’s listing:

1 First CD Track 1

2 First CD Track 2

1 Another CD

2 With the same CD key

We'll leave this and other improvements to your imagination and creativity, as you can modify the code
under the terms of the GPL.

Summary

In this chapter, you've seen that the shell is a powerful programming language in its own right. Its ability
to call other programs easily and then process their output makes the shell an ideal tool for tasks involving
the processing of text and files.

Next time you need a small utility program, consider whether you can solve your problem by combin-

ing some of the many Linux commands with a shell script. You'll be surprised just how many utility
programs you can write without a compiler.
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Working with Files

In this chapter, you look at Linux files and directories and how to manipulate them. You learn how
to create files, open them, read, write, and close them. You also learn how programs can manipulate
directories (to create, scan, and delete them, for example). After the preceding chapter’s diversion
into shells, you now start programming in C.

Before proceeding to the way Linux handles file I/ O, we review the concepts associated with files,
directories, and devices. To manipulate files and directories, you need to make system calls (the
UNIX and Linux parallel of the Windows API), but there also exists a whole range of library func-
tions, the standard I/O library (stdio), to make file handling more efficient.

We spend the majority of the chapter detailing the various calls to handle files and directories. So
this chapter covers various file-related topics:
Files and devices

System calls

Library functions

Low-level file access

Managing files

The standard 1/0 library

Formatted input and output

File and directory maintenance
Scanning directories

Errors

The /proc file system

T o I T 5 I o N =

Advanced topics: fentl and mmap
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Linux File Structure

“Why,” you may be asking, “are we covering file structure? I know about that already.” Well, as with
UNIX, files in the Linux environment are particularly important, because they provide a simple and con-
sistent interface to the operating system services and devices. In Linux, everything is a file. Well, almost!

This means that, in general, programs can use disk files, serial ports, printers, and other devices in exactly
the same way they would use a file. We cover some exceptions, such as network connections, in Chapter 15,
but mainly you need to use only five basic functions: open, close, read, write, and ioctl.

Directories, too, are special sorts of files. In modern UNIX versions, including Linux, even the superuser
may not write to them directly. All users ordinarily use the high-level opendir/readdir interface to
read directories without needing to know the system-specific details of directory implementation. We’ll
return to special directory functions later in this chapter.

Really, almost everything is represented as a file under Linux, or can be made available via special files.
Even though there are, by necessity, subtle differences from the conventional files you know and love,
the general principle still holds. Let’s look at the special cases we’ve mentioned so far.

Directories
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As well as its contents, a file has a name and some properties, or “administrative information”; that is, the
file’s creation/modification date and its permissions. The properties are stored in the file’s inode, a special
block of data in the file system that also contains the length of the file and where on the disk it’s stored. The
system uses the number of the file’s inode; the directory structure just names the file for our benefit.

A directory is a file that holds the inode numbers and names of other files. Each directory entry is a link
to a file’s inode; remove the filename and you remove the link. (You can see the inode number for a file
by using 1s -i.) Using the 1s command, you can make links to the same file in different directories.

When you delete a file all that happens is that the directory entry for the file is removed and the number
of links to the file goes down by one. The data for the file is possibly still available through other links
to the same file. When the number of links to a file (the number after the permissions in 1s -1) reaches
zero, the inode and the data blocks it references are then no longer in use and are marked as free.

Files are arranged in directories, which may also contain subdirectories. These form the familiar file sys-
tem hierarchy. A user, say neil, usually has his files stored in a “home” directory, perhaps /home/neil,
with subdirectories for e-mail, business letters, utility programs, and so on. Note that many command
shells for UNIX and Linux have an excellent notation for getting straight to your home directory: the
tilde (~). For another user, type ~user. As you know, home directories for each user are usually subdi-
rectories of a higher-level directory created specifically for this purpose, in this case /home.

Note that the standard library functions unfortunately do not understand the shell’s tilde shorthand
notation in filename parameters, so you must always use the real name of the file in your programs.

The /home directory is itself a subdirectory of the root directory, /, which sits at the top of the hierarchy
and contains all of the system’s files in subdirectories. The root directory normally includes /bin for
system programs (“binaries”), /etc for system configuration files, and /1ib for system libraries. Files
that represent physical devices and provide the interface to those devices are conventionally found in a
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directory called /dev. See Figure 3-1 for an example of part of a typical Linux hierarchy. We cover the
Linux file system layout in more detail in Chapter 18, when we look at Linux File System Standard.

/
AN
bin dev home

N

neil rick

T

mail Tetters programs

Figure 3-1

Files and Devices

Even hardware devices are very often represented (mapped) by files. For example, as the superuser, you
can mount an IDE CD-ROM drive as a file:

# mount -t 1509660 /dev/hdc /mnt/cdrom
# cd /mnt/cdrom

which takes the CD-ROM device (in this case the secondary master IDE device loaded as /dev/hdc during
boot-up; other types of device will have different /dev entries) and mounts its current contents as the file
structure beneath /mnt/cdrom. You then move around within the CD-ROM’s directories just as normal,
except, of course, that the contents are read-only.

Three important device files found in both UNIX and Linux are /dev/console, /dev/tty, and
/dev/null.

/dev/console

This device represents the system console. Error messages and diagnostics are often sent to this device.
Each UNIX system has a designated terminal or screen to receive console messages. At one time, it might
have been a dedicated printing terminal. On modern workstations, and on Linux, it’s usually the “active”
virtual console, and under X, it will be a special console window on the screen.

/dev/tty

The special file /dev/tty is an alias (logical device) for the controlling terminal (keyboard and screen, or
window) of a process, if it has one. (For instance, processes and scripts run automatically by the system
won’t have a controlling terminal, and therefore won’t be able to open /dev/tty.)

Where it can be used, /dev/tty allows a program to write directly to the user, without regard to which
pseudo-terminal or hardware terminal the user is using. It is useful when the standard output has been
redirected. One example is displaying a long directory listing as a group of pages with the command 1s
-R | more, where the program more has to prompt the user for each new page of output. You'll see
more of /dev/tty in Chapter 5.
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Note that whereas there’s only one /dev/console device, there are effectively many different physical
devices accessed through /dev/tty.

/dev/null

The /dev/null file is the null device. All output written to this device is discarded. An immediate end
of file is returned when the device is read, and it can be used as a source of empty files by using the cp
command. Unwanted output is often redirected to /dev/null.

Another way of creating empty files is to use the touch <filenames> command, which changes the
modification time of a file or creates a new file if none exists with the given name. It won't empty it of
its contents, though.

$ echo do not want to see this >/dev/null
$ cp /dev/null empty file

Other devices found in /dev include hard and floppy disks, communications ports, tape drives, CD-ROMs,
sound cards, and some devices representing the system’s internal state. There’s even a /dev/zero, which
acts as a source of null bytes to create files full of zeros. You need superuser permissions to access some of
these devices; normal users can’t write programs to directly access low-level devices like hard disks. The
names of the device files may vary from system to system. Linux distributions usually have applications
that run as superuser to manage the devices that would otherwise be inaccessible, for example, mount for
user-mountable file systems.

Devices are classified as either character devices or block devices. The difference refers to the fact that some
devices need to be accessed a block at a time. Typically, the only block devices are those that support
some type of file system, like hard disks.

In this chapter, we concentrate on disk files and directories. We cover another device, the user’s terminal,
in Chapter 5.

System Calls and Device Drivers
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You can access and control files and devices using a small number of functions. These functions, known as
system calls, are provided by UNIX (and Linux) directly, and are the interface to the operating system itself.

At the heart of the operating system, the kernel, are a number of device drivers. These are a collection of
low-level interfaces for controlling system hardware. For example, there will be a device driver for a tape
drive, which knows how to start the tape, wind it forward and backward, read and write to it, and so on.
It will also know that tapes have to be written to in blocks of a certain size. Because tapes are sequential in
nature, the driver can’t access tape blocks directly, but must wind the tape to the right place. Similarly, a
low-level hard disk device driver will only write whole numbers of disk sectors at a time, but will be able
to access any desired disk block directly, because the disk is a random access device.

To provide a similar interface, device drivers encapsulate all of the hardware-dependent features.
Idiosyncratic features of the hardware are usually available through the ioctl (for I/O control) sys-
tem call.

Device files in /dev are used in the same way; they can be opened, read, written, and closed. For example,
the same open call used to access a regular file is used to access a user terminal, a printer, or a tape drive.
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The low-level functions used to access the device drivers, the system calls, include:

O open: Open a file or device
read: Read from an open file or device
write: Write to a file or device

a
a
d  close: Close the file or device
a

ioctl: Pass control information to a device driver

The ioctl system call is used to provide some necessary hardware-specific control (as opposed to regular
input and output), so its use varies from device to device. For example, a call to ioct1 can be used to rewind
a tape drive or set the flow control characteristics of a serial port. For this reason, ioct1 isn’t necessarily
portable from machine to machine. In addition, each driver defines its own set of ioct1 commands.

These and other system calls are usually documented in section 2 of the manual pages. Prototypes pro-
viding the parameter lists and function return types for system calls, and associated #defines of con-
stants, are provided in include files. The particular ones required for each system call will be included
with the descriptions of individual calls.

Library Functions

One problem with using low-level system calls directly for input and output is that they can be very
inefficient. Why? Well:

Q  There’s a performance penalty in making a system call. System calls are therefore expensive
compared to function calls because Linux has to switch from running your program code to exe-
cuting its own kernel code and back again. It's a good idea to keep the number of system calls
used in a program to a minimum and get each call to do as much work as possible, for example,
by reading and writing large amounts of data rather than a single character at a time.

Q  The hardware has limitations that can impose restrictions on the size of data blocks that can be
read or written by the low-level system call at any one time. For example, tape drives often have
a block size, say 10k, to which they can write. So, if you attempt to write an amount that is not
an exact multiple of 10k, the drive will still advance the tape to the next 10k block, leaving gaps
on the tape.

To provide a higher-level interface to devices and disk files, a Linux distribution (and UNIX) provides
a number of standard libraries. These are collections of functions that you can include in your own pro-
grams to handle these problems. A good example is the standard I/O library that provides buffered
output. You can effectively write data blocks of varying sizes, and the library functions arrange for the
low-level system calls to be provided with full blocks as the data is made available. This dramatically
reduces the system call overhead.

Library functions are usually documented in section 3 of the manual pages and often have a standard
include file associated with them, such as stdio.h for the standard I/O library.

To summarize the discussion of the last few sections, Figure 3-2 illustrates the Linux system, showing
where the various file functions exist relative to the user, the device drivers, the kernel, and the hardware.

97



Chapter 3: Working with Files

User program

................ ' <—— User Space
Library '

‘ Calls

System calls

................ <— Kernel Space

\ 4

Hardware
Devices

Figure 3-2

Low-Level File Access

Each running program, called a process, has a number of file descriptors associated with it. These are
small integers that you can use to access open files or devices. How many of these are available will vary
depending on how the system has been configured. When a program starts, it usually has three of these
descriptors already opened. These are:

Q0  0:Standard input
0  1:Standard output
Q  2:Standard error
You can associate other file descriptors with files and devices by using the open system call, which we

discuss shortly. The file descriptors that are automatically opened, however, already allow you to create
some simple programs using write.

write
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The write system call arranges for the first nbytes bytes from buf to be written to the file associated
with the file descriptor £ildes. It returns the number of bytes actually written. This may be less than
nbytes if there has been an error in the file descriptor or if the underlying device driver is sensitive to
block size. If the function returns 0, it means no data was written; if it returns —1, there has been an error
in the write call, and the error will be specified in the errno global variable.

Here’s the syntax:

#include <unistd.h>

size t write(int fildes, const void *buf, size t nbytes);
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With this knowledge, you can write your first program, simple write.c:

#include <unistd.h>
#include <stdlib.h>

int main()

if ((write(1l, “Here is some data\n”, 18)) != 18)
write (2, “A write error has occurred on file descriptor 1\n”,47);

exit (0) ;

}

This program simply prints a message to the standard output. When a program exits, all open file
descriptors are automatically closed, so you don’t need to close them explicitly. This won’t be the case,
however, when you’'re dealing with buffered output.

$ ./simple write
Here is some data

$

A point worth noting again is that write might report that it wrote fewer bytes than you asked it to.
This is not necessarily an error. In your programs, you will need to check errno to detect errors and call
write to write any remaining data.

read

The read system call reads up to nbytes bytes of data from the file associated with the file descriptor
fildes and places them in the data area buf. It returns the number of data bytes actually read, which
may be less than the number requested. If a read call returns 0, it had nothing to read; it reached the end
of the file. Again, an error on the call will cause it to return 1.

#include <unistd.h>

size t read(int fildes, void *buf, size t nbytes);

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard output. It
copies all of the input if there are fewer than 128 bytes.

#include <unistd.h>
#include <stdlib.h>

int main()

{

char buffer[128];
int nread;

nread = read (0, buffer, 128);
if (nread == -1)

write (2, “A read error has occurred\n”, 26);

if ((write(1l,buffer,nread)) != nread)
write(2, “A write error has occurred\n”,27);
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exit (0) ;

}
If you run the program, you should see the following;:

$ echo hello there | ./simple read

hello there

$ ./simple read < draftl.txt

Files

In this chapter we will be looking at files and directories and how to manipulate
them. We will learn how to create files,$

In the first execution, you create some input for the program using echo, which is piped to your pro-
gram. In the second execution, you redirect input from a file. In this case, you see the first part of the file
draftl.txt appearing on the standard output.

Note how the next shell prompt appears at the end of the last line of output because, in this example, the
128 bytes don’t form a whole number of lines.

open

To create a new file descriptor, you need to use the open system call.

#include <fentl.h>
#include <sys/types.h>
#include <sys/stat.h>

int open(const char *path, int oflags);
int open(const char *path, int oflags, mode t mode);

Strictly speaking, you don’t need to include sys/types.hand sys/stat .h to use open on systems
that comply with POSIX standards, but they may be necessary on some UNIX systems.

In simple terms, open establishes an access path to a file or device. If successful, it returns a file descriptor
that can be used in read, write, and other system calls. The file descriptor is unique and isn’t shared by
any other processes that may be running. If two programs have a file open at the same time, they maintain
distinct file descriptors. If they both write to the file, they will continue to write where they left off. Their
data isn’t interleaved, but one will overwrite the other. Each keeps its own idea of how far into the file (the
offset) it has read or written. You can prevent unwanted clashes of this sort by using file locking, which
you'll see in Chapter 7.

The name of the file or device to be opened is passed as a parameter, path; the of lags parameter is
used to specify actions to be taken on opening the file.

The of1ags are specified as a combination of a mandatory file access mode and other optional modes. The
open call must specify one of the file access modes shown in the following table:
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Mode Description

O_RDONLY Open for read-only
O_WRONLY Open for write-only

O_RDWR Open for reading and writing

The call may also include a combination (using a bitwise OR) of the following optional modes in the
oflags parameter:

QO o _APPEND: Place written data at the end of the file.

Q o _TRUNC: Set the length of the file to zero, discarding existing contents.
0  0_CREAT: Creates the file, if necessary, with permissions given in mode.
Qa

0_EXCL: Used with O_CREAT, ensures that the caller creates the file. The open is atomic; that is,
it’s performed with just one function call. This protects against two programs creating the file at
the same time. If the file already exists, open will fail.

Other possible values for of1ags are documented in the open manual page, which you can find in sec-
tion 2 of the manual pages (use man 2 open).

open returns the new file descriptor (always a nonnegative integer) if successful, or -1 if it fails, at which
time open also sets the global variable errno to indicate the reason for the failure. We look at errno
more closely in a later section. The new file descriptor is always the lowest-numbered unused descriptor,
a feature that can be quite useful in some circumstances. For example, if a program closes its standard
output and then calls open again, the file descriptor 1 will be reused and the standard output will have
been effectively redirected to a different file or device.

There is also a creat call standardized by POSIX, but it is not often used. creat doesn’t only create
the file, as one might expect, but also opens it. It is the equivalent of calling open with oflags equal to
O_CREAT|O_WRONLY |O_TRUNC.

The number of files that any one running program may have open at once is limited. The limit, usually
defined by the constant OPEN_MAX in 1imits.h, varies from system to system, but POSIX requires that
it be at least 16. This limit may itself be subject to local system-wide limits so that a program may not
always be able to open this many files. On Linux, the limit may be changed at runtime so OPEN_MAX is
not a constant. It typically starts out at 256.

Initial Permissions

When you create a file using the 0_CREAT flag with open, you must use the three-parameter form. mode, the
third parameter, is made from a bitwise OR of the flags defined in the header file sys/stat . h. These are:

0  s_IRUSR: Read permission, owner

O  s_IWUSR: Write permission, owner

101



Chapter 3: Working with Files

S_IXUSR: Execute permission, owner
S_IRGRP: Read permission, group
S_IWGRP: Write permission, group
S_IXGRP: Execute permission, group
S_IROTH: Read permission, others

S_IWOTH: Write permission, others

L T I T A A N A

S_IXOTH: Execute permission, others
For example,
open (“myfile”, O CREAT, S IRUSR|S IXOTH) ;

has the effect of creating a file called myfile, with read permission for the owner and execute permission
for others, and only those permissions.

S ls -1s myfile
0 -r------- X 1 neil software 0 Sep 22 08:11 myfile*

There are a couple of factors that may affect the file permissions. First, the permissions specified are used
only if the file is being created. Second, the user mask (specified by the shell’s umask command) affects
the created file’s permissions. The mode value given in the open call is ANDed with the inverse of the
user mask value at runtime. For example, if the user mask is set to 001 and the S_IXOTH mode flag is
specified, the file won’t be created with “other” execute permission because the user mask specifies that
“other” execute permission isn’t to be provided. The flags in the open and creat calls are, in fact,
requests to set permissions. Whether or not the requested permissions are set depends on the runtime
value of umask.

umask

The umask is a system variable that encodes a mask for file permissions to be used when a file is created.
You can change the variable by executing the umask command to supply a new value. The value is a
three-digit octal value. Each digit is the result of ORing values from 1, 2, or 4; the meanings are shown in
the following table. The separate digits refer to “user,” “group,” and “other” permissions, respectively.

Digit Value Meaning

1 0 No user permissions are to be disallowed.
4 User read permission is disallowed.
2 User write permission is disallowed.
1 User execute permission is disallowed.

2 0 No group permissions are to be disallowed.
4 Group read permission is disallowed.

102



Chapter 3: Working with Files

Digit Value Meaning
2 Group write permission is disallowed.
1 Group execute permission is disallowed.
3 0 No other permissions are to be disallowed.
4 Other read permission is disallowed.
2 Other write permission is disallowed.
1 Other execute permission is disallowed.

For example, to block “group” write and execute, and “other” write, the umask would be

Digit Value
1 0
2 2
1
3 2

Values for each digit are ORed together; so the second digit will need tobe 2 | 1, giving 3. The resulting
umask is 032.

When you create a file via an open or creat call, the mode parameter is compared with the current
umask. Any bit setting in the mode parameter that is also set in the umask is removed. The end result is
that users can set up their environment to say things like “Don’t create any files with write permission
for others, even if the program creating the file requests that permission.” This doesn’t prevent a pro-
gram or user from subsequently using the chmod command (or chmod system call in a program) to add
other write permissions, but it does help protect users by saving them from having to check and set per-
missions on all new files.

close

You use close to terminate the association between a file descriptor, £ildes, and its file. The file
descriptor becomes available for reuse. It returns 0 if successful and —1 on error.

#include <unistd.h>
int close(int fildes);
Note that it can be important to check the return result from close. Some file systems, particularly

networked ones, may not report an error writing to a file until the file is closed, because data may not
have been confirmed as written when writes are performed.
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ioctl

ioctl is a bit of a ragbag of things. It provides an interface for controlling the behavior of devices and their
descriptors and configuring underlying services. Terminals, file descriptors, sockets, and even tape drives
may have ioctl calls defined for them and you need to refer to the specific device’s man page for details.
POSIX defines only ioct1 for streams, which are beyond the scope of this book. Here’s the syntax:

#include <unistd.h>

int ioctl(int fildes, int cmd, ...);

ioctl performs the function indicated by cmd on the object referenced by the descriptor £ildes. It may
take an optional third argument, depending on the functions supported by a particular device.

For example, the following call to ioct1 on Linux turns on the keyboard LEDs:

ioctl(tty fd, KDSETLED, LED NUM|LED CAP|LED_ SCR);

Try It Out A File Copy Program

You now know enough about the open, read, and write system calls to write a low-level program,
copy_systemn. ¢, to copy one file to another, character by character.

We'll do this in a number of ways during this chapter to compare the efficiency of each method. For
brevity, we’ll assume that the input file exists and the output file does not, and that all reads and writes
succeed. Of course, in real-life programs, we would check that these assumptions are valid!

1. First you will need to make a test input file, say 1Mb in size, and name it file.in.

2. Then compile copy_system.c:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()

{

char c;
int in, out;

in = open(“file.in”, O RDONLY) ;
out = open(“file.out”, O WRONLY|O CREAT, S IRUSR|S IWUSR);
while (read(in, &c,1) == 1)

write (out, &c, 1) ;

exit (0) ;

}

Note that the #include <unistd.hs> line must come first, because it defines flags regarding POSIX
compliance that may affect other include files.

104



Chapter 3: Working with Files

3. Running the program will give something like the following;:

$ TIMEFORMAT=""“ time ./copy system
4.67user 146.90system 2:32.57elapsed 99%CPU

S 1s -1ls file.in file.out

1029 -rw-r---r- 1 neil users 1048576 Sep 17 10:46 file.in
1029 -rw------- 1 neil users 1048576 Sep 17 10:51 file.out
How It Works

Here you use the time facility to measure how long the program takes to run. The TIMEFORMAT variable

is used on Linux to override the default POSIX output format of time, which does not include the CPU
usage. You can see that for this fairly old system, the 1Mb input file, file. in, was successfully copied to
file.out, which was created with read /write permissions for owner only. However, the copy took two-
and-a-half minutes and consumed virtually all the CPU time. It was this slow because it had to make more
than two million system calls.

In recent years, Linux has seen great strides in its system call and file system performance. By compari-
son, a similar test using a 2.6 kernel completed in a little under 14 seconds.

$ TIMEFORMAT=""“ time ./copy system
2.08user 10.59system 0:13.74elapsed 92%CPU

Try It Out A Second File Copy Program

You can improve matters by copying in larger blocks. Take a look at this modified program,
copy_block.c, which copies the files in 1K blocks, again using system calls:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()

{

char block([1024];
int in, out;
int nread;

in = open(“file.in”, O RDONLY) ;
out = open(“file.out”, O WRONLY|O CREAT, S IRUSR|S IWUSR);
while ( (nread = read(in,block,sizeof (block))) > 0)

write (out,block,nread) ;

exit (0) ;
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Now try the program, first removing the old output file:

S rm file.out
$ TIMEFORMAT=""“ time ./copy block
0.00user 0.02system 0:00.04elapsed 78%CPU

How It Works

Now the program takes just hundredths of a second, because it requires only around 2,000 system calls.
Of course, these times are very system-dependent, but they do show that system calls have a measurable
overhead, so it’s worth optimizing their use.

Other System Calls for Managing Files

There are a number of other system calls that operate on these low-level file descriptors. These allow a
program to control how a file is used and to return status information.

Iseek

The 1seek system call sets the read /write pointer of a file descriptor, £i1ldes; that is, you can use it to
set where in the file the next read or write will occur. You can set the pointer to an absolute location in
the file or to a position relative to the current position or the end of file.

#include <unistd.h>
#include <sys/types.h>

off t lseek(int fildes, off t offset, int whence);

The of fset parameter is used to specify the position, and the whence parameter specifies how the offset
is used. whence can be one of the following:

0  SEEK_SET: offset is an absolute position

0  SEEK _CUR: offset is relative to the current position

0  SEEK END: offset is relative to the end of the file
1seek returns the of fset measured in bytes from the beginning of the file that the file pointer is set to,

or -1 on failure. The type of £_t, used for the of fset in seek operations, is an implementation-depend-
ent integer type defined in sys/types.h.

fstat, stat, and Istat

The fstat system call returns status information about the file associated with an open file descriptor.
The information is written to a structure, buf, the address of which is passed as a parameter.
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Here’s the syntax:

#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

int fstat(int fildes, struct stat *buf);
int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *buf);

Note that the inclusion of sys/types.h is optional, but we recommend it when using system calls,
because some of their definitions use aliases for standard types that may change one day.

The related functions stat and 1stat return status information for a named file. They produce the
same results, except when the file is a symbolic link. 1stat returns information about the link itself, and
stat returns information about the file to which the link refers.

The members of the structure, stat, may vary between UNIX-like systems, but will include those in the
following table:

stat Member Description

st_mode File permissions and file-type information

st_ino The inode associated with the file

st_dev The device the file resides on

st_uid The user identity of the file owner

st_gid The group identity of the file owner

st_atime The time of last access

st_ctime The time of last change to permissions, owner, group, or content
st_mtime The time of last modification to contents

st_nlink The number of hard links to the file

The st_mode flags returned in the stat structure also have a number of associated macros defined in
the header file sys/stat . h. These macros include names for permission and file-type flags and some
masks to help with testing for specific types and permissions.

The permissions flags are the same as for the open system call described earlier. File-type flags include

0  s_IFBLK: Entry is a block special device

Q s _IFDIR: Entry is a directory

Q  s_IFCHR: Entry is a character special device
H]

S_IFIFO: Entry is a FIFO (named pipe)
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O s _IFREG: Entry is a regular file

O s IFLNK: Entry is a symbolic link
Other mode flags include

0 s _1sUID: Entry has setUID on execution

0  s_1sGID: Entry has setGID on execution
Masks to interpret the st_mode flags include

Q s _1FMT: File type
O s _IRWXU: User read/write/execute permissions
O  s_IRwXG: Group read/write/execute permissions
0  s_1rRwxo: Others’ read/write/execute permissions
There are some macros defined to help with determining file types. These just compare suitably masked
mode flags with a suitable device-type flag. These include
QO s _1sBLK: Test for block special file
S_ISCHR: Test for character special file
S_ISDIR: Test for directory

Q

Q

O s _1SFIFO: Test for FIFO

Q  s_ISREG: Test for regular file
Q

S_ISLNK: Test for symbolic link

For example, to test that a file doesn’t represent a directory and has execute permission set for the owner
but no other permissions, you can use the following test:

struct stat statbuf;
mode_t modes;

stat (“filename”, &statbuf) ;
modes = statbuf.st mode;

if (!S_ISDIR(modes) && (modes & S_IRWXU) == S IXUSR)

dup and dup2

The dup system calls provide a way of duplicating a file descriptor, giving two or more different descrip-
tors that access the same file. These might be used for reading and writing to different locations in the
file. The dup system call duplicates a file descriptor, £ildes, returning a new descriptor. The dup2 sys-
tem call effectively copies one file descriptor to another by specifying the descriptor to use for the copy.
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Here’s the syntax:
#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

These calls can also be useful when you're using multiple processes communicating via pipes. We dis-
cuss the dup system in more depth in Chapter 13.

The Standard 1/0 Library

The standard I/0O library (stdio) and its header file, stdio.h, provide a versatile interface to low-level
I/0 system calls. The library, now part of ANSI standard C, whereas the system calls you met earlier are
not, provides many sophisticated functions for formatting output and scanning input. It also takes care
of the buffering requirements for devices.

In many ways, you use this library in the same way that you use low-level file descriptors. You need to
open a file to establish an access path. This returns a value that is used as a parameter to other I/O library
functions. The equivalent of the low-level file descriptor is called a stream and is implemented as a pointer
to a structure, a FILE *.

Don'’t confuse these file streams with either C++ iostreams or with the STREAMS paradigm of inter-
process communication introduced in AT&T UNIX System V Release 3, which is beyond the scope of this
book. For more information on STREAMS, check out the X/Open spec (at http: //www.opengroup
.org) and the AT&T STREAMS Programming Guide that accompanies System V.

Three file streams are automatically opened when a program is started. They are stdin, stdout, and
stderr. These are declared in stdio.h and represent the standard input, output, and error output,

respectively, which correspond to the low-level file descriptors 0, 1, and 2.

In this section, we look at the following functions:

(]

fopen, fclose
fread, fwrite
fflush-

fseek-

fgetc, getc, getchar
fputc, putc, putchar
fgets, gets

printf, fprintf, and sprintf

I U Ty I A S A

scanf, fscanf, and sscanf
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fopen

The fopen library function is the analog of the low-level open system call. You use it mainly for files and
terminal input and output. Where you need explicit control over devices, you're better off with the low-
level system calls, because they eliminate potentially undesirable side effects from libraries, like input/
output buffering.

Here’s the syntax:
#include <stdio.h>
FILE *fopen(const char *filename, const char *mode) ;

fopen opens the file named by the £ilename parameter and associates a stream with it. The mode
parameter specifies how the file is to be opened. It’s one of the following strings:
Q  “r” or “rb”: Open for reading only
“w” or “wb”: Open for writing, truncate to zero length
“a” or “ab”: Open for writing, append to end of file
“r+” or “rb+” or “r+b”: Open for update (reading and writing)

“w+” or “wb+” or “w+b”: Open for update, truncate to zero length

U 0000

“a+" or “ab+” or “a+b”: Open for update, append to end of file
The b indicates that the file is a binary file rather than a text file.

Note that, unlike MS-DOS, UNIX and Linux do not make a distinction between text and binary files.
UNIX and Linux treat all files exactly the same, effectively as binary files. It’s also important to note that
the mode parameter must be a string, and not a character. Always use double quotes and not single quotes.

If successful, fopen returns a non-null FILE = pointer. If it fails, it returns the value NULL, defined in
stdio.h.

The number of available streams is limited, in the same way that file descriptors are limited. The actual limit
is FOPEN_MAX, which is defined through stdio.h, and is always at least eight and typically 16 on Linux.

fread

The fread library function is used to read data from a file stream. Data is read into a data buffer given
by ptr from the stream, stream. Both fread and fwrite deal with data records. These are specified by
a record size, size, and a count, nitems, of records to transfer. The function returns the number of items
(rather than the number of bytes) successfully read into the data buffer. At the end of a file, fewer than
nitems may be returned, including zero.

Here’s the syntax:

#include <stdio.h>

size t fread(void *ptr, size t size, size t nitems, FILE *stream);
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As with all of the standard I/O functions that write to a buffer, it’s the programmer’s responsibility to
allocate the space for the data and check for errors. See also ferror and feof later in this chapter.

fwrite

The fwrite library call has a similar interface to fread. It takes data records from the specified data
buffer and writes them to the output stream. It returns the number of records successfully written.

Here’s the syntax:
#include <stdio.h>

size t fwrite (const void *ptr, size t size, size t nitems, FILE *stream);

Note that fread and fwrite are not recommended for use with structured data. Part of the problem is
that files written with fwrite are potentially not portable between different machine architectures.

fclose

The fclose library function closes the specified stream, causing any unwritten data to be written. It’s
important to use fclose because the stdio library will buffer data. If the program needs to be sure that
data has been completely written, it should call fclose. Note, however, that fclose is called automati-
cally on all file streams that are still open when a program ends normally, but then, of course, you do not
get a chance to check for errors reported by fclose.

Here’s the syntax:

#include <stdio.h>

int fclose(FILE *stream);

fflush

The ££1ush library function causes all outstanding data on a file stream to be written immediately. You
can use this to ensure that, for example, an interactive prompt has been sent to a terminal before any
attempt to read a response. It’s also useful for ensuring that important data has been committed to disk
before continuing. You can sometimes use it when you're debugging a program to make sure that the
program is writing data and not hanging. Note that an implicit flush operation is carried out when
fclose is called, so you don’t need to call ££1ush before fclose.

Here’s the syntax:
#include <stdio.h>

int £flush(FILE *stream);
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fseek

The fseek function is the file stream equivalent of the 1seek system call. It sets the position in the
stream for the next read or write on that stream. The meaning and values of the of fset and whence
parameters are the same as those we gave previously for 1seek. However, where 1seek returns an
off_t, fseek returns an integer: 0 if it succeeds, -1 if it fails, with errno set to indicate the error. So
much for standardization!

Here’s the syntax:

#include <stdio.h>

int fseek (FILE *stream, long int offset, int whence);

fgetc, getc, and getchar

The fgetc function returns the next byte, as a character, from a file stream. When it reaches the end of
the file or there is an error, it returns EOF. You must use ferror or feof to distinguish the two cases.

Here’s the syntax:
#include <stdio.h>
int fgetc (FILE *stream);

int getc (FILE *stream);
int getchar();

The getc function is equivalent to fgetc, except that it may be implemented as a macro. In that case
the stream argument may be evaluated more than once so it does not have side effects (for example,
it shouldn’t affect variables). Also, you can’t guarantee to be able use the address of getc as a func-
tion pointer.

The getchar function is equivalent to getc (stdin) and reads the next character from the standard input.

fputc, putc, and putchar

The fputc function writes a character to an output file stream. It returns the value it has written, or EOF
on failure.

#include <stdio.h>

int fputc(int ¢, FILE *stream);

int putc(int ¢, FILE *stream);

int putchar (int c);
As with fgetc/getc, the function putc is equivalent to fputc, but it may be implemented as a macro.
The putchar function is equivalent to putc (¢, stdout), writing a single character to the standard out-

put. Note that putchar takes and getchar returns characters as ints, not char. This allows the end-of-
file (EOF) indicator to take the value -1, outside the range of character codes.
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fgets and gets

The fgets function reads a string from an input file stream.
#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);

fgets writes characters to the string pointed to by s until a newline is encountered, n-1 characters have
been transferred, or the end of file is reached, whichever occurs first. Any newline encountered is transferred
to the receiving string and a terminating null byte, \ 0, is added. Only a maximum of n-1 characters are
transferred in any one call because the null byte must be added to mark the end of the string and bring the
total up to n bytes.

When it successfully completes, fgets returns a pointer to the string s. If the stream is at the end of a
file, it sets the EOF indicator for the stream and fgets returns a null pointer. If a read error occurs, fgets
returns a null pointer and sets errno to indicate the type of error.

The gets function is similar to fgets, except that it reads from the standard input and discards any
newline encountered. It adds a trailing null byte to the receiving string.

Note that gets doesn’t limit the number of characters that can be transferred so it could overrun its
transfer buffer. Consequently, you should avoid using it and use £gets instead. Many security issues
can be traced back to functions in programs that are made to overflow a buffer of some sort or another.
This is one such function, so be careful!

Formatted Input and Output

There are a number of library functions for producing output in a controlled fashion that you may
be familiar with if you've programmed in C. These functions include printf and friends for printing
values to a file stream, and scanf and others for reading values from a file stream.

printf, fprintf, and sprintf

The printf family of functions format and output a variable number of arguments of different types. The
way each is represented in the output stream is controlled by the format parameter, which is a string that
contains ordinary characters to be printed and codes called conversion specifiers, which indicate how and
where the remaining arguments are to be printed.

#include <stdio.h>
int printf(const char *format, ...);

int sprintf (char *s, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

The printf function produces its output on the standard output. The fprintf function produces its

output on a specified stream. The sprintf function writes its output and a terminating null character
into the string s passed as a parameter. This string must be large enough to contain all of the output.
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There are other members of the printf family that deal with their arguments in different ways. See the
printf manual page for more details.

Ordinary characters are passed unchanged into the output. Conversion specifiers cause printf to fetch
and format additional arguments passed as parameters. They always start with a % character. Here’s a
simple example:

printf (“Some numbers: %d, %d, and %d\n”, 1, 2, 3);
This produces, on the standard output:

Some numbers: 1, 2, and 3
To print a % character, you need to use %%, so that it doesn’t get confused with a conversion specifier.

Here are some of the most commonly used conversion specifiers:

0 %4, %1i: Print an integer in decimal
%o, $x: Print an integer in octal, hexadecimal

c: Print a character

o\

o°

s: Print a string

o°

£: Print a floating-point (single precision) number

o°

e: Print a double precision number, in fixed format

U U000 o

o°

g: Print a double in a general format

It’s very important that the number and type of the arguments passed to print f match the conversion
specifiers in the format string. An optional size specifier is used to indicate the type of integer arguments.
This is either h, for example %$hd, to indicate a short int, or 1, for example %14, to indicate a long int.
Some compilers can check these printf statements, but they aren’t infallible. If you are using the GNU
compiler gec, you can add the -Wformat option to your compilation command to do this.

Here’s another example:
char initial = ‘A’;
char *surname = “Matthew”;
double age = 13.5;
printf (*Hello Mr %c %s, aged %g\n”, initial, surname, age);
This produces
Hello Mr A Matthew, aged 13.5
You can gain greater control over the way items are printed by using field specifiers. These extend the

conversion specifiers to include control over the spacing of the output. A common use is to set the num-
ber of decimal places for a floating-point number or to set the amount of space around a string.
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Field specifiers are given as numbers immediately after the % character in a conversion specifier. The fol-
lowing table contains some more examples of conversion specifiers and resulting output. To make things
a little clearer, we’ll use vertical bars to show the limits of the output.

Format Argument | Output |

$10s “Hello” | Hello|
%$-10s “Hello” |Hello |
$10d 1234 | 1234 |
%-104d 1234 | 1234 |
%0104 1234 | 0000001234 |
$10.4f 12.34 | 12.3400|
$*s 10, "Hello” | Hello|

All of these examples have been printed in a field width of 10 characters. Note that a negative field width
means that the item is written left-justified within the field. A variable field width is indicated by using an
asterisk (*). In this case, the next argument is used for the width. A leading zero indicates the item is writ-
ten with leading zeros. According to the POSIX specification, print £ doesn’t truncate fields; rather, it
expands the field to fit. So, for example, if you try to print a string longer than the field, the field grows:

Format Argument | Output |
$10s “HelloTherePeeps” |HelloTherePeeps |

The printf functions return an integer, the number of characters written. This doesn’t include the ter-
minating null in the case of sprintf. On error, these functions return a negative value and set errno.

scanf, fscanf, and sscanf

The scanf family of functions works in a way similar to the print £ group, except that these functions read
items from a stream and place values into variables at the addresses they're passed as pointer parameters.
They use a format string to control the input conversion in the same way, and many of the conversion speci-
fiers are the same.

#include <stdio.h>

int scanf (const char *format, ...);
int fscanf (FILE *stream, const char *format, ...);
int sscanf (const char *s, const char *format, ...);

It’s very important that the variables used to hold the values scanned in by the scanf functions are of
the correct type and that they match the format string precisely. If they don’t, your memory could be
corrupted and your program could crash. There won’t be any compiler errors, but if you're lucky, you
might get a warning!
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The format string for scanf and friends contains both ordinary characters and conversion specifiers, as for
printf. However, the ordinary characters are used to specify characters that must be present in the input.

Here is a simple example:

int num;
scanf (“Hello %d”, &num) ;

This call to scanf will succeed only if the next five characters on the standard input are Hello. Then, if the
next characters form a recognizable decimal number, the number will be read and the value assigned to
the variable num. A space in the format string is used to ignore all whitespace (spaces, tabs, form feeds, and
newlines) in the input between conversion specifiers. This means that the call to scanf will succeed

and place 1234 into the variable num given either of the following inputs:

Hello 1234
Hellol234

Whitespace is also usually ignored in the input when a conversion begins. This means that a format
string of $d will keep reading the input, skipping over spaces and newlines until a sequence of digits is
found. If the expected characters are not present, the conversion fails and scanf returns.

This can lead to problems if you are not careful. An infinite loop can occur in your program if you leave
a non-digit character in the input while scanning for integers.

Other conversion specifiers are

0 %d:Scan a decimal integer

%0, $x: Scan an octal, hexadecimal integer

%f, e, $g: Scan a floating-point number

c: Scan a character (whitespace not skipped)
%s: Scan a string

% [1: Scan a set of characters (see the following discussion)

U U UJ0 oo
oe

%%: Scan a % character

Like printf, scanf conversion specifiers may also have a field width to limit the amount of input con-
sumed. A size specifier (either h for short or 1 for long) indicates whether the receiving argument is
shorter or longer than the default. This means that $hd indicates a short int, $1da long int,and
%1g a double precision floating-point number.

A specifier beginning with an asterisk indicates that the item is to be ignored. This means that the infor-
mation is not stored and therefore does not need a variable to receive it.

Use the %c specifier to read a single character in the input. This doesn’t skip initial whitespace characters.
Use the %s specifier to scan strings, but take care. It skips leading whitespace, but stops at the first white-

space character in the string; so, you're better off using it for reading words rather than general strings.
Also, without a field-width specifier, there’s no limit to the length of string it might read, so the receiving
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string must be sufficient to hold the longest string in the input stream. It’s better to use a field specifier,
or a combination of fgets and sscanf, to read in a line of input and then scan it. This will prevent pos-
sible buffer overflows that could be exploited by a malicious user.

Use the % [1 specifier to read a string composed of characters from a set. The format % [A-Z] will read
a string of capital letters. If the first character in the set is a caret, *, the specifier reads a string that con-
sists of characters not in the set. So, to read a string with spaces in it, but stopping at the first comma,
youcanuse $[*,].

Given the input line,

Hello, 1234, 5.678, X, string to the end of the line

this call to scanf will correctly scan four items:

char s[256];

int n;

float f;

char c¢;

scanf (“Hello, %d, %g, %c, %["\nl“, &n,&f,s&c,s);

The scanf functions return the number of items successfully read, which will be zero if the first item
fails. If the end of the input is reached before the first item is matched, EOF is returned. If a read error
occurs on the file stream, the stream error flag will be set and the error variable, errno, will be set to
indicate the type of error. See the “Stream Errors” section later in this chapter for more details.

In general, scanf and friends are not highly regarded; this is for three reasons:

Q  Traditionally, the implementations have been buggy.
Q  They're inflexible to use.
Q  They can lead to code where it’s difficult to work out what is being parsed.

As an alternative, try using other functions, like fread or fgets, to read input lines and then use the
string functions to break the input into the items you need.

Other Stream Functions

There are a number of other stdio library functions that use either stream parameters or the standard
streams stdin, stdout, stderr:
0  fgetpos: Get the current position in a file stream.
Q  fsetpos: Set the current position in a file stream.
Q  ftell: Return the current file offset in a stream.
O  rewind: Reset the file position in a stream.
Q

freopen: Reuse a file stream.
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0  setvbuf: Set the buffering scheme for a stream.

0O  remove: Equivalent to unlink unless the path parameter is a directory, in which case it’s equiv-
alent to rmdir.

These are all library functions documented in section 3 of the manual pages.

You can use the file stream functions to re-implement the file copy program, using library functions
instead. Take a look at copy_stdio. c in the following Try It Out exercise.

Try It Out A Third File Copy Program

This program is very similar to earlier versions, but the character-by-character copy is accomplished
using calls to the functions referenced in stdio.h:

#include <stdio.h>
#include <stdlib.h>

int main()

abigle @
FILE *in, *out;

in = fopen(“file.in”,”r”);
out = fopen(“file.out”,”w”);

while((c = fgetc(in)) != EOF)
fputc(c,out) ;

exit (0) ;

}

Running this program as before, you get

$ TIMEFORMAT=""“ time ./copy stdio
0.06user 0.02system 0:00.1lelapsed 81%CPU

How It Works

This time, the program runs in 0.11 seconds, not as fast as the low-level block version, but a great deal
better than the other single-character-at-a-time version. This is because the stdio library maintains an
internal buffer within the FILE structure and the low-level system calls are made only when the buffer
fills. Feel free to experiment with testing line-by-line and block stdio copying code to see how they per-
form relative to the three examples we’ve tested.
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Stream Errors

To indicate an error, many stdio library functions return out-of-range values, such as null pointers or the
constant EOF. In these cases, the error is indicated in the external variable errno:

#include <errno.h>

extern int errno;

Note that many functions may change the value of errno. Its value is valid only when a function has
failed. You should inspect it immediately after a function has indicated failure. You should always copy
it into another variable before using it, because printing functions, such as fprintf, might alter
errno themselves.

You can also interrogate the state of a file stream to determine whether an error has occurred, or the end
of file has been reached.

#include <stdio.h>
int ferror (FILE *stream);

int feof (FILE *stream);
void clearerr (FILE *stream);

The ferror function tests the error indicator for a stream and returns nonzero if it’s set, but zero otherwise.

The feof function tests the end-of-file indicator within a stream and returns nonzero if it is set, zero
otherwise. Use it like this:

if (feof (some_stream))
/* We’'re at the end */

The clearerr function clears the end-of-file and error indicators for the stream to which stream points. It
has no return value and no errors are defined. You can use it to recover from error conditions on streams.
One example might be to resume writing to a stream after a “disk full” error has been resolved.

Streams and File Descriptors

Each file stream is associated with a low-level file descriptor. You can mix low-level input and output
operations with higher-level stream operations, but this is generally unwise, because the effects of
buffering can be difficult to predict.

#include <stdio.h>

int fileno(FILE *stream);
FILE *fdopen(int fildes, const char *mode);

You can determine which low-level file descriptor is being used for a file stream by calling the fileno

function. It returns the file descriptor for a given stream, or —1 on failure. This function can be useful if
you need low-level access to an open stream, for example, to call £stat on it.
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You can create a new file stream based on an already-opened file descriptor by calling the £dopen func-
tion. Essentially, this function provides stdio buffers around an already-open file descriptor, which might
be an easier way to explain it.

The fdopen function operates in the same way as the fopen function, but instead of a filename it takes a
low-level file descriptor. This can be useful if you have used open to create a file, perhaps to get fine con-
trol over the permissions, but want to use a stream for writing to it. The mode parameter is the same as
for the fopen function and must be compatible with the file access modes established when the file was
originally opened. £dopen returns the new file stream or NULL on failure.

File and Directory Maintenance

The standard libraries and system calls provide complete control over the creation and maintenance of
files and directories.

chmod

You can change the permissions on a file or directory using the chmod system call. This forms the basis
of the chmod shell program.

Here’s the syntax:
#include <sys/stat.h>

int chmod(const char *path, mode t mode);

The file specified by path is changed to have the permissions given by mode. The modes are specified as
in the open system call, a bitwise OR of required permissions. Unless the program has been given appro-
priate privileges, only the owner of the file or a superuser can change its permissions.

chown

A superuser can change the owner of a file using the chown system call.

#include <sys/types.h>
#include <unistd.h>

int chown(const char *path, uid t owner, gid t group);

The call uses the numeric values of the desired new user and group IDs (culled from getuid and get-
gid calls) and a system value that is used to restrict who can change file ownership. The owner and
group of a file are changed if the appropriate privileges are set.

POSIX actually allows systems where non-superusers can change file ownerships. All “proper” POSIX
systems won't allow this, but, strictly speaking, it's an extension (for FIPS 151-2). The kinds of systems
we deal with in this book conform to the XSI (X/Open System Interface) specification and do enforce
ownership rules.
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unlink, link, and symlink
You can remove a file using unlink.
The unlink system call removes the directory entry for a file and decrements the link count for it. It

returns 0 if the unlinking was successful, -1 on an error. You must have write and execute permissions in
the directory where the file has its directory entry for this call to function.

#include <unistd.h>

int unlink(const char *path);
int link(const char *pathl, const char *path2);
int symlink(const char *pathl, const char *path2);

If the count reaches zero and no process has the file open, the file is deleted. In fact, the directory entry is
always removed immediately, but the file’s space will not be recovered until the last process (if any) closes
it. The rm program uses this call. Additional links represent alternative names for a file, normally created
by the 1n program. You can create new links to a file programmatically by using the 1ink system call.

Creating a file with open and then calling unlink on it is a trick some programmers use to create
transient files. These files are available to the program only while they are open; they will effectively be
automatically deleted when the program exits and the file is closed.

The 1ink system call creates a new link to an existing file, pathl. The new directory entry is specified
by path2. You can create symbolic links using the symlink system call in a similar fashion. Note that
symbolic links to a file do not increment a file’s reference count and so do not prevent the file from being
effectively deleted as normal (hard) links do.

mkdir and rmdir

You can create and remove directories using the mkdir and rmdir system calls.

#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *path, mode t mode);
The mkdir system call is used for creating directories and is the equivalent of the mkdir program. mkdir
makes a new directory with path as its name. The directory permissions are passed in the parameter
mode and are given as in the 0_CREAT option of the open system call and, again, subject to umask.
#include <unistd.h>

int rmdir (const char *path);

The rmdir system call removes directories, but only if they are empty. The rmdir program uses this
system call to do its job.
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chdir and getcwd

A program can navigate directories in much the same way as a user moves around the file system. As
you use the cd command in the shell to change directory, so a program can use the chdir system call.

#include <unistd.h>
int chdir(const char *path);

A program can determine its current working directory by calling the getcwd function.
#include <unistd.h>

char *getcwd(char *buf, size t size);

The getcwd function writes the name of the current directory into the given buffer, buf. It returns NULL
if the directory name would exceed the size of the buffer (an ERANGE error), given as the parameter
size. It returns buf on success.

getcwd may also return NULL if the directory is removed (EINVAL) or permissions changed (EACCESS)
while the program is running.

Scanning Directories

A common problem on Linux systems is scanning directories, that is, determining the files that reside in
a particular directory. In shell programs, it’s easy — just let the shell expand a wildcard expression. In
the past, different UNIX variants have allowed programmatic access to the low-level file system struc-
ture. You can still open a directory as a regular file and directly read the directory entries, but different
file system structures and implementations have made this approach nonportable. A standard suite of
library functions has now been developed that makes directory scanning much simpler.

The directory functions are declared in a header file dirent . h. They use a structure, DIR, as a basis for
directory manipulation. A pointer to this structure, called a directory stream (a DIR *), acts in much the

same way as a file steam (FILE *) does for regular file manipulation. Directory entries themselves are

returned in dirent structures, also declared in dirent . h, because one should never alter the fields in

the DIR structure directly.

We'll review these functions:

opendir, closedir

readdir

seekdir

Q
a
0 telldir
Q
a

closedir

122



Chapter 3: Working with Files

opendir

The opendir function opens a directory and establishes a directory stream. If successful, it returns a
pointer to a DIR structure to be used for reading directory entries.

#include <sys/types.h>
#include <dirent.h>

DIR *opendir (const char *name);

opendir returns a null pointer on failure. Note that a directory stream uses a low-level file descriptor to
access the directory itself, so opendir could fail with too many open files.

readdir

The readdir function returns a pointer to a structure detailing the next directory entry in the directory
stream dirp. Successive calls to readdir return further directory entries. On error, and at the end of the
directory, readdir returns NULL. POSIX-compliant systems leave errno unchanged when returning
NULL at end of directory and set it when an error occurs.

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir (DIR *dirp);

Note that readdir scanning isn’t guaranteed to list all the files (and subdirectories) in a directory if
there are other processes creating and deleting files in the directory at the same time.

The dirent structure containing directory entry details includes the following entries:

QO ino_t d_ino: The inode of the file

QO char d_name[]: The name of the file

To determine further details of a file in a directory, you need to make a call to stat, which we covered
earlier in this chapter.

telldir

The telldir function returns a value that records the current position in a directory stream. You can use
this in subsequent calls to seekdir to reset a directory scan to the current position.

#include <sys/types.h>
#include <dirent.h>

long int telldir (DIR *dirp);
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seekdir

The seekdir function sets the directory entry pointer in the directory stream given by dirp. The value
of 1oc, used to set the position, should have been obtained from a prior call to telldir.

#include <sys/types.h>
#include <dirent.h>

void seekdir (DIR *dirp, long int loc);

closedir

The closedir function closes a directory stream and frees up the resources associated with it. It returns
0 on success and -1 if there is an error.

#include <sys/types.h>
#include <dirent.h>

int closedir (DIR *dirp);

In the next program, printdir.c, you will put together a lot of the file manipulation functions to create
a simple directory listing. Each file in a directory is listed on a line by itself. Each subdirectory has its
name followed by a slash and the files listed in it are indented by four spaces.

The program changes a directory into the subdirectories so that the files it finds have usable names, that
is, they can be passed directly to opendir. The program will fail on very deeply nested directory struc-
tures because there’s a limit on the allowed number of open directory streams.

We could, of course, make it more general by taking a command-line argument to specify the start
point. Check out the Linux source code of such utilities as 1s and £ind for ideas on a more general
implementation.

Try It Out A Directory-Scanning Program

1. Start with the appropriate headers and then a function, printdir, which prints out the current
directory. It will recurse for subdirectories using the depth parameter for indentation.

#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>
#include <stdlib.h>

void printdir (char *dir, int depth)

DIR *dp;
struct dirent *entry;
struct stat statbuf;

if ((dp = opendir(dir)) == NULL) ({
fprintf (stderr, ”cannot open directory: %s\n”, dir);
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return;

chdir (dir) ;

while ((entry = readdir(dp)) != NULL)
lstat (entry->d name, &statbuf) ;
if (S ISDIR(statbuf.st mode)) ({

/* Found a directory, but ignore . and .. */
if (strcmp (“.”,entry->d name) == 0 ||
strcmp (“..”,entry->d name) == 0)
continue;
printf (“%*s%s/\n”,depth,”", entry->d name) ;

/* Recurse at a new indent level */
printdir (entry->d name,depth+4) ;

}

else printf (“%$*s%s\n”,depth,”", entry->d name) ;

}
chdir(“..”);
closedir (dp) ;

2. Now move onto the main function:

int main ()

{

printf (“Directory scan of /home:\n”);
printdir (“/home”,0) ;
printf (“done.\n") ;

exit (0) ;
The program scans the home directories and produces output like that following (edited for brevity). To
see into other users’ directories you may need superuser permissions.

$ ./printdir
Directory scan of /home:

neil/
.Xdefaults
. Xmodmap
.Xresources
.bash history
.bashrc
.kde/
share/
apps/
konqueror/
dirtree/
public_html.desktop
toolbar/
bookmarks.xml
kong history
kdisplay/

color-schemes/
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BLP4e/
Gnu_Public_License
chapter04/
argopt.c
args.c

chapter03/
file.out
mmap.c
printdir

done.
How It Works

Most of the action is within the printdir function. After some initial error checking using opendir to
see that the directory exists, printdir makes a call to chdir to the directory specified. While the entries
returned by readdir aren’t null, the program checks to see whether the entry is a directory. If it isn’t, it
prints the file entry with indentation depth.

If the entry is a directory, you meet a little bit of recursion. After the . and . . entries (the current and parent
directories) have been ignored, the printdir function calls itself and goes through the same process again.
How does it get out of these loops? Once the while loop has finished, the call chdir (*..") takes it back
up the directory tree and the previous listing can continue. Calling closedir (dp) makes sure that the
number of open directory streams isn’t higher than it needs to be.

For a brief taste of the discussion of the Linux environment in Chapter 4, let’s look at one way you can
make the program more general. The program is limited because it’s specific to the directory /home.
With the following changes to main, you could turn it into a more useful directory browser:

int main(int argc, char* argvl[])

{
char *topdir = “.”;
if (argc >= 2)
topdir=argv[1] ;

printf (“Directory scan of %s\n”,topdir) ;
printdir (topdir, 0) ;
printf (“done.\n") ;

exit (0);

}

Three lines were changed and five added, but now it’s a general-purpose utility with an optional parameter
of the directory name, which defaults to the current directory. You can run it using the following command:

$ ./printdir2 /usr/local | more
The output will be paged so that the user can page through the output. Hence, the user has quite a con-

venient little general-purpose directory tree browser. With very little effort, you could add space usage
statistics, limit depth of display, and so on.

126



Chapter 3: Working with Files

Errors

As you've seen, many of the system calls and functions described in this chapter can fail for a number of
reasons. When they do, they indicate the reason for their failure by setting the value of the external variable
errno. Many different libraries use this variable as a standard way to report problems. It bears repeating
that the program must inspect the errno variable immediately after the function giving problems because
it may be overwritten by the next function called, even if that function itself doesn’t fail.

The values and meanings of the errors are listed in the header file errno. h. They include

(]

EPERM: Operation not permitted
ENOENT: No such file or directory
EINTR: Interrupted system call
EI0:1/0O Error

EBUSY: Device or resource busy
EEXIST: File exists

EINVAL: Invalid argument
EMFILE: Too many open files
ENODEV: No such device

EISDIR: Is a directory

I T T T N e A N N B

ENOTDIR: Isn’t a directory

There are a couple of useful functions for reporting errors when they occur: strerror and perror.

strerror

The strerror function maps an error number into a string describing the type of error that has
occurred. This can be useful for logging error conditions.

Here’s the syntax:
#include <string.h>

char *strerror (int errnum);

perror

The perror function also maps the current error, as reported in errno, into a string and prints it on
the standard error stream. It's preceded by the message given in the string s (if not NULL), followed by
a colon and a space.

Here’s the syntax:

#include <stdio.h>

void perror(const char *s);
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For example,
perror (“program”) ;
might give the following on the standard error output:

program: Too many open files

The /proc File System

Earlier in the chapter we mentioned that Linux treats most things as files and that there are entries in the
file system for hardware devices. These /dev files are used to access hardware in a specific way using
low-level system calls.

The software drivers that control hardware can often be configured in certain ways, or are capable of
reporting information. For example, a hard disk controller may be configured to use a particular DMA
mode. A network card might be able to report whether it has negotiated a high-speed, duplex connection.

Utilities for communicating with device drivers have been common in the past. For example, hdparm
is used to configure some disk parameters and ifconfig can report network statistics. In recent years,
there has been a trend toward providing a more consistent way of accessing driver information, and, in
fact, to extend this to include communication with various elements of the Linux kernel.

Linux provides a special file system, procfs, that is usually made available as the directory /proc. It
contains many special files that allow higher-level access to driver and kernel information. Applications
can read and write these files to get information and set parameters as long as they are running with the
correct access permissions.

The files that appear in /proc will vary from system to system, and more are included with each Linux
release as more drivers and facilities support the procfs file system. Here, we look at some of the more

common files and briefly consider their use.

A directory listing of /proc on the computer being used to write this chapter shows the following entries:

1/ 10514/ 20254/ 6/ 9057/ 9623/ ide/ mtrr
10359/ 10524/ 29/ 698/ 9089/ 9638/ interrupts net/
10360/ 10530/ 2983/ 699/ 9118/ acpi/ iomem partitions
10381/ 10539/ 3/ 710/ 9119/ asound/ ioports scsi/
10438/ 10541/ 30/ 711/ 9120/ buddyinfo irg/ selfe
10441/ 10555/ 3069/ 742/ 9138/ bus/ kallsyms slabinfo
10442/ 10688/ 3098/ 7808/ 9151/ cmdline kcore splash
10478/ 10689/ 3099/ 7813/ 92/ config.gz keys stat
10479/ 10784/ 31/ 8357/ 9288/ cpuinfo key-users swaps
10482/ 113/ 3170/ 8371/ 93/ crypto kmsg sys/
10484/ 115/ 3171/ 840/ 9355/ devices loadavg sysrg-trigger
10486/ 116/ 3177/ 8505/ 9407/ diskstats locks sysvipe/
10495/ 1167/ 32288/ 8543/ 9457/ dma mdstat tty/
10497/ 1168/ 3241/ 8547/ 9479/ driver/ meminfo uptime
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10498/ 1791/ 352/ 8561/ 9618/ execdomains misc version
10500/ 19557/ 4/ 8677/ 9619/ fb modules vmstat
10502/ 19564/ 4010/ 888/ 9621/ filesystems mounts@ zoneinfo
10510/ 2/ 5/ 8910/ 9622/ fs/ mpt/

In many cases, the files can just be read and will give status information. For example, /proc/cpuinfo
gives details of the processors available:

$ cat /proc/cpuinfo

processor 0

vendor id GenuinelIntel

cpu family 15

model 2

model name Intel (R) Pentium(R) 4 CPU 2.66GHz
stepping 8

cpu MHz 2665.923

cache size 512 KB

fdiv_bug : no

hlt _bug : no

£00f bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 2

wp 1 yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss up
bogomips : 5413.47

clflush size : 64

Similarly, /proc/meminfo and /proc/version give information about memory usage and kernel ver-
sion, respectively:

$ cat /proc/meminfo

MemTotal: 776156 kB
MemFree: 28528 kB
Buffers: 191764 kB
Cached: 369520 kB
SwapCached: 20 kB
Active: 406912 kB
Inactive: 274320 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 776156 kB
LowFree: 28528 kB
SwapTotal: 1164672 kB
SwapFree: 1164652 kB
Dirty: 68 kB
Writeback: 0 kB
AnonPages: 95348 kB
Mapped: 49044 kB
Slab: 57848 kB
SReclaimable: 48008 kB
SUnreclaim: 9840 kB
PageTables: 1500 kB
NFS Unstable: 0 kB
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Bounce: 0 kB
CommitLimit: 1552748 kB
Committed AS: 189680 kB
VmallocTotal: 245752 kB
VmallocUsed: 10572 kB
VmallocChunk: 234556 kB
HugePages Total: 0

HugePages Free: 0

HugePages Rsvd: 0

Hugepagesize: 4096 kB

$ cat /proc/version
Linux version 2.6.20.2-2-default (geeko@buildhost) (gcc version 4.1.3 20070218
(prerelease) (SUSE Linux)) #1 SMP Fri Mar 9 21:54:10 UTC 2007

The information given by these files is generated each time the file is read. So rereading the meminfo file
at a later time will give up-to-the-second results.

You can find more information from specific kernel functions in subdirectories of /proc. For example,
you can get network socket usage statistics from /proc/net/sockstat:

$ cat /proc/net/sockstat

sockets: used 285

TCP: inuse 4 orphan 0 tw 0 alloc 7 mem 1
UDP: inuse 3

UDPLITE: inuse 0

RAW: inuse 0

FRAG: inuse 0 memory 0

Some of the /proc entries can be written to as well as read. For example, the total number of files that all
running programs can open at the same time is a Linux kernel parameter. The current value can be read
at /proc/sys/fs/file-max:

$ cat /proc/sys/fs/file-max
76593

Here the value is set to 76,593. If you need to increase this value, you can do so by writing to the same file.
You may need to do this if you are running a specialist application suite — such as a database system that

uses many tables — that needs to open many files at once.

Writing /proc files requires superuser access. You must take great care when writing /proc files; it’s pos-
sible to cause severe problems including system crashes and loss of data by writing inappropriate values.

To increase the system-wide file handle limit to 80,000, you can simply write the new limit to the file-
max file:

# echo 80000 >/proc/sys/fs/file-max
Now, when you reread the file, you see the new value:

$ cat /proc/sys/fs/file-max
80000
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The subdirectories of /proc that have numeric names are used to provide access to information about
running programs. You learn more about how programs are executed as processes in Chapter 11.

For now, just notice that each process has a unique identifier: a number between 1 and about 32,000. The
ps command provides a list of currently running processes. For example, as this chapter is being written:

neil@susel03:~/BLP4e/chapter03> ps -a
PID TTY TIME CMD
9118 pts/1 00:00:00 ftp
9230 pts/1 00:00:00 ps
10689 pts/1 00:00:01 bash
neil@susel03:~/BLP4e/chapter03>

Here, you can see several terminal sessions running the bash shell and a file transfer session running the
ftp program. You can get more details about the ftp session by looking in /proc.

The process identifier for ftp here is given as 9118, so you need to look in /proc/9118 for details about it:

$ 1ls -1 /proc/9118

total 0

0 dr-xr-xr-x 2 neil users 0 2007-05-20 07:43 attr

0 -r-------- 1 neil users 0 2007-05-20 07:43 auxv

0 -r--r--r-- 1 neil users 0 2007-05-20 07:35 cmdline

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 cpuset

0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 cwd -> /home/neil/BLP4e/chapter03
0 -r-------- 1 neil users 0 2007-05-20 07:43 environ

0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 exe -> /usr/bin/pftp
0 dr-x------ 2 neil users 0 2007-05-20 07:19 fd

0 -rw-r--r-- 1 neil users 0 2007-05-20 07:43 loginuid

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 maps

0 -rw------- 1 neil users 0 2007-05-20 07:43 mem

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 mounts

0 -r-------- 1 neil users 0 2007-05-20 07:43 mountstats
0 -rw-r--r-- 1 neil users 0 2007-05-20 07:43 oom_adj

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 oom_score
0 lrwxrwxrwx 1 neil users 0 2007-05-20 07:43 root -> /
0 -rw------- 1 neil users 0 2007-05-20 07:43 seccomp

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 smaps

0 -r--r--r-- 1 neil users 0 2007-05-20 07:33 stat

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 statm

0 -r--r--r-- 1 neil users 0 2007-05-20 07:33 status

0 dr-xr-xr-x 3 neil users 0 2007-05-20 07:43 task

0 -r--r--r-- 1 neil users 0 2007-05-20 07:43 wchan

Here, you can see various special files that can tell us what is happening with this process.

You can tell that the program /usr/bin/pftp is running and that its current working directory is
/home /neil/BLP4e/chapter03. It is possible to read the other files in this directory to see the com-
mand line used to start it as well as the shell environment it has. The cmdline and environ files pro-
vide this information as a series of null-terminated strings, so you need to take care when viewing them.
We discuss the Linux environment in depth in Chapter 4.

$ od -c /proc/9118/cmdline
0000000 f t P \0 1 9 2 . 1 6 8 . 0 . 1 2
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0000020 \O
0000021

Here, you can see that ftp was started with the command line ftp 192.168.0.12.

The £d subdirectory provides information about the open file descriptors in use by the process. This
information can be useful in determining how many files a program has open at one time. There is one
entry per open descriptor; the name matches the number of the descriptor. In this case, you can see that
ftp has open descriptors 0, 1, 2, and 3, as we might expect. These are the standard input, output, and
error descriptors plus a connection to the remote server.

$ ls /proc/9118/fd
o 1 2 3

Advanced Topics: fcntl and mmap

Here, we cover a couple of topics that you might like to skip because they’re seldom used. Having said that,
we’ve put them here for your reference because they can provide simple solutions to some tricky problems.

fentl

The fentl system call provides further ways to manipulate low-level file descriptors.

#include <fentl.h>

int fentl(int fildes, int cmd);
int fentl(int fildes, int cmd, long arg);

You can perform several miscellaneous operations on open file descriptors with the fcnt1 system call,
including duplicating them, getting and setting file descriptor flags, getting and setting file status flags,
and managing advisory file locking.

The various operations are selected by different values of the command parameter cmd, as defined in
fentl.h. Depending on the command chosen, the system call will require a third parameter, arg:

QO fentl(fildes, F_DUPFD, newfd): This call returns a new file descriptor with a numerical
value equal to or greater than the integer newfd. The new descriptor is a copy of the descriptor
fildes. Depending on the number of open files and the value of new£d, this can be effectively
the same as dup (fildes).

a fentl (fildes, F_GETFD): This call returns the file descriptor flags as defined in fcntl . h.
These include FD_CLOEXEC, which determines whether the file descriptor is closed after a suc-
cessful call to one of the exec family of system calls.

Q fcntl(fildes, F_SETFD, flags): This callis used to set the file descriptor flags, usually just
FD_CLOEXEC.

0 fentl(fildes, F_GETFL) and fcntl(fildes, F_SETFL, flags): These calls are used,
respectively, to get and set the file status flags and access modes. You can extract the file access
modes by using the mask 0_ACCMODE defined in fcntl. h. Other flags include those passed in a
third argument to open when used with 0_CREAT. Note that you can’t set all flags. In particular,
you can’t set file permissions using fcntl.
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You can also implement advisory file locking via fcnt1. Refer to section 2 of the manual pages for more
information, or see Chapter 7, where we discuss file locking.

mmap

UNIX provides a useful facility that allows programs to share memory, and the good news is that it’s
been included in versions 2.0 and later of the Linux kernel. The mmap (for memory map) function sets up
a segment of memory that can be read or written by two or more programs. Changes made by one pro-
gram are seen by the others.

You can use the same facility to manipulate files. You can make the entire contents of a disk file look like
an array in memory. If the file consists of records that can be described by C structures, you can update
the file using structure array accesses.

This is made possible by the use of virtual memory segments that have special permissions set. Reading
from and writing to the segment causes the operating system to read and write the appropriate part of
the disk file.

The mmap function creates a pointer to a region of memory associated with the contents of the file
accessed through an open file descriptor.

#include <sys/mman.h>
void *mmap(void *addr, size t len, int prot, int flags, int fildes, off t off);

You can alter the start of the file data that is accessed by the shared segment by passing the of £ parame-
ter. The open file descriptor is passed as £ildes. The amount of data that can be accessed (that is, the
length of the memory segment) is set via the 1en parameter.

You can use the addr parameter to request a particular memory address. If it’s zero, the resulting pointer
is allocated automatically. This is the recommended usage, because it is difficult to be portable other-
wise; systems vary as to the available address ranges.

The prot parameter is used to set access permissions for the memory segment. This is a bitwise OR of
the following constant values:

0  PROT_READ: The segment can be read

O  PROT_WRITE: The segment can be written

Q  PrROT_EXEC: The segment can be executed

QO  PROT_NONE: The segment can’t be accessed

The flags parameter controls how changes made to the segment by the program are reflected else-
where; these options are displayed in the following table.

MAP_PRIVATE The segment is private, changes are local
MAP SHARED The segment changes are made in the file
MAP_FIXED The segment must be at the given address, addr
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The msync function causes the changes in part or all of the memory segment to be written back to (or
read from) the mapped file.

#include <sys/mman.h>
int msync(void *addr, size t len, int flags);
The part of the segment to be updated is given by the passed start address, addr, and length, 1en. The

flags parameter controls how the update should be performed using the options shown in the follow-
ing table.

MS_ASYNC Perform asynchronous writes
MS_SYNC Perform synchronous writes
MS_INVALIDATE Read data back in from the file

The munmap function releases the memory segment.
#include <sys/mman.h>

int munmap (void *addr, size t len);

The following program, mmap . ¢, shows a file of structures being updated using mmap and array-style
accesses. Linux kernels before 2.0 don’t fully support this use of mmap. The program does work correctly
on Sun Solaris and other systems.

Try It Out Using mmap

1. Start by defining a RECORD structure and then creating NRECORDS versions, each recording their
number. These are appended to the file records.dat.

#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdlib.h>

typedef struct {
int integer;
char stringl[24];
} RECORD;

#define NRECORDS (100)
int main ()

{

RECORD record, *mapped;
int i, £;
FILE *fp;

fp = fopen(“records.dat”,”w+") ;
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for (i=0; i1<NRECORDS; i++) {
record.integer = i;
sprintf (record.string, “RECORD-%d”, 1) ;
fwrite (&record, sizeof (record) , 1, fp) ;

}

fclose(fp) ;
2. Next, change the integer value of record 43 to 143 and write this to the 43rd record’s string:

fp = fopen(“records.dat”,”r+") ;
fseek (fp, 43*sizeof (record) , SEEK SET) ;
fread (&record, sizeof (record) , 1, fp) ;

record.integer = 143;
sprintf (record.string, "RECORD-%d” , record. integer) ;

fseek (fp, 43*sizeof (record) , SEEK SET) ;
fwrite (&record, sizeof (record) , 1, fp) ;
fclose(fp) ;

3. Now map the records into memory and access the 43rd record in order to change the integer to
243 (and update the record string), again using memory mapping:

f = open(“records.dat”,0 RDWR) ;
mapped = (RECORD *)mmap (0, NRECORDS*sizeof (record),
PROT READ|PROT WRITE, MAP SHARED, f, 0);

mapped [43] .integer = 243;
sprintf (mapped[43] .string, "RECORD-%d” , mapped [43] . integer) ;

msync ( (void *)mapped, NRECORDS*sizeof (record), MS ASYNC) ;
munmap ( (void *)mapped, NRECORDS*sizeof (record)) ;
close (f) ;

exit (0) ;

}

In Chapter 13, you meet another shared memory facility: System V shared memory.

Summary

In this chapter, you've seen how Linux provides direct access to files and devices. You've seen how library
functions build upon these low-level functions to provide flexible solutions to programming problems. As
a result, you can write a fairly powerful directory-scanning routine in just a few lines of code.

You've also learned enough about file and directory handling to convert the fledgling CD application
created at the end of Chapter 2 to a C program using a more structured file-based solution. At this stage,
however, you can add no new functionality to the program, so we’ll postpone the next rewrite until
you've learned how to handle the screen and keyboard, which are the subjects of the next two chapters.
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When you write a program for Linux (or UNIX and UNIX-like systems), you have to take into
account that the program will run in a multitasking environment. This means that there will be
multiple programs running at the same time and sharing machine resources such as memory, disk
space, and CPU cycles. There may even be several instances of the same program running at the
same time. It's important that these programs don’t interfere with one another, are aware of their
surroundings, and can act appropriately to avoid conflicts such as trying to write the same file at
the same time as another program.

This chapter considers the environment in which programs operate, how they can use that envi-
ronment to gain information about operating conditions, and how users of the programs can alter
their behavior. In particular, this chapter looks at
0  Passing arguments to programs
Environment variables
Finding out what the time is
Temporary files
Getting information about the user and the host computer

Causing and configuring log messages

U U uJoUoo0oo

Discovering the limits imposed by the system

Program Arguments

When a Linux or UNIX program written in C runs, it starts at the function main. For these programs,
main is declared as

int main(int argc, char *argv([])

where argc is a count of the program arguments and argv is an array of character strings repre-
senting the arguments themselves.
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You might also see C programs for Linux simply declaring main as
main ()

This will still work, because the return type will default to int and formal parameters that are not used
in a function need not be declared. argc and argv are still there, but if you don’t declare them, you can’t
use them.

Whenever the operating system starts a new program, the parameters argc and argv are set up and passed
to main. These parameters are usually supplied by another program, very often the shell that has requested
that the operating system start the new program. The shell takes the command line that it’s given, breaks it
up into individual words, and uses these for the argv array. Remember that a Linux shell normally per-
forms wild card expansion of filename arguments before argc and argv are set, whereas the MS-DOS shell
expects programs to accept arguments with wild cards and perform their own wild card expansion.

For example, if we give the shell the following command,
$ myprog left right ‘and center’
the program myprog will start at main with parameters:

argc: 4
argv: {“myprog”, “left”, “right”, “and center”}

Note that the argument count includes the name of the program itself and the argv array contains the
program name as its first element, argv [0] . Because we used quotes in the shell command, the fourth
argument consists of a string containing spaces.

You'll be familiar with all of this if you've programmed in ISO/ANSI C. The arguments to main corre-
spond to the positional parameters in shell scripts, $0, $1, and so on. Whereas ISO/ANSI C states that
main must return int, the X/Open specification contains the explicit declaration given earlier.

Command-line arguments are useful for passing information to programs. For example, you could use
them in a database application to pass the name of the database you want to use, which would allow you
to use the same program on more than one database. Many utility programs also use command-line argu-
ments to change their behavior or to set options. You would usually set these so-called flags, or switches,
using command-line arguments that begin with a dash. For example, the sort program takes a switch to
reverse the normal sort order:

S sort -r file

Command-line options are very common and using them consistently will be a real help to those who
use your program. In the past, each utility program adopted its own approach to command-line options,
which led to some confusion. For example, take a look at the way these commands take parameters:

tar cvfB /tmp/file.tar 1024

dd if=/dev/£fd0 of=/tmp/file.dd bs=18k
ps ax

gcc --help

ls -1lstr

ls -1 -s -t -r

Uy Uy Ur U Ur Ur
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We recommend that in your applications all command-line switches start with a dash and consist of a
single letter or number. If required, options that take no further arguments can be grouped together
behind one dash. So, the two 1s examples shown here do follow our guidelines. Each option should be
followed by any value it requires as a separate argument. The dd example breaks our rule by using
multi-character options that do not start with dashes (if=/dev/£d0); and the tar example separates
options and their values completely! It is advisable to add longer, more meaningful switch names as
alternatives to the single character versions and to use a double dash to distinguish them. So we might
have -h and --help as options to get help.

Another little foible of some programs is to make the option +x (for example) perform the opposite func-
tion to -x. For example, in Chapter 2 we used set -o xtrace to set shell execution tracing on, and set
+o xtrace to turn it off again.

As you can probably tell, remembering the order and meaning of all these program options is difficult
enough without having to cope with idiosyncratic formats. Often, the only recourse is to use an -h (help)
option or a man page if the programmer has provided one. As we show you a bit later in this chapter,
getopt provides a neat solution to these problems. For the moment, though, let’s just look at dealing
with program arguments as they are passed.

Try It Out Program Arguments

Here’s a program, args. c, that examines its own arguments:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([])

{

int arg;

for(arg = 0; arg < argc; arg++) {
if (argv([arg] [0] == ‘-"')
printf (“option: %$s\n”, argv[argl+1l) ;
else
printf (“argument %d: %s\n”, arg, argvlarg]);
}
exit (0) ;

}

When you run this program, it just prints out its arguments and detects options. The intention is that the
program takes a string argument and an optional filename argument introduced by an - £ option. Other
options might also be defined.

$ ./args -i -lr ‘hi there’ -f fred.c
argument 0: ./args

option: i

option: 1lr

argument 3: hi there

option: £

argument 5: fred.c
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How It Works

The program simply uses the argument count, argc, to set up a loop to examine all of the program argu-
ments. It detects options by looking for an initial dash.

In this example, if we intended the options -1 and -r to be available, we’ve missed the fact that the -1r
perhaps ought to be treated the same as -1 -r.

The X/Open specification (available at http: //opengroup.org/) defines a standard usage for com-
mand-line options (the Utility Syntax Guidelines) as well as a standard programming interface for pro-
viding command-line switches in C programs: the getopt function.

getopt
To help us adhere to these guidelines, Linux provides the getopt facility, which supports the use of
options with and without values and is simple to use.

#include <unistd.h>

int getopt(int argc, char *const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

The getopt function takes the arge and argv parameters as passed to the program’s main function and
an options specifier string that tells getopt what options are defined for the program and whether they
have associated values. The optstring is simply a list of characters, each representing a single character
option. If a character is followed by a colon, it indicates that the option has an associated value that will
be taken as the next argument. The getopts command in bash performs a very similar function.

For example, the following call would be used to handle the preceding example:
getopt (argc, argv, “if:1lr”);

It allows for simple options -1, -1, -r, and - £, followed by a filename argument. Calling the command
with the same parameters but in a different order will alter the behavior. You can try this out when you
get to the sample code in the next Try It Out section.

The return result for getopt is the next option character found in the argv array (if there is one). Call
getopt repeatedly to get each option in turn. It has the following behavior:
Q  If the option takes a value, that value is pointed to by the external variable optarg.

0  getopt returns -1 when there are no more options to process. A special argument, - -, will
cause getopt to stop scanning for options.

0  getopt returns ? if there is an unrecognized option, which it stores in the external variable optopt.

Q  If an option requires a value (such as - £ in our example) and no value is given, getopt nor-
mally returns ?. By placing a colon as the first character of the options string, getopt returns :
instead of ?» when no value is given.

140


http://opengroup.org

Chapter 4: The Linux Environment

The external variable, optind, is set to the index of the next argument to process. getopt uses it to remem-
ber how far it’s got. Programs would rarely need to set this variable. When all the option arguments have
been processed, opt ind indicates where the remaining arguments can be found at the end of the argv array.

Some versions of getopt will stop at the first non-option argument, returning -1 and setting optind.
Others, such as those provided with Linux, can process options wherever they occur in the program
arguments. Note that, in this case, getopt effectively rewrites the argv array so that all of the non-
option arguments are presented together, starting at argv [optind]. For the GNU version of getopt,
this behavior is controlled by the POSIXLY CORRECT environment variable. If set, getopt will stop at
the first non-option argument. Additionally, some getopt implementations print error messages for
unknown options. Note that the POSIX specification says that if the opterr variable is non-zero, getopt
will print an error message to stderr.

Try It Out getopt
In this Try It Out, you use getopt for your example; call the new program argopt . c:
#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv([])

{

int opt;
while ((opt = getopt (argc, argv, “:if:1r”)) != -1) {
switch (opt) {
case ‘i’:
case ‘l’:
case '‘r':
printf (“option: %c\n”, opt);
break;
case ‘f’:
printf (“filename: %s\n”, optarg) ;
break;
case ‘:':
printf (“option needs a value\n”);
break;
case '‘?':
printf (“unknown option: %c\n”, optopt);
break;

}
}
for(; optind < argc; optind++)

printf (“argument: %s\n”, argv[optind]) ;
exit (0) ;

}

Now when you run the program, you see that all the command-line arguments are handled automatically:

$ ./argopt -i -lr ‘hi there’ -f fred.c -q
option: i
option: 1
option: r
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filename: fred.c
unknown option: g
argument: hi there

How It Works

The program repeatedly calls getopt to process option arguments until none remain, at which point
getopt returns -1. The appropriate action is taken for each option, including dealing with unknown
options and missing values. Depending on your version of getopt, you might see slightly different out-
put from that shown here — especially error messages — but the meaning will be clear.

Once all options have been processed, the program simply prints out the remaining arguments as before,
but starting from optind.

getopt_long

Many Linux applications also accept arguments that are more meaningful than the single character
options used in the previous example. The GNU C library contains a version of getopt called
getopt_long that accepts so-called long arquments that are introduced with a double dash.

Try It Out getopt_long

You can use getopt_long to create a new version of the example program that can be invoked using
long equivalents of options like this:

$ ./longopt --initialize --list ‘hi there’ --file fred.c -gq
option: i
option: 1

filename: fred.c
unknown option: g
argument: hi there

In fact, both the new long options and the original single character options can be mixed. As long as they
remain distinguishable, long options also can be abbreviated. Long options that take an argument can be
given as a single argument in the form --option=value, as follows

$ ./longopt --init -1 --file=fred.c ‘hi there’
option: i

option: 1

filename: fred.c

argument: hi there

The new program, longopt . ¢, is shown here with changes required from argopt . c to support the long
options highlighted:

#include <stdio.h>
#include <unistd.h>
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#include <stdlib.h>

#define GNU SOURCE
#include <getopt.h>

int main(int argc, char *argv([])

{

int opt;

struct option longopts[] = {
{“initialize", 0, NULL, ‘i’},
{“file”, 1, NULL, ‘f'},
{“list”, 0, NULL, ‘1’},
{“restart" 0, NULL, ‘r’},
{0,0,0,0}};

while ((opt = getopt long(argc, argv,

switch (opt) {

case ‘i’:

case ‘l1’':

case ‘r':
printf (“option:
break;

case ‘f’:
printf (“filename:
break;

case ‘:':

Wil

%c\n”, opt);

longopts, NULL)) != -1) {

%$s\n”, optarg);

printf (“option needs a value\n”)

break;
case ‘?’:
printf (“unknown option:
break;
}
}
for(; optind < argc; optind++)
printf (“argument: %s\n”,
exit (0) ;

How It Works

$c\n”,

optopt) ;

argv[optind]) ;

The getopt_long function takes two additional parameters over getopt. The first of these is an array
of structures that describes the long options and tells getopt_long how to handle them. The second
additional parameter is the address of a variable that can be used like a long option version of optind;
for each long option recognized, its index in the long options array can be written into this variable. In
this example, you do not need this information, so you use NULL as the second additional parameter.

The long options array consists of a number of structures of type struct option, each of which describes
the desired behavior of a long option. The array must end with a structure containing all zeros.

The long option structure is defined in getopt . h and must be included with the constant _GNU_SOURCE,

defined to enable the getopt_long functionality.

struct option {
const char *name;
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int has_arg;
int *flag;
int val;

}i

The members of the structure are shown in the following table.

Option Member Description

name The name of the long option. Abbreviations will be accepted as long
as they cannot be confused with other options.

has_arg Whether this option takes an argument. Set to 0 for options that do
not take an argument, 1 for options that must have a value, and 2 for
those that have an optional argument.

flag Set to NULL to have getopt_long return the value given in val when
this option is found. Otherwise, getopt_long returns 0 and writes
the value of val into the variable pointed to by f1ag.

val The value getopt_long is to return for this option.

For other options associated with the GNU extensions to getopt and related functions, refer to the
getopt manual page.

Environment Variables

We discussed environment variables in Chapter 2. These are variables that can be used to control the
behavior of shell scripts and other programs. You can also use them to configure the user’s environment.
For example, each user has an environment variable, HOME, that defines his home directory, the default
starting place for his or her session. As you’ve seen, you can examine environment variables from the
shell prompt:

$ echo $HOME
/home/neil

You can also use the shell’s set command to list all of the environment variables.

The UNIX specification defines many standard environment variables used for a variety of purposes,
including terminal type, default editors, time zones, and so on. A C program may gain access to environ-
ment variables using the putenv and getenv functions.

#include <stdlib.h>

char *getenv(const char *name);
int putenv(const char *string);
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The environment consists of strings of the form name=value. The getenv function searches the environ-
ment for a string with the given name and returns the value associated with that name. It will return null
if the requested variable doesn’t exist. If the variable exists but has no value, getenv succeeds and returns
an empty string, one in which the first byte is nul1l. The string returned by getenv is held in static stor-
age owned by getenv, so to use it further you must copy it to another string because it will be overwrit-
ten by subsequent calls to getenv.

The putenv function takes a string of the form name=value and adds it to the current environment. It will
fail and return -1 if it can’t extend the environment due to lack of available memory. When this happens,
the error variable errno will be set to ENOMEM.

In the following example, you write a program to print out the value of any environment variable you
choose. You also arrange to set the value if you give the program a second argument.

Try It Out getenv and putenv

1. The first few lines after the declaration of main ensure that the program, environ.c, has been
called correctly with just one or two arguments:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv([])

{

char *var, *value;

if (arge == 1 || argc > 3) {
fprintf (stderr, "usage: environ var [value]\n”);
exit (1) ;

}
2. Thatdone, you fetch the value of the variable from the environment, using getenv:

var = argv[1l];
value = getenv(var) ;
if (value)
printf (“WVariable %s has value %s\n”, var, value);
else
printf (“Variable %s has no value\n”, var);

3. Next, check whether the program was called with a second argument. If it was, you set the vari-
able to the value of that argument by constructing a string of the form name=value and then
calling putenv:

if (arge == 3) {
char *string;
value = argv[2];
string = malloc (strlen(var)+strlen(value)+2) ;
if (!string) {
fprintf (stderr,"out of memory\n”) ;
exit (1) ;
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strcpy (string, var) ;
strcat (string,”=") ;
strcat (string,value) ;
printf (“Calling putenv with: %s\n”,string) ;
if (putenv(string) != 0) {
fprintf (stderr, "putenv failed\n”) ;
free(string) ;
exit (1) ;

}

4.  Finally, you discover the new value of the variable by calling getenv once again:

value = getenv(var) ;
if (value)
printf (“New value of %s is %$s\n”, var, value);
else
printf (“New value of %s is null??\n”, var);
}
exit (0) ;

}

When you run this program, you can see and set environment variables:

$ ./environ HOME

Variable HOME has value /home/neil
$ ./environ FRED

Variable FRED has no value

$ ./environ FRED hello

Variable FRED has no value

Calling putenv with: FRED=hello
New value of FRED is hello

$ ./environ FRED

Variable FRED has no value

Notice that the environment is local only to the program. Changes that you make within the program are
not reflected outside it because variable values are not propagated from the child process (your pro-
gram) to the parent (the shell).

Use of Environment Variables

Programs often use environment variables to alter the way they work. Users can set the values of these
environment variables either in their default environment, via a .profile file read by their login shell,
using a shell-specific startup (rc) file, or by specifying variables on the shell command line. For example:

$ ./environ FRED

Variable FRED has no value

$ FRED=hello ./environ FRED
Variable FRED has value hello

The shell takes initial variable assignments as temporary changes to environment variables. In the sec-
ond part of the preceding example, the program environ runs in an environment where the variable
FRED has a value.
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For instance, in a future version of the CD database application, you could change an environment vari-
able, say CDDB, to indicate the database to use. Each user could then specify his or her own default value
or use a shell command to set it on a run-by-run basis:

$ CDDB=mycds; export CDDB
$ cdapp

or
$ CDDB=mycds cdapp

Environment variables are a mixed blessing and you should use them with care. They are more “hid-
den” to the user than command-line options and, as such, this can make debugging harder. In a sense,
environment variables are like global variables in that they may alter the behavior of a program, giving
unexpected results.

The environ Variable

As you've seen, the program environment is made up of strings of the form name=value. This array of
strings is made available to programs directly via the environ variable, which is declared as

#include <stdlib.h>

extern char **environ;

Try It Out environ

Here’s a program, showenv . ¢, that uses the environ variable to print out the environment variables:

#include <stdlib.h>
#include <stdio.h>

extern char **environ;

int main ()

{

char **env = environ;

while (*env) {
printf (“%s\n”, *env) ;
env++;

}

exit (0);

}

When you run this program on a Linux system, you get something like the following output, which
has been abbreviated somewhat. The number, order of appearance, and values of these variables
depend on the operating system version, the command shell being used, and the user settings in force
at the time the program is run.

$ ./showenv
HOSTNAME=tilde.provider.com
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LOGNAME=neil
MAIL=/var/spool/mail/neil
TERM=xterm

HOSTTYPE=1386
PATH=/usr/local/bin:/bin:/usr/bin:
HOME=/usr/neil

LS _OPTIONS=-N --color=tty -T 0
SHELL=/bin/bash

OSTYPE=Linux

How It Works

This program iterates through the environ variable, a null-terminated array of strings, to print out the
whole environment.

Time and Date

Often it can be useful for a program to be able to determine the time and date. It may want to log the
length of time it is run, or it may need to change the way it behaves at certain times. For example, a
game might refuse to run during working hours, or a backup scheduling program might want to wait
until the early hours before starting an automatic backup.

UNIX systems all use the same starting point for times and dates: midnight GMT on January 1, 1970.
This is the “start of the UNIX epoch” and Linux is no exception. All times in a Linux system are meas-
ured as seconds since then. This is similar to the way MS-DOS handles times, except that the MS-DOS
epoch started in 1980. Other systems use other epoch start times.

Times are handled using a defined type, a time_t. This is an integer type intended to be large enough to
contain dates and times in seconds. On Linux systems, it’s a 1ong integer and is defined, together with
functions for manipulating time values, in the header file time.h.

Never assume that times are 32 bits. On UNIX and Linux systems using a 32-bit time_t type, the time
will “roll over” in the year 2038. By that time, we expect systems will have moved to using a time_t type
that is larger than 32 bits. With the recent introduction of 64-bit processors into the mainstream, this is
pretty much inevitable.

#include <time.h>
time t time(time t *tloc);
You can find the low-level time value by calling the t ime function, which returns the number of seconds

since the start of the epoch. It will also write the returned value to a location pointed to by t1loc, if this
isn’t a null pointer.
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Try It Out

time

Here’s a simple program, envtime.c, to demonstrate the t ime function:

#inc
#inc
#inc
#inc

lude
lude
lude
lude

<time.h>
<stdio.h>
<unistd.h>
<stdlib.h>

int main ()

{

}

int

ip

time t the time;

for (

}

exit (0) ;

i =

1; 1 <= 10; i++) {
the time = time((time t *)0);

printf (“The time is %$1d\n”, the time);
sleep(2) ;

When you run this program, it prints the low-level time value every two seconds for 20 seconds.

$ ./envtime

The
The
The
The
The
The
The
The
The
The

time
time
time
time
time
time
time
time
time
time

is
is
is
is
is
is
is
is
is
is

How It Works

The program calls t ime with a null pointer argument, which returns the time and date as a number of
seconds. The program sleeps for two seconds and repeats the call to time for a total of ten times.

1179643852
1179643854
1179643856
1179643858
1179643860
1179643862
1179643864
1179643866
1179643868
1179643870

Using the time and date as a number of seconds since the start of 1970 can be useful for measuring how
long something takes to happen. You could consider simply subtracting the values you get from two calls
to time. However, in its deliberations, the ISO/ANSI C standard committee didn’t specify that the time t
type be used to measure arbitrary time intervals in seconds, so they invented a function, dif ftime, which
will calculate the difference in seconds between two time_t values and return it as a double:

#include <time.h>

double difftime(time t timel, time t time2);
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The difftime function calculates the difference between two time values and returns a value equivalent
to timel-time2 as a floating-point number. For Linux, the return value from time is a number of sec-
onds and can be manipulated, but for the ultimate in portability you should use difftime.

To present the time and date in a more meaningful way (to humans), you need to convert the time value
into a recognizable time and date. There are standard functions to help with this.

The function gmt ime breaks down a low-level time value into a structure containing more usual fields:

#include <time.h>

struct tm *gmtime(const time t timeval);

The structure tmis defined to contain at least the following members:

tm Member Description

int tm_sec Seconds, 0-61

int tm min Minutes, 0-59

int tm_hour Hours, 0-23

int tm mday Day in the month, 1-31

int tm mon Month in the year, 0-11 (January = 0)
int tm year Years since 1900

int tm wday Day in the week, 0-6 (Sunday = 0)
int tm_yday Day in the year, 0-365

int tm_isdst Daylight savings in effect

The range for tm_sec allows for the occasional leap second or double leap second.

Try It Out gmtime

Here’s a program, gmt ime . ¢, which prints out the current time and date using the tm structure and
gmtime:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

struct tm *tm ptr;
time t the time;
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(void) time (&the time);
tm ptr = gmtime (&the time);

printf (“Raw time is %1d\n”, the time);
printf (“gmtime gives:\n”);
printf (“date: %02d/%02d/%02d\n”,

tm ptr->tm year, tm ptr->tm mon+l, tm ptr->tm mday) ;
printf (“time: %02d:%02d:%02d\n",

tm ptr->tm hour, tm ptr->tm min, tm ptr->tm sec);
exit (0) ;

}
When you run this program, you get a good approximation of the time and date:

$ ./gmtime; date

Raw time is 1179644196
gmtime gives:

date: 107/05/20

time: 06:56:36

Sun May 20 07:56:37 BST 2007

How It Works

The program calls time to get the low-level time value and then calls gmt ime to convert this into a struc-
ture with useful time and date values. It prints these out using print¢. Strictly speaking, you shouldn’t
print the raw time value in this way because it isn’t guaranteed to be a 1ong type on all systems. Running
the date command immediately after gmt ime allows you to compare its output.

However, you have a little problem here. If you're running this program in a time zone other than
Greenwich Mean Time, or if your local daylight savings time is in effect as here, you'll notice that the
time (and possibly date) is incorrect. This is because gmt ime returns the time as GMT (now known as
Coordinated Universal Time, or UTC). Linux and UNIX do this so that all programs and systems across
the world are synchronized. Files created at the same moment in different time zones will appear to have
the same creation time. To see the local time, you need to use the function localtime instead:

#include <time.h>

struct tm *localtime(const time t *timeval);
The localtime function is identical to gmt ime, except that it returns a structure containing values adjusted
for local time zone and daylight savings. If you try the gmt ime program again, but use localtime in place
of gmt ime, you should see a correct time and date reported.
To convert a broken-down tm structure into a raw time_t value, you can use the function mktime:

#include <time.h>

time t mktime(struct tm *timeptr);

mktime will return -1 if the structure can’t be represented as a time_t value.
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For “friendly” (as opposed to machine) time, and date output provided by the date program, you can
use the functions asctime and ctime:

#include <time.h>

char *asctime (const struct tm *timeptr);
char *ctime(const time t *timeval);

The asctime function returns a string that represents the time and date given by the tm structure
timeptr. The string returned has a format similar to the following;:

Sun Jun 9 12:34:56 2007\n\0
It's always a fixed format, 26 characters long. The function ctime is equivalent to calling
asctime (localtime (timeval))

It takes a raw time value and converts it to a more readable local time.

Try It Out ctime

In this example, you see ctime in action, using the following code:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main()

{

time t timeval;
(void) time (&timeval) ;
printf (“The date is: %s”, ctime(&timeval)) ;

exit (0) ;

}

Compile and then run ctime. c and you should see something like this:

$ ./ctime
The date is: Sat Jun 9 08:02:08 2007

How It Works

The ctime.c program calls time to get the low-level time value and lets ctime do all the hard work,
converting it to a readable string, which it then prints.
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To gain more control of the exact formatting of time and date strings, Linux and modern UNIX-like
systems provide the strftime function. This is rather like a sprintf for dates and times and works
in a similar way:

#include <time.h>

size t strftime(char *s, size t maxsize, const char *format, struct tm *timeptr);

The strftime function formats the time and date represented by the tm structure pointed to by
timeptr and places the result in the string s. This string is specified as (at least) maxsize characters
long. The format string is used to control the characters written to the string. Like print£, it contains
ordinary characters that will be transferred to the string and conversion specifiers for formatting time
and date elements. The conversion specifiers include the following:

Conversion Specifier Description

o°

a Abbreviated weekday name

o°
b

Full weekday name

ov
o

Abbreviated month name

o°
o3}

Full month name

o°
Q

Date and time

o°
Q.

Day of the month, 01-31

o°
b o]

Hour, 00-23

o°
—

Hour in 12-hour clock, 01-12

oe
(a-]

Day of the year, 001-366

o
=

Month of the year, 01-12

o
=

Minutes, 00-59

o
o]

a.m. or p.m.

o°
n

Seconds, 00-61

o°
o

Day in the week, 1-7 (1 = Monday)

o°
a

Week in the year, 01-53 (Sunday is the first day of the week.)

o
<

Week in the year, 01-53 (Monday is the first day of the week.)

o
=

Day in the week, 0-6 (0 = Sunday)

o
»

Date in local format

Continued on next page
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Conversion Specifier Description
%X Time in local format
5y Year number less 1900

o
<

Year

o°
N

Time zone name

o\°
o°

A ¢ character

So, the usual date as given by the date program corresponds to a strftime format string of
“%¥a %b %d %H:3M:%S %Y”

To help with reading dates, you can use the strptime function, which takes a string representing a date
and time and creates a tm structure representing the same date and time:

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *timeptr);

The format string is constructed in exactly the same way as the format string for strftime. strptime
acts in a similar way to sscanf in that it scans a string, looking for identifiable fields, and writes them
into variables. Here it’s the members of a tm structure that are filled in according to the format string.
However, the conversion specifiers for strptime are a little more relaxed than those for strftime
because strptime will allow both abbreviated and full names for days and months. Either representa-
tion will match a %a specifier in strptime. Also, where strftime always uses leading zeros on num-
bers less than 10, strptime regards them as optional.

strptime returns a pointer to the character following the last one consumed in the conversion process.
If it encounters characters that can’t be converted, the conversion simply stops at that point. The calling
program needs to check that enough of the passed string has been consumed to ensure that meaningful
values have been written to the tm structure.

Try It Out strftime and strptime

Have a look at the selection of conversion specifiers used in the following program:

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

struct tm *tm ptr, timestruct;
time t the time;
char buf [256] ;
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char *result;

(void) time (&the time);
tm ptr = localtime (&the time);
strftime (buf, 256, “%A %d %B, %I:%S %p”, tm ptr);

printf (“strftime gives: %s\n”, buf);
strcpy (buf, “Thu 26 July 2007, 17:53 will do fine”);

printf (“calling strptime with: %s\n”, buf);
tm ptr = &timestruct;

result = strptime(buf,”%a %d %b %Y, %$R”, tm ptr);
printf (“strptime consumed up to: %s\n”, result);

printf (“strptime gives:\n”) ;
printf (“date: %02d/%02d/%02d\n",
tm ptr->tm year % 100, tm ptr->tm mon+l, tm ptr->tm mday) ;
printf (“time: %02d:%02d\n”,
tm ptr->tm hour, tm ptr->tm min);
exit (0) ;

}

When you compile and run this program, strftime.c, you get

$ ./strftime

strftime gives: Saturday 09 June, 08:16 AM

calling strptime with: Thu 26 July 2007, 17:53 will do fine
strptime consumed up to: will do fine

strptime gives:

date: 07/07/26

time: 17:53

How It Works

The strftime program obtains the current local time by calling t ime and localtime. It then converts it to
a readable form by calling strftime with an appropriate formatting argument. To demonstrate the use of
strptime, the program sets up a string containing a date and time, then calls strptime to extract the raw
time and date values, and prints them. The conversion specifier %R is a shortcut for $H: $Min strptime.

It’s important to note that strpt ime needs an accurate format string to successfully scan a date. Typically,
it won’t accurately scan dates read from strings entered by users unless the format is very much restricted.

It is possible that you will find the compiler issuing a warning when you compile strftime.c. This is
because the GNU library does not by default declare strptime. The fix for this is to explicitly request
X/Open standard features by adding the following line before including time . h:

#define XOPEN SOURCE
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Temporary Files

Often, programs will need to make use of temporary storage in the form of files. These might hold inter-
mediate results of a computation or represent backup copies of files made before critical operations. For
example, a database application could use a temporary file when deleting records. The file collects the
database entries that need to be retained, and then, at the end of the process, the temporary file becomes
the new database and the original is deleted.

This popular use of temporary files has a hidden disadvantage. You must take care to ensure that the
applications choose a unique filename to use for the temporary file. If they don’t there may be a problem.
Because Linux is a multitasking system, another program could choose the same name and the two will
interfere with each other.

A unique filename can be generated by the tmpnam function:

#include <stdio.h>

char *tmpnam(char *s);

The tmpnam function returns a valid filename that isn’t the same as any existing file. If the string s isn’t
null, the filename will also be written to it. Further calls to tmpnam will overwrite the static storage
used for return values, so it’s essential to use a string parameter if tmpnam is to be called many times.
The string is assumed to be at least I._tmpnam (usually around 20) characters long. tmpnam can be called
up to TMP_MAX times (several thousand at least) in a single program, and it will generate a different file-
name each time.

If the temporary file is to be used immediately, you can name it and open it at the same time using the
tmpfile function. This is important because another program could create a file with the same name as
that returned by tmpnam. The tmpfile function avoids this problem altogether:

#include <stdio.h>
FILE *tmpfile(void);

The tmpfile function returns a stream pointer that refers to a unique temporary file. The file is opened
for reading and writing (via fopen with w+), and it will be automatically deleted when all references to
the file are closed.

tmpfile returns a null pointer and sets errno on error.

Try It Out tmpnam and tmpfile

Let’s see these two functions in action:

#include <stdio.h>
#include <stdlib.h>

int main()

{

char tmpname [L tmpnam] ;
char *filename;
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FILE *tmpfp;
filename = tmpnam (tmpname) ;

printf (“Temporary file name is: %$s\n”, filename);
tmpfp = tmpfile();

if (tmpfp)

printf (“Opened a temporary file OK\n”) ;
else

perror (“tmpfile”) ;
exit (0) ;

}

When you compile and run this program, tmpnam. ¢, you can see the unique filename generated by
tmpnam:

$ ./tmpnam
Temporary file name is: /tmp/file2S64zc
Opened a temporary file OK

How It Works

The program calls tmpnam to generate a unique filename for a temporary file. If you wanted to use it,
you would have to open it quickly to minimize the risk that another program would open a file with the
same name. The tmpfile call creates and opens a temporary file at the same time, thus avoiding this
risk. In fact, the GNU C compiler may give a warning about the use of tmpnam when compiling a pro-
gram that uses it.

Versions of UNIX introduced another way to generate temporary filenames using the functions mktemp
and mkstemp. These are supported by Linux and are similar to tmpnam, except that you can specify a
template for the temporary filename, which gives you a little more control over their location and name:

#include <stdlib.h>

char *mktemp (char *template);
int mkstemp (char *template);

The mktemp function creates a unique filename from the given template. The template argument must
be a string with six trailing x characters. The mktemp function replaces these X characters with a unique
combination of valid filename characters. It returns a pointer to the generated string or a null pointer if it
couldn’t generate a unique name.

The mkstemp function is similar to tmpfile in that it creates and opens a temporary file. The filename is
generated in the same way as mktemp, but the returned result is an open, low-level file descriptor.

You should always use the “create and open” functions tmpfile and mkstemp in your own programs
rather than tmpnam and mktemp.
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User Information

All Linux programs, with the notable exception of init, are started by other programs or users. You
learn more about how running programs, or processes, interact in Chapter 11. Users most often start pro-
grams from a shell that responds to their commands. You've seen that a program can determine a great
deal about its environment by examining environment variables and reading the system clock. A pro-
gram can also find out information about the person using it.

When a user logs in to a Linux system, he or she has a username and password. Once these have been
validated, the user is presented with a shell. Internally, the user also has a unique user identifier known
as a UID. Each program that Linux runs is run on behalf of a user and has an associated UID.

You can set up programs to run as if a different user had started them. When a program has its UID permis-
sion set, it will run as if started by the owner of the executable file. When the su command is executed, the
program runs as if it had been started by the superuser. It then validates the user’s access, changes the UID
to that of the target account, and executes that account’s login shell. This also allows a program to be run as
if a different user had started it and is often used by system administrators to perform maintenance tasks.

Because the UID is key to the user’s identity, let’s start with that.

The UID has its own type — uid_t — defined in sys/types.h. It’s normally a small integer. Some are
predefined by the system; others are created by the system administrator when new users are made
known to the system. Normally, users usually have UID values larger than 100.

#include <sys/types.h>
#include <unistd.h>

uid t getuid(void);
char *getlogin(void);

The getuid function returns the UID with which the program is associated. This is usually the UID of
the user who started the program.

The getlogin function returns the login name associated with the current user.

The system file /etc/passwd contains a database dealing with user accounts. It consists of lines, one per
user, that contain the username, encrypted password, user identifier (UID), group identifier (GID), full
name, home directory, and default shell. Here’s an example line:

neil:zBgxfgedfpk:500:100:Neil Matthew:/home/neil:/bin/bash

If you write a program that determines the UID of the user who started it, you could extend it to look in
the password file to find out the user’s login name and full name. We don’t recommend this because
modern UNIX-like systems have moved away from using simple password files to improve system
security. Many systems, including Linux, have the option to use shadow password files that don’t contain
any useful encrypted password information at all (this is often held in /etc/shadow, a file that ordi-
nary users cannot read). For this reason, a number of functions have been defined to provide a standard
and effective programming interface to this user information:

#include <sys/types.h>
#include <pwd.h>
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struct passwd *getpwuid(uid t uid);
struct passwd *getpwnam(const char *name);

The password database structure, passwd, defined in pwd. h includes the following members:

passwd Member Description

char *pw_name The user’s login name
uid t pw _uid The UID number

gid t pw _gid The GID number

char *pw_dir The user’s home directory
char *pw_gecos The user’s full name

char *pw_shell The user’s default shell

Some UNIX systems may use a different name for the field for the user’s full name: on some systems, it’s
pw_gecos, as on Linux, and on others, it's pw_comment. This means that we can’t recommend its use.

The getpwuid and getpwnam functions both return a pointer to a passwd structure corresponding to
a user. The user is identified by UID for getpwuid and by login name for getpwnam. They both return a
null pointer and set errno on error.

Try It Out User Information

Here’s a program, user . c, which extracts some user information from the password database:

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main()

{
uid t uid;
gid t gid;
struct passwd *pw;
uid = getuid();
gid = getgid();

printf (“User is %s\n”, getlogin()) ;

printf (“User IDs: uid=%d, gid=%d\n”, uid, gid);
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pw = getpwuid (uid) ;
printf (“UID passwd entry:\n name=%s, uid=%d, gid=%d, home=%s, shell=%s\n”,
pw->pw name, pw->pw uid, pw->pw gid, pw->pw dir, pw->pw shell);

pw = getpwnam(“root”) ;

printf (“root passwd entry:\n”) ;

printf (“name=%s, uid=%d, gid=%d, home=%s, shell=%s\n”,
pw->pw_name, pw->pw _uid, pw->pw gid, pw->pw dir, pw->pw shell);

exit (0) ;

}
It gives the following output, which may differ in minor respects between versions of Linux and UNIX:

$ ./user

User is neil

User IDs: uid=1000, gid=100

UID passwd entry:

name=neil, uid=1000, gid=100, home=/home/neil, shell=/bin/bash
root passwd entry:

name=root, uid=0, gid=0, home=/root, shell=/bin/bash

How It Works

This program calls getuid to obtain the UID of the current user. This UID is used in getpwuid to obtain
detailed password file information. As an alternative, we show how the username root can be given to
getpwnam to obtain user information.

If you take a look at the Linux source code, you can see another example of using getuid in the
id command.

To scan all the password file information, you can use the getpwent function. This fetches successive
file entries:

#include <pwd.h>
#include <sys/types.h>

void endpwent (void) ;
struct passwd *getpwent (void) ;
void setpwent (void) ;

The getpwent function returns each user information entry in turn. When none remain, it returns a null
pointer. You can use the endpwent function to terminate processing once sufficient entries have been
scanned. The setpwent function resets the position in the password file to the start so that a new scan
can be started with the next call to getpwent. These functions operate in a similar way to the directory
scanning functions opendir, readdir, and closedir that were discussed in Chapter 3.

User and group identifiers (effective and actual) can be obtained by other, less commonly used functions:

#include <sys/types.h>
#include <unistd.h>

uid t geteuid(void);
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gid t getgid(void);
gid t getegid(void);
int setuid(uid t uid);
int setgid(gid t gid);

You should refer to the system manual pages for details on group identifiers and effective user identi-
fiers, although you'll probably find that you won’t need to manipulate these at all.

Only the superuser can call setuid and setgid.

Host Information

Just as it can determine information about the user, a program can also establish some details about the
computer on which it’s running. The uname command provides such information. uname also exists as a
system call to provide the same information within a C program — check it out in the system calls sec-
tion of the manual pages (section 2) using man 2 uname.

Host information can be useful in a number of situations. You might want to customize a program’s behav-
ior, depending on the name of the machine it’s running on in a network, say, a student’s machine or an
administrator’s. For licensing purposes, you might want to restrict a program to running on one machine
only. All this means that you need a way to establish which machine the program is running on.

If the system has networking components installed, you can obtain its network name very easily with
the gethostname function

#include <unistd.h>
int gethostname (char *name, size t namelen);

The gethostname function writes the machine’s network name into the string name. This string is
assumed to be at least namelen characters long. gethostname returns 0 if successful and -1 otherwise.

You can obtain more detailed information about the host computer from the uname system call:
#include <sys/utsname.h>
int uname (struct utsname *name);

The uname function writes host information into the structure pointed to by the name parameter. The
utsname structure, defined in sys/utsname . h, must contain at least these members:

utsname Member Description
char sysname [] The operating system name
char nodename [] The host name

Continued on next page
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utsname Member Description

char releasel(] The release level of the system
char version/[] The version number of the system
char machine[] The hardware type

uname returns a nonnegative integer on success, —1 otherwise, with errno set to indicate any error.

Try It Out Host Information

Here’s a program, hostget . ¢, which extracts some host computer information:

#include <sys/utsname.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main()

{

char computer[256] ;
struct utsname uts;

if (gethostname (computer, 255) != 0 || uname(&uts) < 0) {
fprintf (stderr, “Could not get host information\n”);
exit (1) ;

}

printf (“Computer host name is %s\n”, computer) ;

printf (“System is %s on %s hardware\n”, uts.sysname, uts.machine);
printf (“Nodename is %s\n”, uts.nodename) ;

printf (“WVersion is %s, %s\n”, uts.release, uts.version);

exit (0) ;

}

It gives the following Linux-specific output. If your machine is networked, you may see an extended
host name that includes the network:

$ ./hostget

Computer host name is susel03

System is Linux on 1686 hardware

Nodename is susel03

Version is 2.6.20.2-2-default, #1 SMP Fri Mar 9 21:54:10 UTC 2007

How It Works

This program calls gethostname to obtain the network name of the host computer. In the preceding
example, it gets the name suse103. More detailed information about this Intel Pentium-4-based Linux
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computer is returned by the call to uname. Note that the format of the strings returned by uname is imple-
mentation-dependent; in the example, the version string contains the date that the kernel was compiled.

For another example of the use of the uname function, have a look at the Linux source code for the
uname command, which uses it.

A unique identifier for each host computer may be available from the gethostid function:

#include <unistd.h>

long gethostid(void);

The gethostid function is intended to return a unique value for the host computer. License managers
use this to ensure that software programs can run only on machines that hold valid licenses. On Sun
workstations, it returns a number that is set in non-volatile memory when the computer is built, and so
is unique to the system hardware. Other systems, such as Linux, return a value based on the Internet
address of the machine, which isn’t usually secure enough to be used for licensing.

Logging

Many applications need to record their activities. System programs very often will write messages to the
console, or a log file. These messages might indicate errors, warnings, or more general information about
the state of the system. For example, the su program might record the fact that a user has tried and failed
to gain superuser privileges.

Very often, these log messages are recorded in system files in a directory made available for that purpose.
This might be /usr/adm or /var/log. On a typical Linux installation, the file /var/log/messages
contains all system messages, /var/log/mail contains other log messages from the mail system, and
/var/log/debug may contain debug messages. You can check your system’s configuration in the
/etc/syslog.conf or /etc/syslog-ng/syslog-ng.conf files, depending on your Linux version.

Here are some sample log messages:

Mar 26 18:25:51 susel03 ifstatus: etho device: Advanced Micro Devices
[AMD] 79¢970 [PCnet32 LANCE] (rev 10)
Mar 26 18:25:51 susel03 ifstatus: etho0 configuration: eth-id-

00:0c:29:0e:91:72

May 20 06:56:56 susel03 SuSEfirewall2:

/etc/sysconfig/SuSEfirewall?2

May 20 06:56:57 susel03 SuSEfirewall2:
May 20 06:56:57 susel03 SuSEfirewall2:

Jun 9 09:11:14 susel03 su: (to root)

Setting up rules from

batch committing...
Firewall rules successfully set

neil on /dev/pts/18 09:50:35
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Here, you can see the sort of messages that are logged. The first few are reported by the Linux kernel
itself as it boots and detects installed hardware. The firewall reports that it’s reconfiguring. Finally, the
su program reports a superuser account access by user neil.

You may require superuser privilege to view log messages.

Some UNIX systems don’t provide a readable messages file in this way, but do provide the administra-
tor with tools to read a database of system events. Refer to your system documentation for details.

Even though the format and storage of system messages may vary, the method of producing the mes-
sages is standard. The UNIX specification provides an interface for all programs to produce logging
messages using the syslog function:

#include <syslog.h>

void syslog(int priority, const char *message, arguments...);
The syslog function sends a logging message to the logging facility. Each message has a priority
argument that is a bitwise OR of a severity level and a facility value. The severity level controls how the

log message is acted upon and the facility value records the originator of the message.

Facility values (from syslog.h) include LOG_USER, used to indicate that the message has come from a
user application (the default), and LOG_LOCALO, LOG_LOCAL1, up to LOG_LOCAL?7, which can be assigned
meanings by the local administrator.

The severity levels in descending order of priority are shown in the following table.

Priority Level Description

LOG_EMERG An emergency situation

LOG_ALERT High-priority problem, such as database corruption
LOG_CRIT Critical error, such as hardware failure

LOG_ERR Errors

LOG_WARNING Warning

LOG_NOTICE Special conditions requiring attention

LOG_INFO Informational messages

LOG_DEBUG Debug messages

Depending on system configuration, LOG_EMERG messages might be broadcast to all users, LOG_ALERT

messages might be mailed to the administrator, LOG_DEBUG messages might be ignored, and the others
written to a messages file. You can write a program that uses the logging facility simply by calling sys-
log when you want to create a log message.
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The log message created by syslog consists of a message header and a message body. The header is created
from the facility indicator and the date and time. The message body is created from the message parameter
to syslog, which acts like a print £ format string. Further arguments to syslog are used according to
printf style conversion specifiers in the message string. Additionally, the specifier ¥m may be used to insert
the error message string associated with the current value of the error variable, errno. This can be useful for
logging error messages.

Try It Out syslog

In this program, you try to open a nonexistent file:

#include <syslog.h>
#include <stdio.h>
#include <stdlib.h>

int main()

{

FILE *f;

f = fopen(“not here”,”r”);
if(!£)

syslog (LOG ERR|LOG USER,”oops - %m\n”);
exit (0) ;

}

When you compile and run this program, syslog.c, you see no output, but the file
/var/log/messages now contains the following line at the end:

Jun 9 09:24:50 susel03 syslog: oops - No such file or directory

How It Works

In this program, you try to open a file that doesn’t exist. When this fails, you call syslog to record the
fact in the system logs.

Notice that the log message doesn’t indicate which program called the log facility; it just records the fact
that syslog was called with a message. The $m conversion specifier has been replaced by a description
of the error, in this case, that the file couldn’t be found. This is more useful than just reporting the raw
error number.

Other functions used to alter the behavior of logging facilities are also defined in syslog.h. These are:
#include <syslog.h>
void closelog(void) ;

void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri) ;
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You can alter the way that your log messages are presented by calling the openlog function. This allows
you to set up a string, ident, which will be pre-pended to your log messages. You can use this to indicate
which program is creating the message. The facility parameter records a default facility value to be used
for future calls to syslog. The default is LOG_USER. The logopt parameter configures the behavior of
future calls to syslog. It’s a bitwise OR of zero or more of the parameters in the following table.

logopt Parameter Description

LOG_PID Includes the process identifier, a unique number allocated to
each process by the system, in the messages.

LOG_CONS Sends messages to the console if they can’t be logged.
LOG_ODELAY Opens the log facility at first call to syslog.
LOG_NDELAY Opens the log facility immediately, rather than at first log.

The openlog function will allocate and open a file descriptor that will be used for writing to the logging
facility. You can close this by calling the closelog function. Note that you don’t need to call openlog
before calling syslog because syslog will open the logging facility itself if required.

You can control the priority level of your log messages by setting a log mask using setlogmask. All
future calls to syslog with priority levels not set in the log mask will be rejected, so you could, for
example, use this to turn off LOG_DEBUG messages without having to alter the body of the program.

You can create the mask for log messages using L.OG_MASK (priority), which creates a mask consisting
of just one priority level, or LOG_UPTO (priority), which creates a mask consisting of all priorities up
to and including the specified priority.

Try It Out logmask

In this example, you see logmask in action:

#include <syslog.h>
#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>

int main()

{

int logmask;

openlog (“logmask”, LOG PID|LOG CONS, LOG USER) ;

syslog (LOG INFO,”informative message, pid = %d”, getpid());
syslog (LOG DEBUG, “debug message, should appear”) ;

logmask = setlogmask (LOG _UPTO (LOG NOTICE)) ;
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syslog (LOG DEBUG, ”"debug message, should not appear”) ;
exit (0) ;

}

This 1ogmask . ¢ program produces no output, but on a typical Linux system, toward the end of
/var/log/messages, you should see the following line:

Jun 9 09:28:52 susel03 logmask([19339]: informative message, pid = 19339

The file that is configured to receive debug log entries (depending on logging configuration, this is often
the file /var/log/debug or sometimes /var/log/messages) should contain the following line:

Jun 9 09:28:52 susel03 logmask[19339]: debug message, should appear

How It Works

The program initializes the logging facility with its name, 1ogmask, and requests that log messages contain
the process identifier. The informative message is logged to /var/log/messages, and the debug message
to /var/log/debug. The second debug message doesn’t appear because you call setlogmask to ignore all
messages with a priority below L.O0G_NOTICE. (Note that this may not work on early Linux kernels.)

If your installation does not have debug message logging enabled, or it is configured differently, you
may not see the debug messages appear. To enable all debug messages, check your system documenta-
tion for syslog or syslog-ng for the exact configuration details.

logmask. ¢ also uses the getpid function, which is defined along with the closely related getppid
as follows:

#include <sys/types.h>
#include <unistd.h>

pid t getpid(void);
pid t getppid(void);

The functions return the process and parent process identifiers of the calling process. For more informa-
tion on PIDs, see Chapter 11.

Resources and Limits

Programs running on a Linux system are subject to resource limitations. These might be physical limits
imposed by hardware (such as memory), limits imposed by system policies (for example, allowed CPU
time), or implementation limits (such as the size of an integer or the maximum number of characters
allowed in a filename). The UNIX specification defines some of these limits that can be determined by
an application. See Chapter 7 for a further discussion of limits and the consequences of breaking them.
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The header file 1imits.h defines many manifest constants that represent the constraints imposed by the
operating system. These include the constraints shown in the following table.

Limit Constant Purpose

NAME_MAX The maximum number of characters in a filename
CHAR_BIT The number of bits in a char value

CHAR MAX The maximum char value

INT MAX The maximum int value

There will be many other limits that may be of use to an application, so you should refer to your installa-
tion’s header files.

Note that NAME_MAX is file-system specific. For more portable code, you should use the pathconf
function. Refer to the manual page on pathconf for more information.

The header file sys/resource.h provides definitions for resource operations. These include functions
for determining and setting limits on a program’s allowed size, execution priority, and file resources:

#include <sys/resource.h>

int
int
int
int
int

getpriority(int which, id t who);

setpriority(int which, id t who, int priority);
getrlimit (int resource, struct rlimit *r limit);
setrlimit (int resource, const struct rlimit *r limit);
getrusage (int who, struct rusage *r usage);

id_t is an integral type used for user and group identifiers. The rusage structure, defined in
sys/resource.h, is used to determine how much CPU time has been used by the current program.
It must contain at least the following two members:

rusage Member Description
struct timeval ru utime The user time used
struct timeval ru stime The system time used

The timeval structure is defined in sys/time.h and contains fields tv_sec and tv_usec, representing
seconds and microseconds, respectively.

CPU time consumed by a program is separated into user time (the time that the program itself has con-
sumed executing its own instructions) and system time (the CPU time consumed by the operating system
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on the program’s behalf; that is, the time spent in system calls performing input and output or other sys-
tem functions).

The getrusage function writes CPU time information to the rusage structure pointed to by the param-
eter r_usage. The who parameter can be one of the following constants:

who Constant Description
RUSAGE_SELF Returns usage information about current program only.
RUSAGE_CHILDREN Includes usage information of child processes as well.

We discuss child processes and task priorities in Chapter 11, but for completeness, we cover their impli-
cations for system resources here. For now, it’s enough to say that each program that’s running has a pri-
ority associated with it, and that higher priority programs are allocated more of the available CPU time.

Ordinary users are only able to reduce the priorities of their programs, not increase them.

Applications can determine and alter their (and others’) priority with the getpriority and setpriority
functions. The process to be examined or changed by the priority functions can be identified either by
process identifier, group identifier, or user. The which parameter specifies how the who parameter is to

be treated.

which Parameter Description
PRIO_PROCESS who is a process identifier.
PRIO_PGRP who is a process group.
PRIO USER who is a user identifier.

So, to determine the priority of the current process, you might call

priority = getpriority(PRIO_PROCESS, getpid());
The setpriority function allows a new priority to be set, if possible.
The default priority is 0. Positive priorities are used for background tasks that run when no other higher
priority task is ready to run. Negative priorities cause a program to run more frequently, taking a larger
share of the available CPU time. The range of valid priorities is -20 to +20. This is often confusing
because the higher the numerical value, the lower the execution precedence.
getpriority returns a valid priority if successful or a —1 with errno set on error. Because -1 is itself a

valid priority, errno should be set to zero before calling getpriority and checked that it’s still zero on
return. setpriority returns 0 if successful, -1 otherwise.
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Limits on system resources can be read and set by getrlimit and setrlimit. Both of these functions make
use of a general-purpose structure, r1imit, to describe resource limits. It's defined in sys/resource.h and
has the following members:

rlimit Member Description
rlim t rlim cur The current, soft limit
rlim t rlim max The hard limit

The defined type r1im_t is an integral type used to describe resource levels. Typically, the soft limit is
an advisory limit that shouldn’t be exceeded; doing so may cause library functions to return errors. The
hard limit, if exceeded, may cause the system to attempt to terminate the program by sending a signal to
it. Examples would be the signal SIGXCPU on exceeding the CPU time limit and the signal SIGSEGV on
exceeding a data size limit. A program may set its own soft limits to any value less than the hard limit. It
may reduce its hard limit. Only a program running with superuser privileges may increase a hard limit.

A number of system resources can be limited. These are specified by the resource parameter of the
rlimit functions and are defined in sys/resource.h as indicated in the following table.

resource Parameter Description

RLIMIT CORE The core dump file size limit, in bytes

RLIMIT CPU The CPU time limit, in seconds

RLIMIT DATA The data () segment limit, in bytes

RLIMIT FSIZE The file size limit, in bytes

RLIMIT NOFILE The limit on the number of open files

RLIMIT STACK The limit on stack size, in bytes

RLIMIT AS The limit on address space (stack and data), in bytes

The following Try It Out shows a program, limits.c, that simulates a typical application. It also sets
and breaks a resource limit.

Try It Out Resource Limits

1. Include the header files for all the functions you're going to be using in this program:

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
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2. The void function writes a string to a temporary file 10,000 times and then performs some arith-
metic to generate load on the CPU:

void work ()
{
FILE *f;
int 1i;
double x = 4.5;

f = tmpfile();
for(i = 0; 1 < 10000; i++)
fprintf (f,”Do some output\n”) ;
if (ferror (£)) {
fprintf (stderr, "Error writing to temporary file\n”);
exit (1) ;

for(i = 0; 1 < 1000000; i++)
log(x*x + 3.21);

}

3. Themain function calls work and then uses the getrusage function to discover how much
CPU time it has used. It displays this information onscreen:

int main()
struct rusage r usage;
struct rlimit r limit;
int priority;

work () ;
getrusage (RUSAGE SELF, &r usage) ;

printf (“CPU usage: User = %1d.%061d, System = %1d.%061d\n”,
r usage.ru utime.tv sec, r usage.ru utime.tv usec,
r usage.ru stime.tv sec, r usage.ru stime.tv_usec);

4. Next, it calls getpriority and getrlimit to find out its current priority and file size limits,
respectively:

priority = getpriority(PRIO PROCESS, getpid());
printf (“Current priority = %d\n”, priority) ;

getrlimit (RLIMIT FSIZE, &r limit);
printf (“Current FSIZE limit: soft = %$1d, hard = %1d\n”,
r limit.rlim cur, r limit.rlim max) ;

5.  Finally, set a file size limit using setrlimit and call work again, which fails because it attempts
to create too large a file:

r limit.rlim cur = 2048;

r limit.rlim max = 4096;
printf (“Setting a 2K file size limit\n”);
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setrlimit (RLIMIT FSIZE, &r limit);

work () ;
exit (0) ;

}

When you run this program, you can see how much CPU resource is being consumed and the default
priority at which the program is running. Once a file size limit has been set, the program can’t write
more than 2,048 bytes to a temporary file.

S cc -o limits limits.c -1m

$ ./limits

CPU usage: User = 0.140008, System = 0.020001
Current priority = 0

Current FSIZE limit: soft = -1, hard = -1
Setting a 2K file size limit

File size limit exceeded

You can change the program priority by starting it with the nice command. Here, you see the priority
changes to +10 and, as a result, it takes slightly longer to execute the program:

$ nice ./limits

CPU usage: User = 0.152009, System = 0.020001
Current priority = 10

Current FSIZE limit: soft = -1, hard = -1
Setting a 2K file size limit

File size limit exceeded

How It Works

The 1imits program calls the work function to simulate the actions of a typical program. It performs
some calculations and produces some output, in this case, about 150K to a temporary file. It calls the
resource functions to discover its priority and file size limits. In this case, the file size limits are unset,
allowing you to create as large a file as you like (disk space permitting). The program then sets its file
size limit to just 2K and again tries to perform some work. This time, the work function fails because it
can’t create such a large temporary file.

Limits may also be placed on a program running under a particular shell with the bash ulimit command.

In this example, the error message ‘Error writing to temporary file’ isnot printed as you might
expect. This is because some systems (such as Linux 2.2 and later) terminate the program when the resource
limit is exceeded. It does this by sending a signal, SIGXFSz. You learn more about signals and how to use
them in Chapter 11. Other POSIX-compliant systems may simply cause the function that exceeds the limit to
return an error.
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Summary

In this chapter, you've looked at the Linux environment and examined the conditions under which pro-
grams run. You learned about command-line arguments and environment variables, both of which can
be used to alter a program’s default behavior and provide useful program options.

You've seen how a program can make use of library functions to manipulate date and time values and
obtain information about itself and the user and the computer on which it’s running.

Linux programs typically have to share precious resources, so the chapter also looked at how those
resources can be determined and managed.
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In this chapter, you take a look at some improvements you might like to make to your basic appli-
cation from Chapter 2. Perhaps the most obvious failing is the user interface; it’s functional, but
not very elegant. Here, you look at how to take more control of the user’s terminal; that is, both
keyboard input and screen output. More than this though, you learn how to “guarantee” that the
programs you write can get input from the user, even in the presence of input redirection, and
ensure that the output goes to the right place on the screen.

Though the reimplemented CD database application won't see the light of day until the end of
Chapter 7, you'll do much of the groundwork for that chapter here. Chapter 6 is on curses, which

is not some ancient malediction, but rather a library of functions that provide a higher level of code
to control the terminal screen display. Along the way, you'll examine a little more of the thinking of
the early UNIX meisters by introducing you to some philosophy of Linux and UNIX and the concept
of terminal input and output. The low-level access presented here might be just what you're looking
for. Most of what we cover applies equally well to programs running in a console window, such as
KDE’s Konsole, GNOME’s gnome-terminal, or the standard X11 xterm.

Specifically, in this chapter, you learn about

0  Reading and writing to the terminal

Terminal drivers and the General Terminal Interface
termios

Terminal output and terminfo

Detecting keystrokes

Reading from and Writing to the Terminal

In Chapter 3, you learned that when a program is invoked from the command prompt, the shell
arranges for the standard input and output streams to be connected to your program. You should be
able to interact with the user simply by using the getchar and printf routines to read and write
these default streams.
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In the following Try It Out, you try to rewrite the menu routines in C, using just those two routines, in a
program called menul.c.

Try It Out Menu Routines in C

1.  Start with the following lines, which define the array to be used as a menu, and prototype the
getchoice function:

#include <stdio.h>
#include <stdlib.h>

char *menul] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

int getchoice(char *greet, char *choices(]);
2. The main function calls getchoice with the sample menu, menu:
int main()
int choice = 0;

do

{
choice = getchoice(“Please select an action”, menu) ;
printf (“You have chosen: %c\n”, choice);

} while(choice != ‘g’);

exit (0) ;

3.  Now for the important code — the function that both prints the menu and reads the user’s
input:

int getchoice (char *greet, char *choices|[])

int chosen = 0;
int selected;
char **option;

do {

printf (“Choice: %s\n”, greet) ;

option = choices;

while (*option) {
printf (“$s\n”, *option) ;
option++;

}

selected = getchar() ;

option = choices;
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while (*option) {
if (selected == *option[0]) {
chosen = 1;
break;
}
option++;
}
if (!chosen) ({
printf (“Incorrect choice, select again\n”) ;

} while(!chosen) ;
return selected;

How It Works

getchoice prints the program introduction greet and the sample menu choices and asks the user to
choose the initial character. The program then loops until getchar returns a character that matches the
first letter of one of the option array’s entries.

When you compile and run this program, you discover that it doesn’t behave as you expected. Here’s
some terminal dialogue to demonstrate the problem:

$ ./menul

Choice: Please select an action
a - add new record

d - delete record

g - quit

a

You have chosen: a

Choice: Please select an action
a - add new record

d - delete record

g - quit

Incorrect choice, select again

Choice: Please select an action
a - add new record

d - delete record

g - quit

q

You have chosen: g
$

Here, the user has to press A/Enter/Q/Enter and so on to make selections. There seem to be at least two
problems: The most serious problem is that you are getting Incorrect choice after every correct choice.
Plus, you still have to press Enter (or the Return key) before your program reads the input.
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Canonical versus Non-Canonical Modes

The two problems are closely related. By default, terminal input is not made available to a program until
the user presses Enter or Return. In most cases, this is a benefit because it allows the user to correct typing
mistakes using Backspace or Delete. Only when they’re happy with what they see on the screen do they
press Enter to make the input available to the program.

This behavior is called canonical, or standard, mode. All the input is processed in terms of lines. Until a
line of input is complete (usually when the user presses Enter), the terminal interface manages all the
key presses, including Backspace, and no characters may be read by the application.

The opposite of this is non-canonical mode, where the application has much greater control over the pro-
cessing of input characters. We'll come back to these two modes again a little later.

Among other things, the Linux terminal handler helps by translating interrupt characters to signals (for
example, stopping your program when you press Ctrl+C) and it can automatically perform Backspace
and Delete processing for you, so you don’t have to reimplement it in each program you write. You find
out more about signals in Chapter 11.

So, what’s happening in this program? Well, Linux is saving the input until the user presses Enter, and
then passing both the choice character and the subsequent Enter to the program. So, each time you enter
a menu choice, the program calls getchar, processes the character, then calls getchar again, which
immediately returns with the Enter character.

The character the program actually sees isn’t an ASCII carriage return, CR (decimal 13, hex 0D), but a line
feed, LF (decimal 10, hex 0a). This is because, internally, Linux (like UNIX) always uses a line feed to end
lines of text; that is, UNIX uses a line feed alone to mean a newline, where other systems, such as MS-DOS,
use a carriage return and a line feed together as a pair. If the input or output device also sends or requires a
carriage return, the Linux terminal processing takes care of it. This might seem a little strange if you're used
to MS-DOS or other environments, but one of the very considerable benefits is that there is no real differ-
ence between text and binary files on Linux. Only when you input or output to a terminal or some printers
and plotters are carriage returns processed.

You can correct the major deficiency in your menu routine simply by ignoring the additional line feed
character with some code such as this:

do {
selected = getchar();
} while(selected == ‘\n’);

This solves the immediate problem and you would then see output like this

$ ./menul

Choice: Please select an action
a - add new record

d - delete record

q - quit

a

You have chosen: a

Choice: Please select an action
a - add new record
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d - delete record

g - quit

q

You have chosen: g
$

We return to the second problem of needing to press Enter, and a more elegant solution to the line feed
handling later.

Handling Redirected Output

It’s very common for Linux programs, even interactive ones, to have their input or output redirected, either
to files or other programs. Let’s see how your program behaves when you redirect its output to a file:

$ ./menul > file
a
q
$
You could regard this as successful because the output has been redirected to a file rather than the terminal.

However, there are cases where you want to prevent this from happening, or where you want to separate
prompts that you want the user to see from other output that can be redirected safely.

You can tell whether the standard output has been redirected by finding out if the low-level file
descriptor is associated with a terminal. The isatty system call does this. You simply pass it a valid
file descriptor and it tests to see if that is currently connected to a terminal.

#include <unistd.h>
int isatty(int £d);
The isatty system call returns 1 if the open file descriptor, £d, is connected to a terminal and 0 otherwise.

In this program, you are using file streams, but isatty operates only on file descriptors. To provide the nec-
essary conversion, you need to combine the isatty call with the £ileno routine discussed in Chapter 3.

What are you going to do if stdout has been redirected? Just quitting isn’t good enough because the user
has no way of knowing why the program failed to run. Printing a message on stdout won't help either
because it must have been redirected away from the terminal. One solution is to write to the standard
error stream, stderr, which isn’t redirected by the shell > file command.

Try It Out Checking for Output Redirection

Using the program menul . c you created in the previous Try It Out, make the following changes to the
header file inclusions and the main function. Call the new file menu2. c.

#include <unistd.h>
int main()

{

int choice = 0;
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if (lisatty(fileno(stdout))) {
fprintf (stderr,”You are not a terminal!\n”) ;
exit (1) ;

}

do {

choice = getchoice(“Please select an action”, menu);
printf (“You have chosen: %c\n”, choice) ;

} while(choice != ‘g’);

exit (0) ;

}
Now look at the following sample output:

$ ./menu2

Choice: Please select an action
a - add new record

d - delete record

q - quit

q

You have chosen: g

S menu2 > file

You are not a terminal!

$

How It Works

The new section of code uses the isatty function to test whether the standard output is connected to
a terminal and halts execution if it isn’t. This is the same test the shell uses to decide whether to offer
prompts. It’s possible, and quite common, to redirect both stdout and stderr away from the termi-
nal. You can direct the error stream to a different file like this:

$ ./menu2 >file 2>file.error

$
Or combine the two output streams into a single file like this:

$ ./menu2 >file 2>&l1
$

(If you're not familiar with output redirection, take another look at Chapter 2, where we explain this
syntax in more detail.) In this case, you’ll need to send a message directly to the user’s terminal.

Talking to the Terminal

If you need to prevent the parts of your program that interact with the user from being redirected, but
still allow it to happen to other input or output, you need to separate the interaction from stdout and
stderr. You can do this by reading and writing directly to the terminal. Because Linux is inherently a
multiuser system, usually with many terminals either directly connected or connected across a network,
how can you discover the correct terminal to use?
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Fortunately, Linux and UNIX make things easy by providing a special device, /dev/tty, which is always
the current terminal, or login session. Because Linux treats everything as a file, you can use normal file
operations to read and write to /dev/tty.

In this Try It Out, you modify the choice program so that you can pass parameters to the getchoice
routine, to provide better control over the output. This is menu3s . c.

Try It Out Using /dev/tty

Load up menu2. c and change the code to the following, so that input and output come from and are
directed to /dev/tty:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

char *menul] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

int getchoice (char *greet, char *choices[], FILE *in, FILE *out) ;
int main()

int choice = 0;

FILE *input;

FILE *output;

if (lisatty(fileno(stdout))) {

fprintf (stderr,”You are not a terminal, OK.\n”);

input = fopen (“/dev/tty”, “r”);
output = fopen(“/dev/tty”, “w”);

if (!input || !output) {
fprintf (stderr, ”Unable to open /dev/tty\n”);
exit (1) ;

}

do {

choice = getchoice(“Please select an action”, menu, input, output);
printf (“You have chosen: %c\n”, choice) ;

} while(choice != ‘q’);

exit (0);

int getchoice (char *greet, char *choices[], FILE *in, FILE *out)
int chosen = 0;
int selected;
char **option;
do {
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fprintf (out,”Choice: %s\n”,greet) ;
option = choices;
while (*option) {

fprintf (out, ”%$s\n”, *option) ;

option++;
}
do {

selected = fgetc(in);
} while(selected == ‘\n’);

option = choices;
while (*option) {
if (selected ==
chosen = 1;
break;

}

option++;

if (!Ichosen) {
fprintf (out, ”Incorrect choice, select again\n”) ;

} while(!chosen) ;
return selected;

}

Now, when you run the program with the output redirected, you can still see the prompts and the nor-
mal program output (indicating the options that have been chosen) is redirected to a file that you can
look at later.

$ ./menu3 > file

You are not a terminal, OK.
Choice: Please select an action
a - add new record

d - delete record

q - quit

d

Choice: Please select an action
a - add new record

d - delete record

q - quit
q
S cat file

You have chosen: d
You have chosen: g

The Terminal Driver and the General
Terminal Interface

Sometimes a program needs much finer control over the terminal than can be achieved using simple file
operations. Linux provides a set of interfaces that allow you to control the behavior of the terminal driver,
giving you much greater control of the processing of terminal input and output.
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Overview

As Figure 5-1 shows, you can control the terminal through a set of function calls (the General Terminal
Interface, or GTI) separate from those used for reading and writing. This keeps the data (read/write)
interface very clean while still allowing detailed control over the terminal behavior. That’s not to say that
the terminal I/O interface is clean — it has to deal with a wide variety of different hardware.

User program <

read/write Control
interface interface

1 Terminal Driver
1 inthe Kernel

Figure 5-1

In UNIX terminology, the control interface sets a “line discipline” that allows a program considerable
flexibility in specifying the behavior of the terminal driver.

The main features that you can control are

Q  Line editing: Choose whether to allow Backspace for editing.

Q  Buffering: Choose whether to read characters immediately, or read them after a configurable
delay.

Q  Echo: Allows you to control echoing, such as when reading passwords.

Q  CR/LF: Determine mapping for input and output: what happens when you print a line feed
character (\n).

0  Line speeds: Rarely used on a PC console, these speeds are very important for modems and ter-
minals on serial lines.

Hardware Model

Before you look at the General Terminal Interface in detail, it’s very important that you understand the
hardware model that it’s intended to drive.

The conceptual arrangement shown in Figure 5-2 (for some ancient UNIX sites, it was physically like
this) is to have a UNIX machine connected via a serial port to a modem and then via a telephone line and
another modem to a remote terminal. In fact, this is just the kind of setup used by some small Internet
service providers when the Internet was young. It’s a distant relative of the client/server paradigm, used
when the program ran on a mainframe and users worked at dumb terminals.
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[ Application |

read/write control
interface interface

UNIX Kernel

Serial Hardware

Data and control lines

'telephone' lines

Figure 5-2

If you're working on a PC running Linux, this may seem like an overly complex model. However, because
both of the authors have modems, we can, if we choose, use a terminal emulation program like minicom to
run a remote logon session on each other’s machines just like this, using a pair of modems and a telephone
line. Of course, today fast broadband access has rendered this kind of working obsolete, but this hardware
model still has its benefits.

The advantage of using such a hardware model is that most real-world situations will form a subset
of this, the most complex case. Supporting them will be much easier than if the model had omitted
such functionality.

The termios Structure

termios is the standard interface specified by POSIX and is similar to the System V interface termio.
The terminal interface is controlled by setting values in a structure of type termios and using a small
set of function calls. Both are defined in the header file termios.h.

Programs that use the function calls defined in termios.h will need to be linked with an appropriate
function library. This may be simply the standard C library or it may be the curses library, depending
on your installation. If necessary, when compiling the examples in this chapter, add -1curses to the
end of the compiler command line. On some older Linux systems, the curses library is provided by a
version known as “new curses.” In these cases, the library name and link arqument become ncurses
and -1ncurses, respectively.
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The values that can be manipulated to affect the terminal are grouped into various modes:

Q  Input

Q  Output

Q Control

Q  Local

0  Special control characters

A minimum termios structure is typically declared as follows (although the X/Open specification
allows additional fields to be included):

#include <termios.h>

struct termios {
tcflag t c iflag;
tcflag t c_oflag;
tcflag t c cflag;
tcflag t c¢_lflag;
cc_ t c_cc[NCCs];

}i
The member names correspond with the five parameter types in the previous list.

You can initialize a termios structure for the terminal by calling the function tcgetattr, which has the
following prototype:

#include <termios.h>
int tcgetattr(int fd, struct termios *termios p);

This call writes the current values of the terminal interface variables into the structure pointed to
by termios_p. If these values are then altered, you can reconfigure the terminal interface with the
tcsetattr function as follows:

#include <termios.h>
int tcsetattr(int fd, int actions, const struct termios *termios p);
The actions field for tesetattr controls how any changes are applied. The three possibilities are

Q  TcsanNow: Changes values immediately.
0  TcsaDrRAIN: Changes values when current output is complete.
Q  TcsarLusH: Changes values when current output is complete, but discards any input currently

available and not yet returned in a read call.

Note that it’s very important for programs to restore terminal settings to the values they had before the
program started. It’s always the responsibility of a program to initially save and then restore these set-
tings when it finishes.

185



Chapter 5: Terminals

We'll now look more closely at the modes and related function calls. Some of the detail of the modes is
rather specialized and rarely used, so we cover only the main features here. If you need to know more,
you should consult your local man pages or a copy of the POSIX or X/Open specification.

The most important mode to take in on your first read is the local mode. The canonical and non-canonical
modes are the solution to the second of the problems in the first application — the user must press Enter
or Return for the program to read the input. You can instruct the program to wait for a line of input or
pounce on input as soon as it is typed.

Input Modes

The input modes control how input (characters received by the terminal driver at a serial port or key-
board) is processed before being passed on to the program. You control them by setting flags in the
c_iflag member of the termios structure. All the flags are defined as macros and can be combined
with a bitwise OR. This is the case for all the terminal modes.

The macros that can be used for c_iflag are

(]

BRKINT: Generate an interrupt when a break condition (loss of connection) is detected on the line
IGNBRK: Ignore break conditions on the line

ICRNL: Convert a received carriage return to a newline

IGNCR: Ignore received carriage returns

INLCR: Convert received newlines to carriage returns

IGNPAR: Ignore characters with parity errors

INPCK: Perform parity checking on received characters

PARMRK: Mark parity errors

ISTRIP: Strip (set to seven bits) all incoming characters

IXOFF: Enable software flow control on input

O U000 U U oo

IXON: Enable software flow control on output
If neither BRKINT nor IGNBRK is set, a break condition on the line is read as a NULL (0x00) character.

You won’t need to change the input modes very often, because the default values are usually the most
suitable, so we won’t discuss them further here.

Output Modes

These modes control how output characters are processed; that is, how characters sent from a program

are processed before being transmitted to the serial port or screen. As you might expect, many of these are
counterparts of the input modes. Several additional flags exist, which are mainly concerned with allowing
for slow terminals that require time to process characters such as carriage returns. Almost all of these are
either redundant (as terminals get faster) or better handled using the terminfo database of terminal capa-
bilities, which you use later in this chapter.
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You control output modes by setting flags in the c_oflag member of the termios structure. The macros
that you can use in c_oflag are

(]

I T T T I I N B B N N

OPOST: Turn on output processing

ONLCR: Convert any output newline to a carriage return/line feed pair
OCRNL: Convert any output carriage return to a newline
ONOCR: No carriage return output in column 0

ONLRET: A newline also does a carriage return

OFILL: Send fill characters to provide delays

OFDEL: Use DEL as a fill character, rather than NULL
NLDLY: Newline delay selection

CRDLY: Carriage return delay selection

TABDLY: Tab delay selection

BSDLY: Backspace delay selection

VTDLY: Vertical tab delay selection

FFDLY: Form feed delay selection

If OPOST is not set, all the other flags are ignored.

The output modes are also not commonly used, so we won’t consider them further here.

Control Modes

These modes control the hardware characteristics of the terminal. You specify control modes by setting
flags in the c_cflag member of the termios structure, which has the following macros:

(]

L Ty N A A N N E N N

CLOCAL: Ignore any modem status lines.

CREAD: Enable the receipt of characters.

¢ss: Use five bits in sent or received characters.

cse6: Use six bits in sent or received characters.

¢s7: Use seven bits in sent or received characters.

css: Use eight bits in sent or received characters.
CSTOPB: Use two stop bits per character, rather than one.
HUPCL: Hang up modem on close.

PARENB: Enable parity generation and detection.

pPARODD: Use odd parity rather than even parity.

If HUPCL is set, when the terminal driver detects that the last file descriptor referring to the terminal
has been closed, it will set the modem control lines to “hang-up” the line.
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The control modes are used mainly when the serial line is connected to a modem, although they may be
used when talking to a terminal. Normally, it’s easier to change your terminal’s configuration than to
change the default line behavior by using the control modes of termios.

Local Modes

These modes control various characteristics of the terminal. You specify local modes by setting flags in
the c_1flag member of the termios structure, with the following macros:

ECHO: Enable local echoing of input characters

ECHOE: Perform a Backspace, Space, Backspace combination on receiving ERASE

ECHOK: Perform erase line on the KILL character

ECHONL: Echo newline characters

a
a
a
a
0 1caNoN: Enable canonical input processing (see the text following this list)
0  IEXTEN: Enable implementation-specific functions

Q  1sI1G: Enable signals

O  NOFLSH: Disable flush on queue

a

TOSTOP: Send background processes a signal on write attempts

The two most important flags here are ECHO, which allows you to suppress the echoing of typed charac-
ters, and ICANON, which switches the terminal between two very distinct modes of processing received
characters. If the ICANON flag is set, the line is said to be in canonical mode; if not, the line is in non-
canonical mode.

Special Control Characters

Special control characters are a collection of characters, like Ctrl+C, acted upon in particular ways when
the user types them. The c¢_cc array member of the termios structure contains the characters mapped
to each of the supported functions. The position of each character (its index into the array) is defined by
a macro, but there’s no limitation that they must be control characters.

The c_cc array is used in two very different ways, depending on whether the terminal is set to canonical
mode (that is, the setting of the ICANON flag in the c_1flag member of termios).

It’s important to realize that there is some overlap in the way the array index values are used for the two
different modes. Because of this, you should never mix values from these two modes.

For canonical mode, the array indices are

0  veor: EOF character

VEOL: EOL character

Qa

Q  vERASE: ERASE character
Q  vINTR: INTR character

a

VKILL: KILL character
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vQUIT: QUIT character
vSUSP: SUSP character

VSTART: START character

| I TR T

vSTOP: STOP character
For non-canonical mode, the array indices are

VINTR: INTR character
VMIN: MIN value

vQUIT: QUIT character

vTIME: TIME value

a

a

Q

Q  vsusp: SUSP character
Q

Q  vsTART: START character
a

vsTOP: STOP character

Characters

Because the special characters and non-canonical values are so important for more advanced input char-
acter processing, we explain them in some detail in the following table.
Character Description

INTR Causes the terminal driver to send a SIGINT signal to processes connected
to the terminal. We discuss signals in more detail in Chapter 11.

QUIT Causes the terminal driver to send a SIGQUIT signal to processes con-
nected to the terminal.

ERASE Causes the terminal driver to delete the last character on the line.
KILL Causes the terminal driver to delete the entire line.
EOF Causes the terminal driver to pass all characters on the line to the applica-

tion reading input. If the line is empty, a read call will return zero charac-
ters as though a read had been attempted at the end of a file.

EOL Acts as a line terminator in addition to the more usual newline character.

SUSP Causes the terminal driver to send a SIGSUSP signal to processes con-
nected to the terminal. If your UNIX supports job control, the current
application will be suspended.

STOP Acts to “flow off”; that is, prevent further output to the terminal. It's used
to support XON/XOFF flow control and is usually set to the ASCII XOFF
character, Ctrl+S.

START Restarts output after a STOP character, often the ASCII XON character.
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The TIME and MIN Values

The values of TIME and MIN are used only in non-canonical mode and act together to control the reading
of input. Together, they control what happens when a program attempts to read a file descriptor associ-
ated with a terminal.

There are four cases:

O MIN = 0and TIME = O:In this case, a read will always return immediately. If some characters
are available, they will be returned; if none are available, read will return zero and no charac-
ters will have been read.

0 MIN = 0oand TIME > O0:In this case, the read will return when any character is available to be
read or when TIME tenths of a second have elapsed. If no character was read because the timer
expired, read will return zero. Otherwise, it will return the number of characters read.

O MIN > oand TIME = O0:In this case, the read will wait until MIN characters can be read and
then return that number of characters. Zero is returned on end of file.

0 MIN > oand TIME > O0: This is the most complex case. When read is called, it waits for a char-
acter to be received. When the first character is received, and every subsequent time a character
is received, an inter-character timer is started (or restarted if it was already running). The read
will return when either MIN characters can be read or the inter-character time of TIME tenths of a
second expires. This can be useful for telling the difference between a single press of the Escape
key and the start of a function key escape sequence. Be aware, though, that network communi-
cations or high processor loads neatly erase such fine timing information.

By setting non-canonical mode and using the MIN and TIME values, programs can perform character-by-
character processing of input.

Accessing Terminal Modes from the Shell

If you want to see the termios settings that are being used while you're using the shell, you can get a
list using the command:

S stty -a
On the authors’ Linux systems, which have some extensions to the standard termios, the output is

speed 38400 baud; rows 24; columns 80; line = 0;

intr = °C; quit = *\; erase = "?; kill = *U; eof = "D; eol = <undef>;

eol2 = <undef>; swtch = <undef>; start = *Q; stop = *S; susp = *Z; rprnt = “R;
werase = “W; lnext = *V; flush = "0; min = 1; time = 0;

-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl -ixon -ixoff
-iuclc -ixany -imaxbel iutfs

opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tabO bsO vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke
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Among other things, you can see that the EOF character is Ctrl+D and that echoing is enabled. When
you're experimenting with terminal control, it’s very easy to get the terminal left in a non-standard state,
which makes using it very difficult. There are several ways out of this difficulty:

Q  The first method, if your version of stty supports it, is to use the command
$ stty sane
Q  If you have lost the mapping of the carriage return key to the newline character (which termi-

nates the line), you may need to enter stty sane, but rather than press Enter, press Ctrl+]
(which is the newline character).

Q  The second method is to use the stty -g command to write the current stty setting in a form
ready to reread. On the command line, you can use

$ stty -g > save stty
<experiment with settingss>
$ stty $(cat save stty)

O  Yousstill may need to use Ctrl+] rather than Enter for the final stty command. You can use the
same technique in a shell script:

save stty="$(stty -g)"
<alter stty settings>
stty $save stty
Q  If you're really stuck, the third method is to go to a different terminal, use the ps command to
find the shell you have made unusable, and then use ki1l HUP <process ids to force the

shell to terminate. Because stty parameters are always reset before a logon prompt is issued,
you should be able to log in again normally.

Setting Terminal Modes from the Command Prompt

You can also use the stty command to set the terminal modes directly from the command prompt.

To set a mode in which your shell script could perform single character reads, you need to turn off
canonical mode and set it to 1 and to 0. The command is as follows:

$ stty -icanon min 1 time 0

Now that the terminal is set to read characters immediately, you can try to run the first program, menu1,
again. You should find it works as originally intended.

You also could improve your attempt to check for a password (Chapter 2) by turning echoing off before
you prompt for the password. The command to do this is

S stty -echo

Remember to use stty echo to turn echoing back on after you try this!
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Terminal Speed

The final function served by the termios structure is manipulating the line speed. No members are defined
for terminal speed; instead, it’s set by function calls. Input and output speeds are handled separately.

The four call prototypes are

#include <termios.h>

speed t cfgetispeed(const struct termios *);
speed t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed t speed);
int cfsetospeed(struct termios *, speed t speed);

Notice that these act on a termios structure, not directly on a port. This means that to set a new speed,
you must read the current settings with tcgetattr, set the speed using one of the preceding calls, and
then write the termios structure back using tcsetattr. Only after the call to tcsetattr will the line
speed be changed.

Various values are allowed for speed in the preceding function calls, but the most important are

0  Bo: Hang up the terminal
B1200: 1200 baud

B2400: 2400 baud

B9600: 9600 baud
B19200: 19200 baud
B38400: 38400 baud

L T R N I Y

There are no speeds greater than 38400 defined by the standard and no standard method of supporting
serial ports at speeds greater than this.

Some systems, including Linux, define B57600, B115200, and B230400 for selecting faster speeds. If
you’re using an earlier version of Linux and these constants are unavailable, you can use the command
setserial fo obtain nonstandard speeds of 57600 and 115200. In this case, these speeds will be used

when B38400 is selected. Both of these methods are nonportable, so be careful when you're using them.

Additional Functions

There are a small number of additional functions for the control of terminals. These work directly on file
descriptors, without needing to get and set termios structures. Their definitions are

#include <termios.h>
int tcdrain(int £d4);

int tcflow(int £d, int flowtype);
int tcflush(int £d, int in out selector);
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The functions have the following purposes:

a
H]
a

tcdrain causes the calling program to wait until all queued output has been sent.
tcflow is used to suspend or restart output.

tcflush can be used to flush input, output, or both.

Now that we’ve covered the rather large subject of the termios structure, let’s look at a few practical
examples. Possibly the simplest is the disabling of echo to read a password. Do this by turning off the
ECHO flag.

Try It Out A Password Program with termios

1.

Begin your password program, password.c, with the following definitions:

#include <termios.h>
#include <stdio.h>
#include <stdlib.h>

#define PASSWORD LEN 8

int main ()

{

struct termios initialrsettings, newrsettings;
char password[PASSWORD LEN + 1];

Next, add a line to get the current settings from the standard input and copy them into the
termios structure that you created previously:

tcgetattr (fileno(stdin), &initialrsettings) ;

Make a copy of the original settings to replace them at the end. Turn off the ECHO flag on the
newrsettings and ask the user for his password:

newrsettings = initialrsettings;
newrsettings.c 1lflag &= ~ECHO;

printf (“Enter password: “);

Next, set the terminal attributes to newrsettings and read in the password. Lastly, reset the
terminal attributes to their original setting and print the password to render all the previous
security effort useless.

if (tcsetattr(fileno(stdin), TCSAFLUSH, &newrsettings) != 0) {
fprintf (stderr,”Could not set attributes\n”);

else {
fgets (password, PASSWORD LEN, stdin);
tcsetattr(fileno(stdin), TCSANOW, &initialrsettings);
fprintf (stdout, “\nYou entered %s\n”, password) ;

}

exit (0);
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When you run the program, you should see the following;:

$ ./password
Enter password:
You entered hello

$

How It Works

In this example, the word hello is typed but not echoed at the Enter password: prompt. No output is
produced until the user presses Enter.

Be careful to change only the flags you need to change, using the construct X &= ~FLAG (which clears the
bit defined by FLAG in the variable X). If needed, you could use X | = FLAG to set a single bit defined by
FLAG, although this wasn’t necessary in the preceding example.

When you're setting the attributes, you use TCSAFLUSH to discard any typeahead, characters users
enter before the program is ready to read them. This is a good way of encouraging users not to start
typing their password until echo has been turned off. You also restore the previous setting before your
program terminates.

Another common use of the termios structure is to put the terminal into a state where you can read
each character as it is typed. Do this by turning off canonical mode and using the MIN and TIME settings.

Try It Out Reading Each Character

Using your new knowledge, you can make changes to the menu program. The following program,
menu4 . ¢, is based on menu3 . c and has much of the code from password. c inserted into it. Changes
are highlighted and explained in the following steps.

1. Fora start, you must include a new header file at the top of the program:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <termios.h>

char *menul] = {
“a - add new record”,
“d - delete record”,
“q - quit”,
NULL,

2. Then you need to declare a couple of new variables in the main function:

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);
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int main()

{

int

int choice = 0;

FILE *input;

FILE *output;

struct termios initial settings, new_settings;

You need to change the terminal’s characteristics before you call the getchoice function, so
that’s where you place these lines:

if (!isatty(fileno(stdout))) ({
fprintf (stderr,”You are not a terminal, OK.\n”);
}

input = fopen (“/dev/tty”, “r”);
output = fopen(“/dev/tty”, “w");

if (!input || !output) {
fprintf (stderr, “Unable to open /dev/tty\n”);
exit (1) ;

}
tcgetattr(fileno (input), &initial settings) ;
new settings = initial settings;

new settings.c lflag &= ~ICANON;

new settings.c lflag &= ~ECHO;

new settings.c cc[VMIN] = 1;

new settings.c cc[VTIME] = 0;

new settings.c lflag &= ~ISIG;

if (tcsetattr(fileno(input), TCSANOW, &new settings) != 0) {

fprintf (stderr, ”could not set attributes\n”);

}

You should also return the settings to their original values before exiting;:

do {
choice = getchoice(“Please select an action”, menu, input, output);
printf (“You have chosen: %c\n”, choice);

} while (choice != ‘q’);
tcsetattr(fileno (input) , TCSANOW, &initial settings) ;
exit (0) ;

You need to check against carriage returns now that you're in non-canonical mode, because the
default mapping of CR to LF is no longer being performed.

getchoice (char *greet, char *choices[], FILE *in, FILE *out)

int chosen = 0;
int selected;
char **option;

do {
fprintf (out, “Choice: %s\n”, greet);
option = choices;
while (*option) {
fprintf (out, “%s\n”,*option);
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option++;
}
do {
selected = fgetc(in);
} while (selected == ‘\n’ || selected == ‘\r’);

option = choices;
while (*option) {
if (selected == *option[0])
chosen = 1;
break;

}

option++;

if (!chosen)
fprintf (out, “Incorrect choice, select again\n”);
}

} while(!chosen) ;
return selected;

}

Unless you arrange otherwise, if the user now types Ctrl+C at your program, the program will termi-
nate. You can disable processing of these special characters by clearing the 1SIG flag in the local modes.
To do this, the following line is included in main, as shown in the preceding step.

new settings.c lflag &= ~ISIG;

If you put these changes into your menu program, you now get an immediate response and the charac-
ter you type isn’t echoed.

$ ./menu4

Choice: Please select an action
a - add new record

d - delete record

g - quit

You have chosen: a

Choice: Please select an action
a - add new record

d - delete record

q - quit
You have chosen: g
$

If you type Ctrl+C, it’s passed directly to the program and treated as an incorrect choice.

Terminal Output

Using the termios structure, you have control over keyboard input, but it would be good to have the
same level of control over the way a program’s output is presented on the screen. You used printf at
the beginning of the chapter to output characters to the screen, but with no way of placing the output
at a particular position on the screen.
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Terminal Type

Many UNIX systems are used with terminals, although in many cases today, the “terminal” may actually
be a PC running a terminal emulation program or a terminal application in a windowing environment
such as xtermin X11.

Historically, there have been a very large number of hardware terminals from different manufacturers.
Although they nearly all use escape sequences (a string of characters starting with the escape character)
to provide control over the position of the cursor and other attributes, such as bold and blinking, they
are generally not very well standardized in the way they do this. Some older terminals also have differ-
ent scrolling capabilities that may or may not erase when backspace is sent, and so on.

There is an ANSI standard set of escape sequences (mostly based on the sequences used in the Digital
Equipment Corporation VT series terminals, but not identical). Many software terminal programs
provide an emulation of a standard hardware terminal, often VT100, VT220, or ANSI, and sometimes
others as well.

This variety of hardware terminals would be a major problem for programmers wanting to write soft-
ware that controls the screen and runs on many terminal types. For example, an ANSI terminal uses the
sequence Escape,[,A to move the cursor up one line. An ADM-3a terminal (very common some years
ago) uses the single control character Ctrl+K.

Writing a program that can deal with the many different types of terminals that might be connected to a
UNIX system would seem to be an extremely daunting task. The program would need different source
code for each type of terminal.

Not surprisingly, there is a solution in a package known as terminfo. Instead of each program having
to cater for every sort of terminal, the program looks up a database of terminal types to get the correct
information. In most modern UNIX systems, including Linux, this has been integrated with another
package called curses, which you learn about in the next chapter.

To use terminfo functions you normally have include the curses header file, curses.h, and terminfo’s
own header file, term. h. On some Linux systems, you may have to use the implementation of curses
known as ncurses, and include ncurses . h to provide prototypes for your terminfo functions.

Identify Your Terminal Type

The Linux environment contains a variable, TERM, which is set to the type of terminal being used. It’s usu-
ally set automatically by the system at logon time. The system administrator may set a default terminal
type for each of the directly connected terminals and may arrange for remote, networked users to be
prompted for a terminal type. The value of TERM can be negotiated via telnet and is passed by rlogin.

A user can query the shell to discover the system’s idea of the terminal he or she is using.

$ echo $TERM
xterm

$

In this case, the shell is being run from a program called xterm, a terminal emulator for the X Window
System, or a program that provides similar functionality such as KDE’s Konsole or GNOME'’s gnome-
terminal.
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The terminfo package contains a database of capabilities and escape sequences for a large number of
terminals and provides a uniform programming interface for using them. A single program can then be
written that will take advantage of future terminals as the database is extended, rather than each appli-
cation having to provide support for the many different terminals.

The terminfo capabilities are described by attributes. These are stored in a set of compiled terminfo
files, which are conventionally found in /usr/1lib/terminfo or /usr/share/terminfo. For each ter-
minal (and many printers, which can also be specified in terminfo) there’s a file that defines its capabil-
ities and how its features can be accessed. To avoid creating a very large directory, the actual files are
stored in subdirectories, where the subdirectory name is simply the first letter of the terminal type. Thus,
the VT100 definition is found in . . . terminfo/v/vt100.

terminfo files are written one per terminal type in a source format that is (just about!) readable, then com-
piled using the tic command into a more compact and efficient format for use by application programs.
Curiously, the X/Open specification refers to source and compiled format definitions, but fails to mention
the tic command for actually getting from source to compiled formats. You can use the infocmp program
to print a readable version of a compiled terminfo entry.

Here’s an example terminfo file for the VT100 terminal:

$ infocmp vt100
vt100|vt1l00-am|dec vt100 (w/advanced video),

am, mir, msgr, xenl, xon,

cols#80, it#8, lines#24, vt#3,
acsc="aaffggjjkkllmmnnooppgagrrssttuuvvwwxxyyzz{{||}}~~,
bel="G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr=\r, csr=\E[%1%pl%d;%p2%dr,
cub=\E [$p1%dD, cubl=\b, cud=\E[%pl%dB, cudl=\n,
CUf=\E[3p1%dC, cufl=\E[C$<2>,

cup=\E [%$1%p1%d; $p2%dHS<5>, cuu=\E[%pl%dA,
cuul=\E[AS<2>, ed=\E[J$<50>, el=\E[KS$<3>,
el1=\E[1K$<3>, enacs=\E(B\E)O, home=\E[H, ht=\t,
hts=\EH, ind=\n, kal=\EOg, ka3=\EOs, kb2=\EOr, kbs=\b,
kcl=\EOp, kc3=\EOn, kcubl=\EOD, kcudl=\EOB,
kcuf1=\EOC, kcuul=\EOA, kent=\EOM, kf0=\EOy, kfl=\EOP,
kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\ES,
rev=\E[7m$<2>, ri=\EMS$<5>, rmacs="0, rmkx=\E[?11\E>,
rmso=\E [m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?31\E[?41\E[?51\E[?7h\E [?8h, sc=\E7,
sgr=\E[0%?%p1%p6% | %t;1%;%$?%p2%t;4%;%2%plep3%|%t; 7%;%?%p4%t ;5
sgr0=\E [m"0$<2>, smacs="N, smkx=\E[?1h\E=,
smso=\E[1;7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

o
oe

;mE?%p9st

Each terminfo definition consists of three types of entry. Each entry is called a capname and defines a
terminal capability.

Boolean capabilities simply indicate whether a terminal supports a particular feature. For example, the
Boolean capability xon is present if the terminal supports XON/XOFF flow control.

198



Chapter 5: Terminals

Numeric capabilities define sizes, such as 1ines, the number of lines on the screen, and cols, the number
of columns on the screen. The actual number is separated from the capability name by a # character. To
define a terminal as having 80 columns and 24 lines, you would write cols#80, lines#24.

String capabilities are slightly more complex. They are used for two distinct types of capability: defining
output strings needed to access terminal features and defining the input strings that will be received
when the user presses certain keys, normally function keys or special keys on the numeric keypad. Some
string capabilities are quite simple, such as e1, which is “erase to end of line.” On a VT100 terminal, the
escape sequence needed to do this is Esc,[, K. This is written e1=\E [K in terminfo source format.

Special keys are defined in a similar way. For example, the F1 function key on a VT100 sends the
sequence Esc,O,P. This is defined as kf1=\EOP.

Things get slightly more complicated where the escape sequence needs some parameters. Most terminals
can move the cursor to a specified row and column location. It’s clearly impractical to have a different
capability for each possible cursor location, so a generic capability string is used, with parameters defin-
ing the values to be inserted when the stings are used. For example, a VT100 terminal uses the sequence
Esc,[,<row>,;,<col>,H to move the cursor to a specified location. In terminfo source format, this is writ-
ten with the rather intimidating cup=\E [$1%p1%d; $p2%dH$<5>.

This means

Q  \E:Send Escape
Q  [:Send the [ character

Q  %i:Increment the arguments

Q  spil: Put the first argument on the stack

Q  %d: Output the number on the stack as a decimal number
Q  ;:Send the ; character

Q  %p2:Put the second argument on the stack

0  %d: Output the number on the stack as a decimal number
Q

H: Send the H character

This seems complex, but allows for the parameters to be in a fixed order, independent of which order the ter-
minal expects them to appear in the final escape sequence. The %1 to increment the arguments is required
because standard cursor addressing is specified as starting from (0,0) at the top left of the screen, but the
VT100 addresses this location as (1,1). The final $<5> indicates that a delay equivalent to five character out-
put times is required to allow the terminal to process the cursor movement.

We could define many, many capabilities, but, fortunately, most UNIX and Linux systems come with
most terminals predefined. If you need to add a new terminal, you'll find the complete capability list in
the terminfo manual page. A good starting point is usually to locate a terminal that is similar to your
new terminal and define the new terminal as a variation on the existing terminal or to work through the
capabilities one at a time, updating them where required.

The standard reference outside of the man pages is the Termcap and Terminfo by John Strang, Linda
Mui, and Tim O’Reilly (O'Reilly).
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Using terminfo Capabilities

Now that you know how to define terminal capabilities, you need to learn how to access them. When
you're using terminfo, the first thing you need to do is set up the terminal type by calling setupterm.
This will initialize a TERMINAL structure for the current terminal type. You'll then be able to ask for capa-
bilities for the terminal and use its facilities. You do this with the setupterm call like this:

#include <term.h>

int setupterm(char *term, int fd, int *errret);

The setupterm library function sets the current terminal type to that specified by the parameter term.
If termis a null pointer, the TERM environment variable will be used. An open file descriptor to be used
for writing to the terminal must be passed as £d. The function outcome is stored in the integer variable
pointed to by errret, if this isn’t a null pointer. The value written will be

QO  -1:No terminfo database
0  0: No matching entry in terminfo database

a 1: Success

The setupterm function returns the constant OK if it succeeds and ERR if it fails. If errret is set to a null
pointer, setupterm will print a diagnostic message and exit the program if it fails, as in this example:

#include <stdio.h>
#include <term.h>
#include <curses.h>
#include <stdlib.h>

int main ()

{

setupterm(“unlisted”, fileno (stdout), (int *)0);
printf (“Done.\n”) ;
exit (0) ;

}

The output from running this program on your system may not be exactly that given here, but the
meaning should be clear enough. Done . isn’t printed, because setupterm caused the program to exit
when it failed.

$ cc -o badterm badterm.c -lncurses
$ ./badterm
‘unlisted’: unknown terminal type.

$

Notice the compilation line in the example: On this Linux system, we are using the ncurses implemen-
tation of the curses library with a standard header file, which is available in the standard locations. On
such systems, you can simply include curses.h, and specify -1ncurses for the library.
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For the menu choice function, you would like to be able to clear the screen, move the cursor around the
screen, and write at different locations on the screen. Once you've called setupterm, you can access
the terminfo capabilities with three function calls, one for each of the capability types:

#include <term.h>

int tigetflag(char *capname) ;
int tigetnum(char *capname) ;
char *tigetstr(char *capname);

The functions tigetflag, tigetnum, and tigetstr return the value of Boolean, numeric, and string
terminfo capabilities, respectively. On failure (for example, if the capability isnt present), tigetflag
returns -1, tigetnum returns -2, and tigetstr returns (char *) -1.

You can use the terminfo database to find out the size of the terminal by retrieving the cols and lines
capabilities with this program, sizeterm.c:

#include <stdio.h>
#include <term.h>

#include <curses.h>
#include <stdlib.h>

int main ()

{

int nrows, ncolumns;

setupterm (NULL, fileno(stdout), (int *)O0);

nrows = tigetnum(“lines”);

ncolumns = tigetnum(“cols”);

printf (“This terminal has %d columns and %d rows\n”, ncolumns, nrows) ;
exit (0) ;

}

$ echo $TERM

vt1l00

$ ./sizeterm

This terminal has 80 columns and 24 rows

$

If you run the program inside a window on a workstation, you'll get answers that reflect the current
window’s size:

S echo $TERM

xterm

$ ./sizeterm

This terminal has 88 columns and 40 rows

$

If you use tigetstr to retrieve the cursor motion capability (cup) of the xterm terminal type, you get a
parameterized answer: \E [$p1%d; $p2%dH.

This capability requires two parameters: a row and column to move the cursor to. Both coordinates are
measured starting at zero from the top-left corner of the screen.
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You can substitute the parameters in a capability with actual values using the tparm function. Up to
nine parameters can be substituted and a usable escape sequence is returned.

#include <term.h>

char *tparm(char *cap, long pl, long p2, ..., long p9);

Once you've constructed the terminal escape sequence with tparm, you must send it to the terminal. To
process this properly, you shouldn’t send the string to the terminal with print£. Instead, use one of the
special functions provided that correctly process any required delays while the terminal completes an
operation. These functions are

#include <term.h>

int putp(char *const str);
int tputs(char *const str, int affcnt, int (*putfunc) (int));

On success, putp returns OK; on failure, it returns ERR. The putp function takes the terminal control
string and sends it to stdout.

So, to move to row 5, column 30 of the screen, you can use a block of code like this:

char *cursor;

char *esc sequence;

cursor = tigetstr(“cup”);
esc_sequence = tparm(cursor,5,30);
putp (esc_sequence) ;

The tputs function is provided for those situations when the terminal isn’t accessed via stdout and
allows you to specify the function to be used for outputting the characters. It returns the result of the user-
specified function put func. The af fent parameter is intended to indicate the number of lines affected by
the change. It's normally set to 1. The function used to output the string must have the same parameters
and return type as the putchar function. Indeed, putp (string) is equivalent to the call tputs (string,
1, putchar). You'll see tputs used with a user-specified output function in the next example.

Be aware that some older Linux distributions define the final parameter of the tputs function as int
(*putfunc) (char), which would oblige you to alter the definition of the char to_terminal function
in the next Try It Out section.

If you consult the manual pages for information on tparm and terminal capabilities, you may come
across the tgoto function. The reason we haven't used this function, when it apparently offers an easier
solution to moving the cursor, is that the X/Open specification (Single UNIX Specification Version 2)
does not include it as of the 1997 edition. We therefore recommend that you don’t use any of these func-
tions in new programs.

You're almost ready to add screen handling to your menu choice function. The only thing left to do is
to clear the screen simply by using clear. Some terminals don’t support the clear capability, which
leaves the cursor at the top-left corner of the screen. In this case, you can position the cursor at the top-
left corner and use the “delete to end of display” command, ed.

Putting all this information together, you’ll write the final version of your sample menu program,
screenmenu. ¢, where you “paint” the options on the screen for the user to pick a valid one.

202



Chapter 5: Terminals

Try It Out Total Terminal Control

You can rewrite the getchoice function from menu4 . ¢ to give you total terminal control. In this listing, the
main function has been omitted because it isn’t changed. Other differences from menu4 . c are highlighted.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <termios.h>
#include <term.h>
#include <curses.h>

static FILE *output stream = (FILE *)O0;

char *menul] = {
“a - add new record”,
“d - delete record”,
“g - quit”,
NULL,

int getchoice (char *greet, char *choices[], FILE *in, FILE *out);
int char to terminal (int char to write);

int main()

int getchoice (char *greet, char *choices[], FILE *in, FILE *out)

int chosen = 0;
int selected;
int screenrow, screencol = 10;

char **option;
char *cursor, *clear;

output stream = out;

setupterm(NULL, fileno(out), (int *)O0);
cursor = tigetstr(“cup”);
clear = tigetstr(“clear”);

screenrow = 4;
tputs(clear, 1, (int *) char to terminal);
tputs (tparm(cursor, screenrow, screencol), 1, char to terminal) ;
fprintf (out, “Choice: %s, greet);
sSCcreenrow += 2;
option = choices;
while (*option) {
tputs (tparm(cursor, screenrow, screencol), 1, char to terminal) ;
fprintf (out,”%s”, *option) ;
SCreenrow++;
option++;
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}

fprintf (out, “\n”);

do {
fflush(out) ;
selected = fgetc(in);
option = choices;
while (*option) {
if (selected ==
chosen = 1;
break;

*option[0]) {

1
option++;
if (!chosen) {
tputs (tparm(cursor, screenrow, screencol), 1, char to terminal) ;
fprintf (out,”Incorrect choice, select again\n”);

}

} while(!chosen) ;
tputs(clear, 1, char to terminal) ;
return selected;

int char to terminal (int char to write)

if (output stream) putc(char to write, output stream);
return 0;

Save this program as menus. c.

How It Works

The rewritten getchoice function implements the same menu as in previous examples, but the output
routines are modified to make use of the terminfo capabilities. If you want to see the You have chosen:
message for more than a moment before the screen is cleared, ready for the next selection, add a call to
sleep in the main function:

do {
choice = getchoice(“Please select an action”, menu, input, output);
printf (“\nYou have chosen: %c\n”, choice) ;
sleep (1) ;
} while (choice != ‘q’);

The last function in this program, char_to_terminal, includes a call to the putc function, which we
mentioned in Chapter 3.

To round off this chapter, let’s look at a quick example of how to detect keystrokes.
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Detecting Keystrokes

People who have programmed MS-DOS often look for the Linux equivalent of the kbhit function,
which detects whether a key has been pressed without actually reading it. Unfortunately, they fail to
find it, because there’s no direct equivalent. UNIX programmers don’t notice the omission because
UNIX is normally programmed in such a way that programs should rarely, if ever, busy-wait on an
event. Because this is the normal use for kbhit, it’s rarely missed on UNIX and Linux.

However, when you're porting programs from MS-DOS, it’s often convenient to emulate kbhit, which
you can do using the non-canonical input mode.

Try It Out

Your Very Own kbhit

1.  Youbegin with the standard headings and declare a couple of structures for the terminal settings.

peek

character is used in the test of whether a key has been pressed. Then you prototype the

functions you'll be using later.

#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<termios.h>
<term.h>
<curses.h>
<unistd.h>

static struct termios initial settings, new settings;
static int peek character = -1;

void init keyboard() ;

void close keyboard() ;

int kbhit () ;

int readch() ;

2. The main function calls init_keyboard to configure the terminal, then loops once a second,
calling kbhit each time it does. If the key hit is q, close_keyboard returns the behavior to
normal and the program exits.

int main()

int ch = 0;

init keyboard() ;

while(ch != ‘g’) {
printf (“looping\n”) ;
sleep (1) ;

i

}

£ (kbhit () {

ch = readch();
printf (“you hit %c\n”,ch);

close_keyboard () ;
exit (0);
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3.  init keyboardand close_ keyboard configure the terminal at the start and end of the program.

void init keyboard ()

{
tcgetattr (0, &initial settings) ;
new settings = initial settings;
new settings.c 1lflag &= ~ICANON;
new settings.c lflag &= ~ECHO;
new settings.c 1lflag &= ~ISIG;
new settings.c cc[VMIN] = 1;
new settings.c cc[VTIME] = 0;
tcsetattr (0, TCSANOW, &new settings) ;

}

void close keyboard ()

{
}

tcsetattr (0, TCSANOW, &initial settings);

4. Now for the function that checks for the keyboard hit:

int kbhit ()

{
char ch;
int nread;

if (peek character != -1)

return 1;
new settings.c cc[VMIN]=0;
tcsetattr (0, TCSANOW, &new settings) ;
nread = read(0,&ch,1);
new settings.c cc[VMIN]=1;
tcsetattr (0, TCSANOW, &new settings) ;

if (nread == 1) {
peek character = ch;
return 1;

}

return 0;

5.  The character pressed is read by the next function, readch, which then resets peek_character
to -1 for the next loop.

int readch()

char ch;

if (peek character != -1) {
ch = peek character;
peek character = -1;

return ch;

}
read (0, &ch, 1) ;
return ch;
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When you run the program (kbhit.c), you get

$ ./kbhit
looping
looping
looping
you hit h
looping
looping
looping
you hit d
looping
you hit g
$

How It Works

The terminal is configured in init_keyboard to read one character before returning (MIN=1,TIME=0).
kbhit changes this behavior to check for input and return immediately (MIN=0,TIME=0) and then
restores the original settings before exiting.

Notice that you have to read the character that has been pressed but that you store it locally, ready for
returning when it’s required.

Virtual Consoles

Linux provides a feature called virtual consoles. A number of terminal devices are available, all of which
share the PC’s screen, keyboard, and mouse. Typically, a Linux installation will be configured for 8 or 12 of
these virtual consoles. The virtual consoles are made available through the character devices /dev/ttyN
where N is a number, starting at 1.

If you use a text login for your Linux system, you will be presented with a login prompt once Linux is
up and running. You then log in using a username and password. The device that you are using at this
point is the first virtual console, the terminal device /dev/tty1l.

Using who and ps, you can see who is logged in and the shell and programs being executed on this
virtual console:

$ who

neil ttyl Mar 8 18:27

$ ps -e
PID TTY TIME CMD
1092 ttyl 00:00:00 login
1414 ttyl 00:00:00 bash
1431 ttyl 00:00:00 emacs

Here, you can see in this cut-down output that user neil is logged in and running Emacs on the PC con-
sole device /dev/ttyl.
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Linux will normally start a getty process running on the first six virtual consoles so that it is possible to
log in six times using the same screen, keyboard, and mouse. You can see these processes with ps:

$ ps -e
PID TTY TIME CMD

1092 ttyl 00:00:00 login
1093 tty2 00:00:00 mingetty
1094 tty3 00:00:00 mingetty
1095 tty4 00:00:00 mingetty
1096 ttys 00:00:00 mingetty
1097 ttyé 00:00:00 mingetty

Here, you can see the SUSE default getty program, mingetty, running on five further virtual consoles,
waiting for a user to log in.

You can switch between virtual consoles using a special key combination: Ctrl+Alt+F<N> where N is the
number of the virtual console you want to switch to. So, to switch to the second virtual console, you would
press Alt+Ctrl+F2, and Ctrl+Alt+F1 to return to the first console. (When switching from text logins rather
than graphical logins, the combination Ctrl+F<N> also works.)

If Linux starts a graphical login, either by startx or via a display manager such as xdm, the X Window
System will start up using the first free virtual console, normally /dev/tty7. When using the X Win-
dow System, you can switch out to a text console with Ctrl+Alt+F<N> and back with Ctrl+Alt+F7.

It is possible to run more than one X session on Linux. If you do this, for example, with
$ startx -- :1

Linux will start the X server on the next free virtual console, in this case, /dev/tty8, and it is then possi-
ble to switch between them with Ctrl+Alt+F8 and Ctrl+Alt+F7.

In all other respects, the virtual consoles behave as a terminal, as described in this chapter. If a process
has the correct permissions, the virtual consoles can be opened, read from, and written to in the same
way as a normal terminal.

Pseudo-Terminals

Many UNIX-like systems, including Linux, have a feature called pseudo-terminals. These are devices
that behave much like the terminals we have been using in this chapter, except that they have no associ-
ated hardware. They can be used to provide a terminal-like interface to other programs.

For example, using pseudo-terminals, it is possible to make two chess programs play each other, despite
the fact that the programs themselves were designed to interact with a human player at a terminal. An
application acting as an intermediary passes one program’s moves to the other and vice versa. It uses
pseudo-terminals to fool the programs into behaving normally without a terminal being present.

Pseudo-terminals were at one time implemented in a system-specific manner, if at all. They have now
been incorporated into the Single UNIX Specification as UNIX98 Pseudo-Terminals or PTYs.
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Summary

In this chapter, you've learned about three different aspects of controlling the terminal. In the first part of
the chapter, you learned about detecting redirection and how to talk directly to a terminal even when the
standard file descriptors have been redirected. You saw the hardware model for terminals and a little of
their history. You then learned about the General Terminal Interface and the termios structure that pro-
vides detailed control over Linux terminal handling. You also saw how to use the terminfo database and
related functions to manage screen output in a terminal-independent fashion, and you looked at immedi-
ately detecting keystrokes. Finally, you learned about Linux virtual consoles and pseudo-terminals.
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Managing Text-Based
Screens with curses

In Chapter 5, you learned how to obtain much finer control over the input of characters and how
to provide character output in a terminal-independent way. The problem with using the general
terminal interface (GTI, or termios) and manipulating escape sequences with tparmand its
related functions is that it requires a lot of lower-level code. For many programs, a higher-level
interface is more desirable. We would like to be able to simply draw on the screen and use a
library of functions to take care of terminal dependencies automatically.

In this chapter, you'll learn about just such a library, the curses library. The curses standard is
important as a halfway house between simple “line-based” programs and the fully graphical (and
generally harder to program) X Window System programs, such as GTK+/GNOME and Qt/KDE.
Linux does have the svgalib (Super VGA Library, a low-level graphics library), but that is not

a UNIX standard library, so is not generally available in other UNIX-like operating systems.

The curses library is used in many full-screen applications as a reasonably easy and terminal-
independent way to write full-screen, albeit character-based, programs. It’s almost always easier to
write such programs with curses than to use escape sequences directly. curses can also manage
the keyboard, providing an easy-to-use, nonblocking character input mode.

You may find that a few of the examples in this chapter don’t always display on the plain Linux
console exactly as you expect. There are occasions when the combination of the curses library
and the terminal definition of the console get slightly out of step and the effect is usually some
slightly odd layouts when using curses. However, if you use the X Window System and use an
xterm window to display the output, then things should display as you expect.

This chapter covers the following:

Q  Using the curses library
Q  The concepts of curses

0  Basic input and output control
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0  Using multiple windows
0O  Using keypad mode
0  Adding color

We finish the chapter by reimplementing the CD Collection program in C, summarizing what you've
learned so far.

Compiling with curses

The curses library takes its name from its ability to optimize the movement of the cursor and minimize
the updates needed on a screen, and hence, reduce the number of characters that need to be sent to a
text-based terminal. Although the number of characters output is much less important than it was in the
days of dumb terminals and low-speed modems, the curses library survives as a useful addition to

the programmer’s toolkit.

Because curses is a library, to use it you must include a header file, function declarations, and macros
from an appropriate system library. There have been several different implementations of curses. The
original version appeared in BSD UNIX and was then incorporated into the System V flavors of UNIX,
before being standardized by X/Open. Linux uses ncurses (“new curses”), a freeware emulation of
System V Release 4.0 curses that was developed on Linux. This implementation is highly portable

to other UNIX versions, although a few nonportable additional features are included. There are even
versions of curses for MS-DOS and Windows. If you find that the curses library bundled with your
flavor of UNIX doesn’t support some features, try to obtain a copy of ncurses as an alternative. Linux
users will usually find they have ncurses already installed, or at least the components required for run-
ning curses-based programs. If the development libraries for it are not pre-installed in your distribu-
tion (there is no curses.h file or no curses library file to link against), they are generally available for
most major distributions as a standard package, probably named something like 1ibncursess5-dev.

The X/Open specification defines two levels of curses: base and extended. Extended
curses contains a somewhat motley crew of additional routines, including a range
of functions for handling multicolumn characters and color manipulation routines.
Apart from showing how to use color later in this chapter, we will be sticking mostly
to the base functions.

When you're compiling curses programs, you must include the header file curses.h, and link against
the curses library with -1curses. On many Linux systems you can simply use curses but will find
you are actually using the superior, and newer, ncurses implementation.

You can check how your curses is set up by executing the command

1s -1 /usr/include/*curses.h
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to look at the header files, and
ls -1 /usr/lib/lib*curses*

to check the library files. If you find that curses.h and ncurses.h are just linked files, and an ncurses
library file is present, you should be able to compile the files in this chapter using a command such as
the following;:

$ gcc program.c -o program -lcurses

If, however, your curses setup is not automatically using ncurses, then you may have to explicitly
force the use of ncurses by including ncurses . h, rather than curses.h, and by executing a compile
command such as this:

$ gecc -I/usr/include/ncurses program.c -O program -lncurses
where the - I option specifies the directory in which to search for the header file.

The Makefile in the downloadable code assumes your setup uses curses by default, so you must
change it or compile it by hand if this is not the case on your system.

If you're unsure how curses is set up on your system, refer to the manual pages for ncurses, or look
for other online documentation; a common location is under /usr/share/doc/, where you may find a
curses or ncurses directory, often with a version number appended.

Curses Terminology and Concepts

The curses routines work on screens, windows, and subwindows. A screen is the device (usually a ter-
minal screen, but it could also be an xterm screen) to which you are writing. It occupies all the available
display on that device. Of course, if it’s a terminal window inside an X window, the screen is simply

all the character positions available inside the terminal window. There is always at least one curses
window, stdscr, that is the same size as the physical screen. You can create additional windows that
are smaller than the screen. Windows can overlap each other and have many subwindows, but each
subwindow must always be contained inside its parent window.

The curses library maintains two data structures that act like a map of the terminal screen: stdscr, and
curscr. stdscr, the more important of the two data structures, is updated when curses functions pro-
duce output. The stdscr data structure is the “standard screen.” It acts in much the same way as stdout,
the standard output, does for the stdio library. It’s the default output window in curses programs. The
curscr structure is similar, but holds what the displayed screen actually looks like at the current moment.
Output written to stdscr doesn’t appear on the screen until the program calls refresh, when the curses
library compares the contents of stdscr (what the screen should look like) with the second structure
curscr (what the screen currently looks like). curses then uses the differences between these two struc-
tures to update the screen.

Some curses programs need to know that curses maintains a stdscr structure, which is required as a

parameter to a few curses functions. However, the actual stdscr structure is implementation-dependent
and should never be accessed directly. curses programs should never need to use the curscr structure.
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Thus, the process for the output of characters in a curses program is as follows:

1. Use curses functions to update a logical screen.

2.  Ask curses to update the physical screen with refresh.

The advantage of a two-level approach, in addition to being much easier to program, is that curses
screen updates are very efficient. In addition, although this isn’t so important on a console screen, it can
make a considerable difference if you're running your program over a slow network link.

A curses program will make many calls to logical screen output functions, possibly moving the cursor all
over the screen to get to the right position for writing text and drawing lines and boxes. At some stage, the
user needs to see all of this output. When this happens, typically during a call to refresh, curses will cal-
culate the optimum way of making the physical screen correspond to the logical screen. By using appropri-
ate terminal capabilities and by optimizing cursor motions, curses can often update the screen with far
fewer characters being output than if all the screen writes had happened immediately.

The layout of the logical screen is a character array, arranged by lines and columns, with the screen posi-
tion (0,0) at the top left-hand corner, as shown in Figure 6-1.

Figure 6-1

All the curses functions use coordinates with the y value (lines) before the x (columns) value. Each
position holds not only the character for that screen location, but also its attributes. The attributes that
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can be displayed depend on the physical terminal’s capabilities, but usually at least bold and underline
are available. On Linux consoles, you usually also have reverse video and color, which are covered later
in the chapter.

Because the curses library needs to create and destroy some temporary data structures, all curses pro-
grams must initialize the library before use and then allow curses to restore settings after use. This is
done with a pair of function calls: initscr and endwin.

Try It Out A Hello World curses Program

In this example, you write a very simple curses program, screenl . c, to show these and other basic
function calls in action. You then describe the function prototypes:

1. Addthe curses.h header file, and in the main function make calls to initialize and reset the
curses library:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
initscr();

endwin () ;
exit (EXIT SUCCESS) ;

2. Inbetween, add code to move the cursor to the point (5,15) on the logical screen, print “Hello
World,” and refresh the actual screen. Lastly, use the call sleep (2) to suspend the program for
two seconds so that you can see the output before the program ends:

move (5, 15);
printw(“%s”, “Hello World”) ;

refresh() ;

sleep(2) ;

While the program is running, you see “Hello World” in the top-left quadrant of an otherwise blank
screen, as shown in Figure 6-2.

How It Works

This program initialized the curses library, moved the cursor to a point on the screen, and displayed
some text. After a brief pause it then closed down the library and exited.
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| rick@localhost:~/blpde/ch06 ]
File Edit View Terminal Tabs Help

Hello World

Figure 6-2

The Screen

As you've already seen, all curses programs must start with initscr and end with endwin. Here are
their header file definitions:

#include <curses.h>

WINDOW *initscr (void);
int endwin (void) ;

The initscr function must only be called once in each program. The initscr function returns a
pointer to the stdscr structure if it succeeds. If it fails, it simply prints a diagnostic error message and
causes the program to exit.

The endwin function returns OK on success and ERR on failure. You can call endwin to leave curses
and then later resume curses operation by calling clearok (stdscr, 1) and refresh. This effectively
makes curses forget what the physical screen looks like and forces it to perform a complete redisplay.

Output to the Screen

Several basic functions are provided for updating the screen:
#include <curses.h>

int addch(const chtype char to add);

int addchstr(chtype *const string to add);

int printw(char *format, ...);

int refresh(void);

int box (WINDOW *win ptr, chtype vertical char, chtype horizontal char);
int insch(chtype char to insert);
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int insertln(void);
int delch(void);
int deleteln(void);
int beep(void);
int flash(void);

curses has its own character type, chtype, which may have more bits than a standard char. In the
standard Linux version of ncurses, chtype is actually a typedef for unsigned long.

The add. .. functions add the character or string specified at the current location. The printw function
formats a string in the same way as printf and adds it to the current location. The refresh function
causes the physical screen to be updated, returning 0K on success and ERR if an error occurred. The box
function allows you to draw a box around a window.

In standard curses, you may only use “normal” characters for the vertical and hori-
zontal line characters. In extended curses, though, you can use the two defines
ACS_VLINE and ACS_HLINE to provide vertical and horizontal line characters, respec-
tively, which enable you to draw a better-looking box. For this, your terminal needs
to support line-drawing characters. Generally, these will work better in an xterm
window than on the standard console, but support tends to be patchy, so we suggest
you avoid them if portability is important.

The insch function inserts a character, moving existing characters right, though what will happen at the end
of a line isn’t specified and depends on the terminal you're using. insert1n inserts a blank line, moving
existing lines down by one. The two delete functions are analogous to the two insert functions.

To make a sound, you can call beep. A very small number of terminals are unable to make any sound, so
some curses setups will cause the screen to flash when beep is called. If you work in a busy office, where
beeps can come from any number of machines, you might find you prefer this. As you might expect, f1ash
causes the screen to flash, but if this isn’t possible, it tries to make a sound on the terminal instead.

Reading from the Screen

You can read characters from the screen, although this facility isn’t commonly used because normally it’s
easier to keep track of what was written. If you need it, it’s done with the following functions:

#include <curses.h>

chtype inch(void);
int instr(char *string):;
int innstr(char *string, int number of characters);

The inch function should always be available, but the instr and innstr functions are not always
supported. The inch function returns a character and its attribute information from the current screen
location of the cursor. Notice that inch doesn’t return a character, but a chtype, while instr and
innstr write to arrays of chars.

217



Chapter 6: Managing Text-Based Screens with curses

Clearing the Screen

There are four principal ways of clearing an area of the screen:
#include <curses.h>

int erase(void);
int clear(void);
int clrtobot(void);
int clrtoeol (void);

The erase function writes blanks to every screen location. The clear function, like erase, clears the
screen, but forces a screen redisplay by internally calling a lower-level function, clearok, which enforces
a clear screen sequence and redisplay when the next refresh is called.

The clear function usually uses a terminal command that erases the entire screen, rather than simply
attempting to erase any currently nonblank screen locations. This makes the clear function a reliable
way of completely erasing the screen. The combination of clear followed by refresh can provide a
useful redraw command if the screen display has become confused or corrupted in some way:.

clrtobot clears the screen from the cursor position onward to the end of the screen, and clrtoeol
clears from the cursor position to the end of the line the cursor is on.

Moving the Cursor

A single function is provided for moving the cursor, with an additional command for controlling where
curses leaves the cursor after screen updates:

#include <curses.h>

int move(int new y, int new x);
int leaveok (WINDOW *window ptr, bool leave flag);

The move function simply moves the logical cursor position to the specified location. Remember that the
screen coordinates are specified with (0,0) as the top left-hand corner of the screen. In most versions of
curses, the two extern integers LINES and COLUMNS contain the physical screen size and can be used to
determine the maximum allowed values for new_y and new_x. Calling move won't, in itself, cause the physi-
cal cursor to move. It only changes the location on the logical screen at which the next output will appear. If
you want the screen cursor to move immediately after calling move, follow it with a call to refresh.

The 1eaveok function sets a flag that controls where curses leaves the physical cursor after a screen
update. By default, the flag is false, and after a refresh the hardware cursor is left in the same position
on the screen as the logical cursor. If the flag is set to true, the hardware cursor may be left randomly,
anywhere on the screen. Generally, the default option is preferred to ensure that the cursor is left in a
sensible location.

Character Attributes

Each curses character can have certain attributes that control how it’s displayed on the screen, assuming
that the display hardware can support the requested attribute. The defined attributes are A_BLINK, A BOLD,
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A DIM,A REVERSE,A STANDOUT, and A UNDERLINE. You can use these functions to set attributes singly
or collectively:

#include <curses.h>

int attron(chtype attribute);
int attroff (chtype attribute);
int attrset(chtype attribute);
int standout (void) ;
int standend(void) ;

The attrset function sets the curses attributes, attron and attroff turn on and off specified attrib-
utes without disturbing others, while standout and standend provide a more generic emphasized, or
“stand out” mode. This is commonly mapped to reverse video on most terminals.

Try It Out Moving, Inserting, and Attributes

Now that you know more about managing the screen, you can try out a more complex example,
moveadd. c. For the purposes of this example, you'll include several calls to refresh and sleep, to
enable you to see what the screen looks like at each stage. Normally, curses programs would refresh
the screen as little as possible because it’s not a very efficient operation. The code is slightly contrived
for the purposes of illustration.

1. Tobegin, include some header files, define some character arrays and a pointer to those arrays,
and then initialize the curses structures:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.hs>
#include <curses.h>

int main()
const char witch one[] = “ First Witch “;
const char witch two[] = “ Second Witch “;

const char *scan ptr;

initscr () ;

2. Now for the three initial sets of text that appear at intervals on the screen — note the on and off
flagging of text attributes:

move (5, 15);
attron (A BOLD) ;
printw(“%s”, “Macbeth”);
attroff (A BOLD) ;
refresh() ;

sleep (1) ;

move (8, 15);
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attron (A STANDOUT) ;

printw(“%$s”, “Thunder and Lightning”) ;
attroff (A STANDOUT) ;

refresh() ;

sleep (1) ;

move (10, 10);

printw(“%s”, “When shall we three meet again”) ;

move (11, 23);

printw(“%$s”, “In thunder, lightning, or in rain ?”);
move (13, 10);

printw(“%s”, “When the hurlyburly’s done,”);

move (14,23) ;

printw(“%s”, “When the battle’s lost and won.”);
refresh() ;

sleep (1) ;

3.  The actors are identified and their names are inserted one character at a time:

attron (A DIM) ;
scan_ptr = witch one + strlen(witch one) - 1;
while (scan ptr != witch one) {

move (10,10) ;

insch(*scan ptr--);
}
scan ptr = witch two + strlen(witch two) - 1;
while (scan ptr != witch two)

move (13, 10);

insch(*scan ptr--);

}

attroff (A DIM) ;
refresh() ;
sleep (1) ;
4.  Finally, move the cursor to the bottom-right corner of the screen and then tidy up an exit:

move (LINES - 1, COLS - 1);

refresh() ;
sleep (1) ;

endwin () ;
exit (EXIT SUCCESS) ;

}

When you run this program, the final screen looks like the one shown in Figure 6-3.

Unfortunately, the screenshot doesn’t convey the full effect very well, nor does it show the cursor, which
is parked at the bottom right-hand corner.

You may find that xterm is a more reliable medium for accurately displaying programs than the raw console.
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How It Works

rick@localhost:~/blpde/ch06
File Edit View Terminal Tabs Help

Macbeth

First witch When shall we three meet again
In thunder, lightning, or in rain ?

Second Witch When the hurlyburly's done,
When the battle's lost and won.

Figure 6-3

After initializing some variables and the curses screen, you used the move functions to move the cursor
about the screen. By using the attron and attroff functions, you controlled the attributes of the text

written out at each location. The program then demonstrated how characters can be inserted with

insch, before closing the curses library and terminating.

The Keyboard

As well as providing an easier interface for controlling the screen, curses also provides an easier

method for controlling the keyboard.

Keyboard Modes

The keyboard reading routines are controlled by modes. The functions that set the modes are as follows:

#include <curses.h>

int echo(void);

int noecho(void) ;
int cbreak(void);
int nocbreak(void) ;

int raw(void);

int noraw(void) ;

The two echo functions simply turn the echoing of typed characters on and off. The remaining four

function calls control how characters typed on the terminal are made available to the curses program.
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To explain cbreak, you need to understand the default input mode. When a curses program starts by
calling initscr, the input mode is set to what is termed cooked mode. This means that all processing is done
on a line-by-line basis; that is, input is only available after the user has pressed Enter (or the Return key on
some keyboards). Keyboard special characters are enabled, so typing the appropriate key sequences can
generate a signal in the program. Flow control, if the terminal is running from a terminal, is also enabled.
By calling cbreak, a program may set the input mode to cbreak mode whereby characters are available to
the program immediately after they are typed, rather than being buffered up and only made available

to the program when Enter is pressed. As in cooked mode, keyboard special characters are enabled, but
simple keys, such as Backspace, are passed directly to the program to be processed, so if you want the
Backspace key to function as expected, you have to program it yourself.

A call to raw turns off special character processing, so it becomes impossible to generate signals or flow
control by typing special character sequences. Calling nocbreak sets the input mode back to cooked
mode, but leaves special character processing unchanged; calling noraw restores both cooked mode and
special character handling.

Keyboard Input

Reading the keyboard is very simple. The principal functions are as follows:
#include <curses.h>

int getch(void) ;

int getstr(char *string);

int getnstr(char *string, int number of characters);
int scanw(char *format, ...);

These act in a very similar way to their non-curses equivalents getchar, gets, and scanf. Note that
getstr provides no way of limiting the string length returned, so you should use it only with great cau-
tion. If your version of curses supports getnstr, which allows you to limit the number of characters
read, always use it in preference to getstr. This is very similar to the behavior of gets and fgets that
you saw in Chapter 3.

Here’s a short example program, ipmode . c, to show how to handle the keyboard.

Try It Out Keyboard Modes and Input

1. Setup the program and the initial curses calls:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>
#include <string.h>

#define PW LEN 256
#define NAME LEN 256

int main()
char name [NAME LEN] ;
char password[PW LEN] ;
const char *real password = “xyzzy”;
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int i = 0;
initscr () ;

move (5, 10);
printw(“%s”, “Please login:”);
move (7, 10);
printw(“%s”,
getstr (name) ;

“User name: “);

move (8, 10) ;
s

printw(“%$s”, “Password: “);
refresh() ;
2.  When the user enters his or her password, you need to stop the password being echoed to the

screen. Then check the password against xyzzy:

cbreak () ;

noecho () ;

memset (password, ‘\0’, sizeof (password)) ;

while (i < PW LEN) (
password[i] = getch() ;
if (password[i] == ‘\n’) break;
move (8, 20 + 1);
addch('*") ;
refresh() ;
i++;

}

3. Finally, re-enable the keyboard echo and print out success or failure:

echo () ;

nocbreak () ;

move (11, 10);

if (strncmp(real password, password, strlen(real password)) == 0)
printw(“%s”, “Correct”);

else printw(“%s”, “Wrong”) ;

printw(“%$s”, “ password”);

refresh () ;

sleep(2);

endwin () ;

exit (EXIT SUCCESS) ;

}
How It Works
Having stopped the echoing of keyboard input and set the input mode to cbreak, you set up a region of

memory ready for the password. Each character of the password entered is processed immediately and a
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* is shown at the next position on the screen. You need to refresh the screen each time, and compare the
two strings, entered and real passwords, using strcmp.

If you're using a very old version of the curses library, you may need to make an additional refresh
call before the getstr call. In ncurses, calling getstr will refresh the screen automatically.

Windows

Until now, you have used the terminal as a full-screen output medium. This is often sufficient for small
and simple programs, but the curses library goes a long way beyond that. You can display multiple win-
dows of different sizes concurrently on the physical screen. Many of the functions in this section are only
supported by what X/Open terms “extended” curses. However, since they are supported by ncurses,
there should be little problem in them being made available on most platforms. Now it’s time to move on
and use multiple windows. You'll also see how the commands used so far are generalized to the multiple
window scenario.

The WINDOW Structure

Although we have mentioned stdscr, the standard screen, you have so far had little need to use it, as
almost all of the functions that we’ve discussed so far assume that they’re working on stdscr and it
does not need to be passed as a parameter.

The stdscr is just a special case of the WINDOW structure, like stdout is a special case of a file stream. The
WINDOW structure is normally declared in curses . h, and while it can be instructive to examine it, programs
should never access it directly, as the structure can and does change between implementations.

You can create and destroy windows using the newwin and delwin calls:

#include <curses.h>

WINDOW *newwin(int num of lines, int num of cols, int start y, int start x);
int delwin (WINDOW *window_to delete) ;

The newwin function creates a new window, with a screen location of (start_y, start x) and with the
specified number of lines and columns. It returns a pointer to the new window, or nul1 if the creation
failed. If you want the new window to have its bottom right-hand corner in the bottom right-hand corner
of the screen, you can provide the number of lines or columns as zero. All windows must fit within the cur-
rent screen, so newwin will fail if any part of the new window would fall outside the screen area. The new
window created by newwin is completely independent of all existing windows. By default, it is placed on
top of any existing windows, hiding (but not changing) their contents.

The delwin function deletes a window previously created by newwin. Since memory was probably allo-
cated when newwin was called, you should always delete windows when they are no longer required.

Take care never to try to delete curses’ own windows, stdscr and curscr!
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Having created a new window, how do you write to it? The answer is that almost all the functions that
you've seen so far have generalized versions that operate on specified windows, and for convenience
these also include cursor motion.

Generalized Functions

You've already used the addch and printw functions for adding characters to the screen. Along with
many other functions, these can be prefixed, either with a w for window, mv for move, or mvw for move
and window. If you look in the curses header file for most implementations of curses, you'll find that
many of the functions used so far are simply macros (#defines) that call these more general functions.

When the w prefix is added, an additional WINDOW pointer must be pre-pended to the argument list. When
the mv prefix is added, two additional parameters, a y and an x location, must be pre-pended. These specify
the location where the operation will be performed. The y and x are relative to the window, rather than the
screen, (0,0) being the top left of the window.

When the mvw prefix is added, three additional parameters, a WINDOW pointer and both y and x values,
must be passed. Confusingly, the WINDOW pointer always comes before the screen coordinates, even
though the prefix might suggest the y and x come first.

As an example, here is the full set of prototypes for just the addch and printw sets of functions:
#include <curses.h>
int addch(const chtype char);
int waddch (WINDOW *window pointer, const chtype char)

int mvaddch(int y, int x, const chtype char);
int mvwaddch (WINDOW *window pointer, int y, int x, const chtype char);

int printw(char *format, ...);

int wprintw(WINDOW *window pointer, char *format, ...);

int mvprintw(int y, int x, char *format, ...);

int mvwprintw (WINDOW *window pointer, int y, int x, char *format, ...);

Many other functions, such as inch, also have move and window variants available.

Moving and Updating a Window

These commands enable you to move and redraw windows:
#include <curses.h>

int mvwin (WINDOW *window to move, int new y, int new x);
int wrefresh (WINDOW *window ptr);

int wclear (WINDOW *window ptr);

int werase (WINDOW *window ptr);

int touchwin (WINDOW *window ptr);

int scrollok (WINDOW *window ptr, bool scroll flag);

int scroll (WINDOW *window ptr);

The mvwin function moves a window on the screen. Since all parts of a window must fit within the screen
area, mvwin will fail if you attempt to move a window so that any part of it falls outside the screen area.
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The wrefresh, welear, and werase functions are simply generalizations of the functions you met earlier;
they just take a WINDOW pointer so that they can refer to a specific window, rather than stdscr.

The touchwin function is rather special. It informs the curses library that the contents of the window
pointed to by its parameter have been changed. This means that curses will always redraw that win-
dow the next time wrefresh is called, even if you haven’t actually changed the contents of the window.
This function is often useful for arranging which window to display when you have several overlapping
windows stacked on the screen.

The two scroll functions control scrolling of a window. The scrollok function, when passed a Boolean
true (usually nonzero) allows a window to scroll. By default, windows can’t scroll. The scroll func-
tion simply scrolls the window up one line. Some curses implementations also have a wsct1 function
that also takes a number of lines to scroll, which may be a negative number. We’ll return to scrolling a
little later in the chapter.

Try It Out Managing Multiple Windows

Now that you know how to manage more than a single window, you can put these new functions to
work in a program, multiwl . c. For the sake of brevity, error checking is omitted:

1. Asusual, let’s get the definitions sorted first:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()

{
WINDOW *new window ptr;
WINDOW *popup window ptr;
int x loop;
int y loop;
char a letter = ‘a’;

initscr () ;

2.  Fill the base window with characters, refreshing the actual screen once the logical screen has
been filled: */

move (5, 5);
printw(“%$s”, “Testing multiple windows”) ;
refresh () ;

for (y loop = 0; y loop < LINES - 1; y loop++) {
for (x loop = 0; x loop < COLS - 1; x loop++) {
mvwaddch (stdscr, y loop, x loop, a letter);
a_letter++;
if (a letter > ‘z’) a letter = ‘a’;
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/* Update the screen */
refresh() ;
sleep(2) ;

Now create a new 10 x 20 window and add some text to it before drawing it on the screen:

new window ptr = newwin(10, 20, 5, 5);
mvwprintw (new window ptr, 2, 2, “%s”, “Hello World”);
mvwprintw (new window ptr, 5, 2, “%s”,

“Notice how very long lines wrap inside the window”) ;
wrefresh (new window ptr) ;
sleep(2) ;

Change the contents of the background window. When you refresh the screen, the window
pointed to by new_window_ptr is obscured:

a letter = ‘0’;
for (y loop = 0; y loop < LINES -1; y loop++) {
for (x loop = 0; x loop < COLS - 1; x loop++) {
mvwaddch (stdscr, y loop, x loop, a letter);
a_letter++;
if (a letter > '97)
a_letter = ‘0’;

}

refresh () ;
sleep(2) ;

If you make a call to refresh the new window, nothing will change, because you haven’t
changed the new window:

wrefresh (new window ptr) ;
sleep(2) ;

But if you touch the window first and trick curses into thinking that the window has been
changed, the next call to wrefresh will bring the new window to the front again:

touchwin (new window ptr) ;
wrefresh (new window ptr) ;
sleep(2);

Add another overlapping window with a box around it:

popup window ptr = newwin(10, 20, 8, 8);
box (popup window ptr, ‘|’, ‘-');

mvwprintw (popup window ptr, 5, 2, “%s”, “Pop Up Window!”) ;
wrefresh (popup window ptr) ;
sleep(2) ;
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8. Fiddle with the new and pop-up windows before clearing and deleting them:

touchwin (new window ptr) ;
wrefresh (new window ptr) ;
sleep(2) ;
wclear (new _window ptr) ;
wrefresh (new window ptr) ;
sleep(2) ;
delwin (new window ptr) ;
touchwin (popup window ptr) ;
wrefresh (popup window ptr) ;
sleep(2) ;

delwin (popup window ptr) ;
touchwin (stdscr) ;
refresh() ;

sleep(2) ;

endwin () ;

exit (EXIT SUCCESS) ;

Unfortunately, it’s not practical to show this running in the book, but Figure 6-4 shows a screenshot after
the first pop-up window has been drawn.
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Figure 6-4

After the background has been changed and a new pop-up window has been drawn, you see the display
shown in Figure 6-5.
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How It Works
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Figure 6-5

After the usual initialization, the program fills the standard screen with numbers, to make it easier to see
the new curses windows being added on top. It then demonstrates how a new window can be added
over the background, with text inside the new window wrapping. You then saw how to use touchwin
to force curses to redraw the window, even if nothing has been changed.

A second window was then added which overlapped the first window, to demonstrate how curses can

mange overlapping windows, before the program closes the curses library and exits.

As you can see from the example code, you need to be quite careful about refreshing windows to ensure
that they appear on the screen in the correct order. The curses library doesn’t store any information about
the hierarchy of windows, so if you ask curses to refresh several windows, you must manage any win-

dow hierarchy.

To ensure that curses draws the windows in the correct order, you must refresh
them in the correct order. One way of doing this is to store all the pointers to your
windows in an array or list, which you maintain in the order they should appear on
the screen.

Optimizing Screen Refreshes

As you saw in the example in the previous section, refreshing multiple windows can be a little tricky, but
not overly onerous. However, a potentially more serious problem arises when the terminal to be updated
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is on a slow network. Fortunately, this is now a very rare problem, but handling it is so easy that we will
show you just for the sake of completeness.

The aim is to minimize the number of characters drawn on the screen, because on slow links screen
draws can be uncomfortably slow. curses provides a special way of doing this, with a pair of functions:
wnoutrefresh and doupdate:

#include <curses.h>

int wnoutrefresh (WINDOW *window ptr);
int doupdate (void) ;

The wnoutrefresh function determines which characters would need sending to the screen, but doesn’t
actually send them. The doupdate function actually sends the changes to the terminal. If you simply call
wnoutrefresh, followed immediately by doupdate, the effect is the same as calling wrefresh. However, if
you wish to redraw a stack of windows, you can call wnoutrefresh on each window (in the correct order,
of course) and then call doupdate only after the last wnoutrefresh. This allows curses to perform its
screen update calculations on each window in turn and only then output the updated screen. This almost
always enables curses to minimize the number of characters that needs to be sent.

Subwindows

Now that we’ve looked at multiple windows, we can look at a special case of multiple windows, called
subwindows. You create and destroy subwindows with these calls:

#include <curses.h>

WINDOW *subwin (WINDOW *parent, int num of lines, int num of cols,
int start_y, int start x);
int delwin (WINDOW *window_to delete) ;

The subwin function has almost the same parameter list as newwin, and subwindows are deleted in just
the same way as other windows, with a delwin call. Just like new windows, you can use the range of mvw
functions to write to subwindows. Indeed, most of the time, subwindows behave in a very similar fashion
to new windows, with one very important exception: Subwindows don’t themselves store a separate set
of screen characters; they share the same character storage space as the parent window specified when the
subwindow is created. This means that any changes made in a subwindow are also made in the underly-
ing parent window, so when a subwindow is deleted, the screen doesn’t change.

At first sight, subwindows seem like a pointless exercise. Why not just make the changes to the parent
window? The main use for subwindows is to provide a clean way of scrolling parts of another window.
The need to scroll a small subsection of the screen is surprisingly common when writing a curses pro-
gram. By making this a subwindow and then scrolling the subwindow, you achieve the desired result.

Ome restriction imposed by using subwindows is that the application should call touchwin on the par-
ent window before refreshing the screen.
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Try It Out Subwindows

Now that you have met the new functions, this short example shows you how they work, and how they
differ from the windows functions used earlier:

1.

The initial code section of subscl. c initializes the base window display with some text:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main ()

{

WINDOW *sub window ptr;
int x loop;

int y loop;

int counter;

char a letter = ‘1';

initscr () ;

for (y loop = 0; y loop < LINES - 1; y loop++) {
for (x loop = 0; x loop < COLS - 1; x loop++) {
mvwaddch (stdscr, y loop, x loop, a letter);
a_letter++;
if (a letter > '9’) a letter = ‘1’;

}

Now create the new scrolling subwindow. As advised, you must “touch” the parent window
before refreshing the screen:

sub window ptr = subwin(stdscr, 10, 20, 10, 10);
scrollok (sub window ptr, 1);

touchwin (stdscr) ;
refresh() ;

sleep (1) ;

Erase the contents of the subwindow, print text to it, and refresh it. The scrolling text is achieved
by a loop:

werase (sub_window ptr) ;

mvwprintw (sub window ptr, 2, 0, “%s”, “This window will now scroll”);
wrefresh (sub window ptr) ;
sleep (1) ;

for (counter = 1; counter < 10; counter++) {
wprintw(sub window ptr, “%s”, “This text is both wrapping and \
scrolling.”) ;
wrefresh (sub window ptr) ;
sleep (1) ;
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4. Having finished this loop, delete the subwindow, and then refresh the base screen:
delwin (sub window ptr) ;
touchwin (stdscr) ;
refresh() ;

sleep (1) ;

endwin () ;
exit (EXIT SUCCESS) ;

Toward the end of the program, you see the output shown in Figure 6-6.

rick@localhost:~/blpde/ch06
File Edit View Terminal Tabs Help
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67891234567891234567891234567891234567891234567689123456789123456789123
4567891234567891234567891234567891234567891234567891234567891234567891
2345678912345678912345678912345678912345678912345678912345678912345678
9123456789123456789123456789123456789123456789123456789123456789123456
78912345678912345678912345678912345678912345678912345676891234567891234
5678912345678912345678912345678912345678912345678912345678912345678912
3456789123456789123456789123456789123456789123456789123456789123456789
1234567891234567891234567891234567891234567891234567891234567891234567
8912345678 23456789123456789123456789123456768912345
6789123456 9123456789123456789123456789123456789123
4567891234This window will now7891234567891234567891234567891234567891
2345678912 scrollThis text is 5678912345678912345678912345678912345678
9123456789%both wrapping and  3456789123456789123456789123456789123456
7891234567 5c1234567891234567891234567891234567891234
5678912345rolling.This text 1s8912345678912345678912345678912345678912
3456789123 both wrapping and 6789123456789123456789123456789123456789
1234567891 54567891234567891234567891234567891234567
8912345678crolling. 23456789123456789123456789123456768912345
67891234567891234567891234567891234567891234567689123456789123456789123

Figure 6-6

How It Works

After arranging for the sub_window_ptr to point to the result of the subwin call, you make the sub-
window scrollable. Even after the subwindow has been deleted and the base window (strdcr) is
refreshed, the text on the screen remains the same because the subwindow was actually updating the
character data for stdscr.

The Keypad

You've already seen some of the facilities that curses provides for handling the keyboard. Many key-
boards have, at the very least, cursor keys and function keys. Many also have a keypad and other keys,
such as Insert and Home.
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Decoding these keys is a difficult problem on most terminals because they normally send a string of char-
acters, starting with the escape character. Not only does the application have the problem of distinguishing
between a single press of the Esc key and a string of characters caused by pressing a function key, it must
also cope with different terminals using different sequences for the same logical key.

Fortunately, curses provides an elegant facility for managing function keys. For each terminal, the
sequence sent by each of its function keys is stored, normally in a terminfo structure, and the include
file curses.hhas a set of defines prefixed by KEY_ that define the logical keys.

The translation between the sequences and logical keys is disabled when curses starts and has to be
turned on by the keypad function. If the call succeeds, then it returns OK; otherwise it returns ERR:

#include <curses.h>

int keypad (WINDOW *window ptr, bool keypad on);

Once keypad mode has been enabled by calling keypad with keypad_on set to true, curses takes over
the processing of key sequences so that reading the keyboard may now not only return the key that was
pressed, but also one of the KEY_ defines for logical keys.

Note three slight restrictions when using keypad mode:

Q  The recognition of escape sequences is timing-dependent, and many network protocols will
group characters into packets (leading to improper recognition of escape sequences), or separate
them (leading to function key sequences being recognized as escape and individual characters).
This behavior is worst over WANs and other slower links. The only workaround is to try to pro-
gram terminals to send single, unique characters for each function key that you want to use,
although this limits the number of control characters.

0  Inorder for curses to separate a press of the Esc key from a keyboard sequence starting with Esc,
it must wait for a brief period of time. Sometimes, a very slight delay on processing of the Esc key
can be noticed once keypad mode has been enabled.

0  curses can’t process non-unique escape sequences. If your terminal has two different keys that
can send the same sequence, curses will simply not process that sequence, as it can’t tell which
logical key it should return.

Try It Out Using the Keypad

Here’s a short program, keypad . ¢, showing how the keypad mode can be used. When you run this pro-
gram, try pressing the Esc key and notice the slight delay while the program waits to see whether the
Esc is simply the start of an escape sequence or a single key press:

1. Having initialized the program and the curses library, set the keypad mode to TRUE:
#include <unistd.h>

#include <stdlib.h>
#include <curses.h>

#define LOCAL ESCAPE KEY 27
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int main()

{

int key;

initscr() ;
crmode () ;
keypad (stdscr, TRUE) ;

2.  Turn echo off to prevent the cursor from being moved when some cursor keys are pressed. The
screen is cleared and some text displayed. The program waits for each keystroke and, unless it’s
Q or produces an error, the key is printed. If the keystrokes match one of the terminal’s keypad
sequences, this is printed instead:

noecho () ;

clear() ;

mvprintw(5, 5, “Key pad demonstration. Press ‘g’ to quit”);
move (7, 5);

refresh() ;

key = getch() ;

while (key != ERR && key != ‘g’) {
move (7, 5);

clrtoeol () ;

if ((key >= ‘A’ && key <= ‘z’) ||

(key >= ‘a’ && key <= ‘z’)) {
printw(“Key was %c”, (char)key);
}
else {

switch (key) {
case LOCAL ESCAPE KEY: printw(“%s”, “Escape key”); break;

case KEY END: printw(“%s”, “END key”); break;

case KEY BEG: printw(“%s”, “BEGINNING key”); break;
case KEY RIGHT: printw(“%s”, “RIGHT key”); break;
case KEY LEFT: printw(“%s”, “LEFT key”); break;
case KEY UP: printw(“%s”, “UP key”); break;

case KEY DOWN: printw(“%s”, “DOWN key”); break;

default: printw(“Unmatched - %d”, key); break;
} /* switch */
} /* else */

refresh() ;
key = getch() ;
} /* while */

endwin () ;
exit (EXIT SUCCESS) ;
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How It Works

Having turned on keypad mode, you saw how it’s possible to recognize the various additional keys on
the keypad, which generate escape sequences. You will probably also be able to notice how detection
of the Esc key is slightly slower than the others.

Using Color

Originally, very few “dumb” terminals supported color, so most very early versions of curses had no sup-
port for it. Color is supported in ncurses and most other modern curses implementations. Unfortunately
the “dumb screen” origins of curses has influenced the API, and curses uses color in a very restricted
way, reflecting the poor capabilities of early color terminals.

Each character cell on the screen can be written in one of a number of different colors, against one of a
number of different colored backgrounds. For example, you can write text in green on a red background.

Color support in curses is slightly unusual in that the color for a character isn’t defined independently
of its background. You must define the foreground and background colors of a character as a pair, called,
not surprisingly, a color pair.

Before you can use color capability in curses, you must check that the current terminal supports color and
then initialize the curses color routines. For this, use a pair of routines: has_colors and start_color:

#include <curses.h>

bool has colors(void);
int start color(void);

The has_colors routine returns true if color is supported. You should then call start_color, which
returns OK if color has been initialized successfully. Once start_color has been called and the colors ini-
tialized, the variable COLOR_PAIRS is set to the maximum number of color pairs that the terminal can sup-
port. A limit of 64 color pairs is common. The variable COLORS defines the maximum number of colors
available, which is often as few as eight. Internally, numbers from 0 to 63 act as a unique ID for each of the
colors available.

Before you can use colors as attributes, you must initialize the color pairs that you wish to use. You do
this with the init_ pair function. Color attributes are accessed with the COLOR_PAIR function:

#include <curses.h>
int init pair(short pair number, short foreground, short background) ;
int COLOR PAIR(int pair number);

int pair content (short pair number, short *foreground, short *background);

curses.h usually defines some basic colors, starting with COLOR_. An additional function,
pair_content, allows previously defined color-pair information to be retrieved.
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To define color pair number 1 to be red on green, you would use
init pair (1, COLOR RED, COLOR GREEN) ;

You can then access this color pair as an attribute, using COLOR_PAIR like this:
wattron (window ptr, COLOR PAIR(1)) ;

This would set future additions to the screen to be red on a green background.

Since a COLOR_PAIR is an attribute, you can combine it with other attributes. On a PC, you can often
access screen high-intensity colors by combining the COLOR_PAIR attribute with the additional attribute
A _BOLD, by using a bitwise OR of the attributes:

wattron (window ptr, COLOR PAIR(1) | A BOLD);

Let’s check these functions in an example, color.c.

Try It Out Colors
1.  First, check whether the program’s display terminal supports color. If it does, start the color display:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <curses.h>

int main()
{
int 1i;
initscr();
if (thas colors()) {
endwin () ;
fprintf (stderr, “Error - no color support on this terminal\n”) ;
exit (1) ;
}
if (start color() != OK) {
endwin () ;
fprintf (stderr, “Error - could not initialize colors\n”);
exit (2);

}

2.  You can now print out the allowed number of colors and color pairs. Create seven color pairs
and display them one at a time:

clear() ;

mvprintw (5, 5, “There are %d COLORS, and %d COLOR PAIRS available”,
COLORS, COLOR PAIRS) ;

refresh () ;
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init pair(l, COLOR RED, COLOR BLACK) ;
init pair(2, COLOR RED, COLOR GREEN) ;
init pair(3, COLOR GREEN, COLOR RED);

(
(
(
init pair (4, COLOR YELLOW, COLOR BLUE) ;
(
(
(

init pair (5, COLOR BLACK, COLOR WHITE) ;
init pair(6, COLOR MAGENTA, COLOR BLUE) ;
init pair(7, COLOR CYAN, COLOR WHITE);

for (i = 1; i <= 7; i++) {
attroff (A BOLD) ;
attrset (COLOR PAIR (1)) ;
mvprintw(5 + i, 5, “Color pair %d”, 1i);
attrset (COLOR PAIR(i) | A BOLD);
mvprintw(5 + i, 25, “Bold color pair %d4d”, 1i);
refresh () ;
sleep (1) ;

}

endwin () ;
exit (EXIT SUCCESS) ;

}

This example results in the output shown in Figure 6-7, minus the actual colors, of course, which don’t
show up in the black-and-white screenshot.

= rick@localhost:~/blpde/ch06 lli=HlES
File Edit View Terminal Tabs Help

There are 8 COLORS, and 64 COLOR PAIRS available
Color pair 1 Bold color pair 1

Color pair 4 Bold color pair 4

Color pair 5 Bold color pair 5

Color pair & Bold color pair 6

Figure 6-7

How It Works

After checking that the screen supports color, the program initializes color handling and defines some
color pairs. Some text is then written to the screen using the color pairs, to show different color combina-
tions on the screen.
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Redefining Colors

As a leftover from early dumb terminals that could display very few colors at any one time, but allowed
the active color set to be configured, curses allows color redefinition with the init_color function:

#include <curses.h>

int init color(short color number, short red, short green, short blue);

This allows an existing color (in the range 0 to COLORS) to be redefined with new intensity values in the
range 0 to 1,000. This is a little like defining color values for GIF format image files.

Pads

When you're writing more advanced curses programs, it's sometimes easier to build a logical screen
and then output all or part of it to the physical screen later. Occasionally, it’s also better to have a logical
screen that is actually bigger than the physical screen and to display only part of the logical screen at any
one time.

It’s not easy to do this with the curses functions that you’ve met so far, as all windows must be no
larger than the physical screen. curses does provide a special data structure, a pad, for manipulating
logical screen information that doesn’t fit within a normal window.

A pad structure is very similar to a WINDOW structure, and all the curses routines that write to windows
can also be used on pads. However, pads do have their own routines for creation and refreshing.

You create pads in much the same way that you create normal windows:
#include <curses.h>
WINDOW *newpad(int number of lines, int number of columns);

Note that the return value is a pointer to a WINDOW structure, the same as newwin. Pads are deleted with
delwin, just like windows.

Pads do have different routines for refreshing. Since a pad isn’t confined to a particular screen location,
you must specify the region of the pad you wish to put on the screen, and the location it should occupy
on the screen. Do this with the prefresh function:

#include <curses.h>
int prefresh(WINDOW *pad ptr, int pad row, int pad column,

int screen row min, int screen col min,
int screen row max, int screen col max);
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This causes an area of the pad, starting at (pad_row, pad_column) to be written to the screen in the
region defined by (screen_row_min, screen col_min) to (screen_row_max, screen_col_max).

An additional routine, pnoutrefresh, is also provided. It acts in the same way as wnoutrefresh, for
more efficient screen updates.

Let’s check these out with a quick program, pad.c.

Try It Out Using a Pad

1.  Atthe start of this program, you initialize the pad structure and then create a pad, which
returns a pointer to that pad. Add characters to fill the pad structure (which is 50 characters
wider and longer than the terminal display):

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main ()

{
WINDOW *pad ptr;
int x, y;
int pad lines;
int pad cols;
char disp char;

initscr();

pad lines = LINES + 50;

pad cols = COLS + 50;

pad ptr = newpad(pad lines, pad cols);
disp char = ‘a’;

for (x = 0; x < pad lines; x++) {
for (y = 0; y < pad cols; y++) {
mvwaddch (pad ptr, x, y, disp char);
if (disp char == ‘z’) disp char = ‘a’;
else disp char++;

}

2. Now draw different areas of the pad on the screen at different locations before quitting:

prefresh(pad ptr, 5, 7, 2, 2, 9, 9);

sleep (1) ;

prefresh(pad ptr, LINES + 5, COLS + 7, 5, 5, 21, 19);
sleep (1) ;

delwin (pad ptr) ;

endwin () ;

exit (EXIT SUCCESS) ;

}

Running the program, you should see something like what is shown in Figure 6-8.
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rick@localhost:~/blp4de/ch06
File Edit View Terminal Tabs Help

opgrstuv

fghijklm

wxyzabcd

noprstuvwxyzabcdef

efgijklmnopgrstuvw

vwxzabcdefghijklmn

mnogrstuvwxyzabcde

defhijklmnopgrstuv
yzabcdefghijklm
pgrstuvwxyzabcd
ghijklmnopgrstu
xyzabcdefghijkl
opqrstuvwxyzabc
fghijklmnopgrst
wxyzabcdefghijk
nopgrstuvwxyzab
efghijklmnopqgrs
vwxyzabcdefghij
mNopgrstuvwxyza
defghijklmnopgr =

Figure 6-8

The CD Collection Application

Now that you've learned about the facilities that curses has to offer, you can develop the sample appli-
cation. Here’s a version written in C using the curses library. It offers some advantages in that the infor-
mation is more clearly displayed on the screen and a scrolling window is used for track listings.

The whole application is eight pages long, so we’ve split it up into sections and functions within each
section. You can get the source code, curses_app.c, from the Wrox Web site. As with all the programs in
this book, it’s under the GNU Public License.

We’ve written this version of the CD database application using the information
presented in earlier chapters. It's derived from the original shell script presented in
Chapter 2. It hasn’t been redesigned for the C implementation, so you can still see
many features of the shell in this version. Note that there are some significant limi-
tations with this implementation that we will resolve in later revisions.

We have broken the code for this application into several distinct portions as indicated by the following
headings. The code conventions used here are slightly different from most of the rest of the book; here,
highlighted code is used only to show where other application functions are called.

Starting a New CD Collection Application

This first section of code is just concerned with declaring the variables and functions you will use later,
and initializing some data structures:

1. Include all those header files and then some global constants:

#include <unistd.h>
#include <stdlib.h>
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#include <stdio.h>
#include <string.h>
#include <curses.h>

#define MAX STRING 80 /* Longest allowed response */
#define MAX ENTRY 1024 /* Longest allowed database entry */
#define MESSAGE LINE 6 /* Misc. messages on this line */
#define ERROR LINE 22 /* Line to use for errors */
#define Q LINE 20 /* Line for questions */
#define PROMPT LINE 18 /* Line for prompting on */
2. Now you need some global variables. The variable current_cd is used to store the current CD

title with which you are working. It’s initialized so that the first character is null, to indicate
that no CD selected. The \ 0 is not strictly necessary, but it ensures that the variable is initialized,
which is generally a good thing. The variable current_cat is used to record the catalog num-
ber of the current CD.

static char current cd[MAX STRING] = “\0”;
static char current cat [MAX STRING] ;

3.  Now declare some filenames. To keep things simple, the files are fixed in this version, as is the
temporary filename.

This could cause a problem if the program is run by two users in the same directory. A
better way to obtain database filenames would be either by program arguments or from
environment variables. We also need an improved method of generating a unique tem-
porary filename, for which we could use the POSIX tmpnam function. We’ll address
many of these issues in Chapter 8, when we use MySQL to store the data.

const char *title file = “title.cdb”;
const char *tracks file = “tracks.cdb”;
const char *temp file = “cdb.tmp”;

4. Finally, the function prototypes:

void clear all screen(void) ;

void get return(void) ;

int get confirm(void) ;

int getchoice (char *greet, char *choices|]);

void draw menu(char *options[], int highlight,
int start row, int start col);

void insert title(char *cdtitle);

void get string(char *string) ;

void add record(void) ;

void count cds (void) ;

void find cd(void) ;

void list tracks(void) ;

void remove tracks(void) ;

void remove cd(void) ;

void update cd(void) ;
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5. Before you look at their implementation, you need some structures (actually, an array of menu
options) for the menus. The first character of each menu text is returned when the option is
selected. Fox example, if the menu item is Add New CD, then the first letter, a, will be returned
when this menu item is selected. The extended menu is displayed when a CD is currently selected:

char *main menul[] =
{
“add new CD”,
“find CD”,
“count CDs and tracks in the catalog”,
“quit”,
0,

ha

char *extended menul[] =

{

“add new CD”,

“find CD”,

“count CDs and tracks in the catalog”,
“list tracks on current CD”,

“remove current CD”,

“update track information”,

“quit”,

0,

ha

That finishes the initialization. Now you can move on to the program functions, but first you need to sum-
marize the interrelations of these functions, all 16 of them. They are divided into three program subsections:

Q  Drawing the menu
0  Adding CDs to the database
0  Retrieving and displaying CD data

See Figure 6-9 for a visual representation.

MAIN

[ eeT_cwoice | [ apo_recorp | | count_eps || mnp_ep | [ usT_tracks | [ memove_co || uppaTE_co

[oraw_menu | [ INseRT_TiTLE |

GET_RETURN REMOVE_TRACKS

GET_STRING

GET_CONFIRM

CLEAR_ALL_SCREEN

Figure 6-9
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Looking at main
main enables you to make selections from the menu until you select quit. Here’s the code:

int main()
{
int choice;
initscr();
do {
choice = getchoice(“Options:”,
current cd[0] ? extended menu : main menu) ;
switch (choice) ({
case ‘q’:
break;
case ‘a’:
add_record() ;
break;
case ‘c':
count_cds () ;
break;
case ‘f’:
find cd() ;
break;
case ‘1’:
list tracks() ;
break;
case '‘r':
remove cd() ;
break;
case ‘u’:
update cd() ;
break;

} while (choice != ‘q’);
endwin () ;
exit(EXIT_SUCCESS);

}

Let’s now look at the detail of the functions associated with the three program subsections.

Building the Menu

This section looks at the three functions that relate to the program’s user interface:

1. The getchoice function called by main is the principal function in this section. getchoice is
passed greet, an introduction, and choices, which points either to the main or to the extended
menu (depending on whether a CD has been selected). You can see how either main_menu or
extended_menu is passed as a parameter in the preceding main function:

int getchoice(char *greet, char *choices[])

{

static int selected row = 0;
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int max row = 0;

int start screenrow = MESSAGE LINE, start screencol = 10;
char **option;

int selected;

int key = 0;

option = choices;
while (*option) ({
max_row++;
option++;
}
/* protect against menu getting shorter when CD deleted */
if (selected row >= max row)
selected row = 0;
clear_all screen() ;
mvprintw(start screenrow - 2, start screencol, greet);
keypad (stdscr, TRUE) ;

cbreak () ;
noecho () ;
key = 0;
while (key != ‘g’ && key != KEY ENTER && key != ‘\n’) {
if (key == KEY UP) ({
if (selected row == 0)
selected row = max row - 1;
else

selected row--;
}
if (key == KEY DOWN) {
if (selected row == (max row - 1))
selected row = 0;
else
selected row++;
}
selected = *choices[selected row];
draw_menu (choices, selected row, start screenrow,
start_screencol) ;
key = getch();
}
keypad (stdscr, FALSE);
nocbreak () ;
echo () ;

if (key == ‘q’)
selected = ‘q’;

return (selected);
2. Note how two more local functions are called from within getchoice: clear all screen and
draw_menu. Let’s look at draw_menu first:

void draw menu(char *options[], int current highlight,
int start row, int start col)
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int current row = 0;

char **option ptr;

char *txt ptr;

option ptr = options;

while (*option ptr) {
if (current row == current highlight) attron (A STANDOUT) ;
txt ptr = options[current row] ;
txt ptr++;
mvprintw(start row + current row, start col, “%s”, txt ptr);
if (current row == current highlight) attroff (A STANDOUT) ;
current row++;
option ptr++;

}

mvprintw(start _row + current row + 3, start col,
“Move highlight then press Return “);
refresh() ;

Next look at clear_all_screen, which, surprisingly enough, clears the screen and rewrites
the title. If a CD is selected, then its information is displayed:

void clear all screen()

{

clear();
mvprintw(2, 20, “%s”, “CD Database Application”);
if (current cd[0]) {
mvprintw (ERROR_LINE, 0, “Current CD: %s: %s\n”,
current cat, current cd);

}

refresh() ;

Database File Manipulation

This section covers the functions that add to or update the CD database. The functions called from main
are add_record, update_cd, and remove cd.

Adding Records

1.

Add a new CD record to the database:

void add record()

{

char catalog number [MAX STRING] ;
char cd_title[MAX STRING];

char cd_type [MAX STRING] ;

char cd_artist [MAX STRING];

char cd_entry[MAX STRING];

int screenrow = MESSAGE_LINE;
int screencol = 10;
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clear all screen();
mvprintw(screenrow, screencol, “Enter new CD details”);
screenrow += 2;

mvprintw(screenrow, screencol, “Catalog Number: “);
get_string(catalog number) ;
SCreenrow++;

mvprintw(screenrow, screencol, CD Title: “);
get_string(cd title);
SCreenrow++;

mvprintw(screenrow, screencol, ™ CD Type: “);
get_string(cd type) ;
SCreenrow++;

mvprintw(screenrow, screencol, “ Artist: “);
get_string(cd artist);
SCreenrow++;

mvprintw (PROMPT LINE-2, 5, “About to add this new entry:”);
sprintf (cd entry, “%s,%s,%s,%s”,
catalog number, cd title, cd type, cd artist);

mvprintw (PROMPT LINE, 5, “%s”, cd_entry);
refresh() ;
move (PROMPT LINE, 0);
if (get confirm()) {

insert title(cd entry);

strcpy (current cd, cd title);

strcpy (current cat, catalog number) ;

2. get_ string prompts for and reads in a string at the current screen position. It also deletes any
trailing newline:

void get string(char *string)

{

int len;
wgetnstr (stdscr, string, MAX STRING) ;
len = strlen(string) ;

if (len > 0 && string[len - 1] == ‘\n’)
string[len - 1] = ‘\0’;

3. get_confirmprompts and reads user confirmation. It reads the user’s input string and checks
the first character for v or y. If it finds any other character, it gives no confirmation:
int get confirm()

int confirmed = 0;
char first char;
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mvprintw(Q LINE, 5, “Are you sure? “);

clrtoeol () ;

refresh() ;

cbreak () ;

first char = getch();

if (first char == ‘Y’ || first char == ‘y’) {

confirmed = 1;

}

nocbreak () ;

if (!lconfirmed) ({
mvprintw(Q LINE, 1, Cancelled”) ;
clrtoeol () ;
refresh() ;
sleep (1) ;

}

return confirmed;

4. Lastly, look at insert_title. This adds a title to the CD database by appending the title string
to the end of the titles file:

void insert title(char *cdtitle)

{
FILE *fp = fopen(title file, “a”);
if (1fp) {
mvprintw (ERROR_LINE, 0, “cannot open CD titles database”);
} else {
fprintf (fp, “%s\n”, cdtitle);
fclose (fp) ;

}
Updating Records

1.  On to the other file manipulation functions called by main. Next is update_cd. This function
uses a scrolling, boxed subwindow and needs some constants, which you define globally
because they will be needed later for the 1ist_tracks function.

#define BOXED LINES 11
#define BOXED ROWS 60
#define BOX LINE POS 8
#define BOX ROW POS 2

2. update cd enables the user to reenter the tracks for the current CD. Having deleted the previ-
ous tracks record, it prompts for new information:

void update cd()

{

FILE *tracks_fp;
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char track name [MAX STRING] ;
int len;

int track = 1;

int screen_line = 1;

WINDOW *box window ptr;
WINDOW *sub window ptr;

clear all screen() ;
mvprintw (PROMPT LINE, 0, “Re-entering tracks for CD. “);
if (!get confirm())
return;
move (PROMPT LINE, 0);
clrtoeol () ;

remove_ tracks() ;
mvprintw (MESSAGE LINE, 0, “Enter a blank line to finish”);

tracks fp = fopen(tracks file, “a”);

scrolling subwindow just inside the boxed subwindow.

We’ll continue the listing in just a moment; here, we want to take a brief intermis-
sion to highlight how you enter the information in a scrolling, boxed window. The
trick is to set up a subwindow, draw a box around the edge, and then add a new

box window ptr = subwin(stdscr, BOXED LINES + 2, BOXED ROWS + 2,

BOX LINE POS - 1, BOX ROW POS - 1);
if (!box window ptr)
return;
box (box_window ptr, ACS VLINE, ACS HLINE) ;

sub_window ptr = subwin(stdscr, BOXED LINES, BOXED ROWS,
BOX_LINE_POS, BOX_ROW_POS);
if (!sub_window ptr)
return;
scrollok (sub window ptr, TRUE);
werase (sub_window ptr) ;
touchwin (stdscr) ;

do {
mvwprintw (sub_window ptr, screen line++, BOX ROW POS + 2,
“Track %d: “, track);
clrtoeol () ;
refresh() ;

wgetnstr (sub_window ptr, track name, MAX STRING) ;
len = strlen(track name) ;
if (len > 0 && track name[len - 1] == ‘\n’)
track name[len - 1] = ‘\0’;
if (*track name)

fprintf (tracks fp, “$s,%d, %$s\n", current_cat, track, track name);

track++;
if (screen line > BOXED LINES - 1) {
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}

/* time to start scrolling */
scroll (sub_window ptr);
screen line —;
}
} while (*track name) ;
delwin (sub_window ptr);

fclose(tracks_fp) ;

Removing Records
1.

The last function called from main is remove cd:

void remove cd()

{

FILE *titles fp, *temp fp;
char entry[MAX ENTRY];
int cat length;

if (current cd[0] == ‘'\0’)
return;

clear all screen() ;
mvprintw (PROMPT LINE, 0, “About to remove CD %s: %s. “,
current cat, current cd);
if (!get confirm())
return;

cat_length = strlen(current cat);

/* Copy the titles file to a temporary, ignoring this CD */
titles fp = fopen(title file, “r”);
temp fp = fopen(temp file, “w”);

while (fgets(entry, MAX ENTRY, titles fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current cat, entry, cat length) != 0)
fputs (entry, temp fp);
}
fclose(titles fp);
fclose (temp fp);

/* Delete the titles file, and rename the temporary file */
unlink (title file);

rename (temp_file, title file);

/* Now do the same for the tracks file */
remove_tracks() ;

/* Reset current CD to ‘None’ */
current _cd[0] = ‘\0’;
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2.  Younow need to only list remove_tracks, the function that deletes the tracks from the current
CD. It’s called by both update_cd and remove_cd:

void remove tracks ()

{
FILE *tracks fp, *temp fp;
char entry[MAX ENTRY];
int cat_length;

if (current cd[0] == ‘\0’)
return;

cat_length = strlen(current cat);

tracks_fp = fopen(tracks file, “r”);
if (tracks fp == (FILE *)NULL) return;
temp fp = fopen(temp file, “w”);

while (fgets(entry, MAX ENTRY, tracks fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current cat, entry, cat length) != 0)
fputs (entry, temp fp);
}
fclose(tracks fp);
fclose(temp fp);

/* Delete the tracks file, and rename the temporary file */
unlink (tracks file);
rename (temp file, tracks file);

Querying the CD Database

Now look at the functions for accessing the data, which is simply stored in a pair of flat files as comma-
separated fields, for easy access:

1. Essential to all acquisitive hobbies is the knowledge of how many you own of whatever you collect.
The next function performs this task admirably; it scans the database, counting titles and tracks:

void count cds()
{
FILE *titles_fp, *tracks_fp;
char entry[MAX ENTRY];
int titles = 0;
int tracks = 0;

titles fp = fopen(title file, “r”);
if (titles_fp)
while (fgets(entry, MAX ENTRY, titles fp))
titles++;
fclose(titles fp);

250



Chapter 6: Managing Text-Based Screens with curses

tracks fp = fopen(tracks file, “r”);
if (tracks_fp) {
while (fgets(entry, MAX ENTRY, tracks fp))
tracks++;
fclose (tracks_fp) ;
}
mvprintw (ERROR_LINE, O,
“Database contains %d titles, with a total of %d tracks.”,
titles, tracks);
get_return() ;

2.  You'velost the sleeve notes from your favorite CD, but don’t worry! Having carefully entered the
details into the database, you can now find the track listing using £ind_cd. It prompts for a sub-
string to match in the database and sets the global variable current_cd to the CD title found:

void find cd()
{
char match[MAX_STRING], entry[MAX_ENTRY];
FILE *titles fp;
int count = 0;
char *found, *title, *catalog;

mvprintw(Q LINE, 0, “Enter a string to search for in CD titles: “);
get_string(match) ;

titles fp = fopen(title file, “r”);
if (titles_fp) {
while (fgets(entry, MAX ENTRY, titles fp)) {

/* Skip past catalog number */
catalog = entry;
if (found == strstr(catalog, “,”)) {
*found = ‘\0’;
title = found + 1;

/* Zap the next comma in the entry to reduce it to
title only */
if (found == strstr(title, “,”)) {
*found = ‘\0’;

/* Now see if the match substring is present */
if (found == strstr(title, match)) {

count++;

strcpy (current cd, title);

strcpy (current cat, catalog);

}
}
fclose(titles fp);

}
if (count != 1) {
if (count == 0) {
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3.

mvprintw (ERROR_LINE, 0, “Sorry, no matching CD found. “);

}

if (count > 1) {
mvprintw (ERROR_LINE, 0,
“Sorry, match is ambiguous: %d CDs found. “, count);

}
current_cd[0] = *\0’;
get_return()

7

Though catalog points at a larger array than current_cat and could conceivably overwrite
memory, the check in £gets prevents this.

You also need to be able to list the selected CD’s tracks on the screen. You can make use of the
#defines for the subwindows used in update_cd in the last section:

void list tracks()

{

FILE *tracks_fp;

char entry[MAX ENTRY];
int cat_length;

int lines op = 0;
WINDOW *track pad ptr;
int tracks = 0;

int key;

int first line = 0;

if (current _cd[0] == *\0’) {
mvprintw (ERROR LINE, 0, “You must select a CD first. “);
get_return() ;
return;

clear all screen();
cat_length = strlen(current_cat);

/* First count the number of tracks for the current CD */
tracks fp = fopen(tracks file, “r”);
if (!tracks_fp)

return;
while (fgets(entry, MAX ENTRY, tracks fp)) {
if (strncmp(current cat, entry, cat length) == 0)
tracks++;

}

fclose(tracks fp);

/* Make a new pad, ensure that even if there is only a single
track the PAD is large enough so the later prefresh() is always
valid. */

track_pad ptr = newpad(tracks + 1 + BOXED_LINES, BOXED_ROWS + 1);
if (!track pad ptr)
return;

tracks fp = fopen(tracks file, “r”);
if (!tracks_fp)
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return;
mvprintw(4, 0, “CD Track Listing\n”);

/* write the track information into the pad */
while (fgets(entry, MAX ENTRY, tracks fp)) {

/* Compare catalog number and output rest of entry */
if (strncmp(current cat, entry, cat length) == 0)
mvwprintw(track pad ptr, lines op++, 0, “%s”,
entry + cat_length + 1);
}
}
fclose(tracks_fp) ;

if (lines op > BOXED LINES) ({
mvprintw (MESSAGE LINE, O,
“Cursor keys to scroll, RETURN or g to exit”);
} else {
mvprintw (MESSAGE_LINE, 0, “RETURN or g to exit”);
}

wrefresh (stdscr) ;
keypad (stdscr, TRUE) ;

cbreak () ;

noecho () ;

key = 0;

while (key != ‘q’ && key != KEY ENTER && key != ‘\n’) {
if (key == KEY UP) {

if (first_line > 0)
first line--;
}
if (key == KEY DOWN) {
if (first_line + BOXED LINES + 1 < tracks)
first line++;

}

/* now draw the appropriate part of the pad on the screen */
prefresh(track pad ptr, first line, 0,

BOX_LINE_POS, BOX ROW POS,

BOX_LINE POS + BOXED_LINES, BOX ROW_POS + BOXED_ROWS);

key = getch() ;

}

delwin(track pad ptr);
keypad (stdscr, FALSE) ;
nocbreak () ;

echo () ;

The last two functions call get_return, which prompts for and reads a carriage return, ignor-
ing other characters:

void get return()

{
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int ch;

mvprintw(23, 0, “%s”, “ Press return “);
refresh() ;

while ((ch = getchar()) != ‘\n’ && ch != EOF);

}

If you run this program, you should see something like what is shown in Figure 6-10.

rick@localhost:~/blpde/ch06/app
File Edit View Terminal Tabs Help

CD Database Application

Options:

find CD

count CDs and tracks in the catalog
list tracks on current CD

remove current CD

update track information

quit

Move highlight then press Return

Current CD: 625438759: I Giorni

Figure 6-10

Summary

In this chapter, we have explored the curses library. curses provides a good way for text-based pro-
grams to control the screen and read the keyboard. Although curses doesn’t offer as much control as
the general terminal interface (GTI) and direct terminfo access, it’s considerably easier to use. If you're
writing a full-screen, text-based application, you should consider using the curses library to manage
the screen and keyboard for you.
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In earlier chapters, we touched on the subject of resource limits. In this chapter, we're going to look
first at ways of managing your resource allocation, then at ways of dealing with files that are accessed
by many users more or less simultaneously, and lastly at one tool provided in Linux systems for over-
coming the limitations of flat files as a data storage medium.

We can summarize these topics as three ways of managing data:

0O  Dynamic memory management: what to do and what Linux won’t let you do
Q  File locking: cooperative locking, locking regions of shared files, and avoiding deadlocks

Q  The dbm database: a basic, non-SQL-based database library featured in most Linux
systems

Managing Memory

On all computer systems memory is a scarce resource. No matter how much memory is available,
it never seems to be enough. It doesn’t seem so long ago that 256MB of RAM was considered suffi-
cient, but now 2GB of RAM is commonplace as a sensible minimum requirement even for desktop
systems, with servers usefully having significantly more.

From the earliest versions of the operating system, UNIX-style operating systems have had a very
clean approach to managing memory, which Linux, because it implements the X/Open specifica-
tion, has inherited. Linux applications, except for a few specialized embedded applications, are
never permitted to access physical memory directly. It might appear so to the application, but
what the application is seeing is a carefully controlled illusion.

Linux provides applications with a clean view of a huge directly addressable memory space.
Additionally, it provides protection so that different applications are protected from each other,
and it allows applications to apparently access more memory than is physically present in the
machine, provided the machine is at least well configured and has sufficient swap space.




Chapter 7: Data Management

Simple Memory Allocation

You allocate memory using the malloc call in the standard C library:

#include <stdlib.h>
void *malloc(size t size);

Notice that Linux (following the X/Open specification) differs from some UNIX implementations by
not requiring a special malloc.h include file. Note also that the size parameter that specifies the
number of bytes to allocate isn’t a simple int, although it's usually an unsigned integer type.

You can allocate a great deal of memory on most Linux systems. Let’s start with a very simple program,
but one that would defeat old MS-DOS-based programs, because they cannot access memory outside the
base 640K memory map of PCs.

Try It Out Simple Memory Allocation

Type the following program, memory1l.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A MEGABYTE (1024 * 1024)

int main()
char *some memory;
int megabyte = A MEGABYTE;
int exit code = EXIT FAILURE;

some memory = (char *)malloc (megabyte) ;

if (some memory != NULL) {
sprintf (some memory, “Hello World\n”) ;
printf (“%s”, some memory) ;

exit code = EXIT SUCCESS;

}

exit (exit code) ;

}
When you run this program, it gives the following output:

$ . /memoryl
Hello World

How It Works

This program asks the malloc library to give it a pointer to a megabyte of memory. You check to ensure
that malloc was successful and then use some of the memory to show that it exists. When you run the
program, you should see Hello World printed out, showing that malloc did indeed return the megabyte
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of usable memory. We don’t check that all of the megabyte is present; we have to put some trust in the
malloc code!

Notice that because malloc returns a void * pointer, you cast the result to the char * that you need.
The malloc function is guaranteed to return memory that is aligned so that it can be cast to a pointer of

any type.

The simple reason is that most current Linux systems use 32-bit integers and 32-bit pointers for pointing
to memory, which allows you to specify up to 4 gigabytes. This ability to address directly with a 32-bit
pointer, without needing segment registers or other tricks, is termed a flat 32-bit memory model. This
model is also used in 32-bit versions of Windows XP and Vista. You should never rely on integers being
32-bit however, as an ever-increasing number of 64-bit versions of Linux are in use.

Allocating Lots of Memory

Now that you've seen Linux exceed the limitations of the MS-DOS memory model, let’s give it a more
difficult problem. The next program asks to allocate somewhat more memory than is physically present
in the machine, so you might expect malloc to start failing somewhere a little short of the actual amount
of memory present, because the kernel and all the other running processes are using some memory.

Try It Out Asking for All Physical Memory

With memory2 . ¢, we're going to ask for more than the machine’s physical memory. You should adjust
the define PHY MEM MEGS depending on your physical machine:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A MEGABYTE (1024 * 1024)
#define PHY MEM MEGS 1024 /* Adjust this number as required */

int main()
char *some memory;
size t size to allocate = A MEGABYTE;
int megs obtained = 0;

while (megs obtained < (PHY MEM MEGS * 2)) {
some memory = (char *)malloc(size to allocate) ;
if (some memory != NULL) ({
megs obtained++;
sprintf (some memory, “Hello World”) ;
printf (“%s - now allocated %d Megabytes\n”, some memory, megs obtained) ;

else {

exit (EXIT FAILURE) ;
}
}

exit (EXIT SUCCESS) ;
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The output, somewhat abbreviated, is as follows:

$ ./memory2
Hello World - now allocated 1 Megabytes
Hello World - now allocated 2 Megabytes

Hello World - now allocated 2047 Megabytes
Hello World - now allocated 2048 Megabytes

How It Works

The program is very similar to the previous example. It simply loops, asking for more and more memory,
until it has allocated twice the amount of memory you said your machine had when you adjusted the
define PHY MEM_MEGS. The surprise is that it works at all, because we appear to have created a program
that uses every single byte of physical memory on the author’s machine. Notice that we use the size_t
type for our call to malloc.

The other interesting feature is that, at least on this machine, it ran the program in the blink of an eye.
So not only have we apparently used up all the memory, but we’ve done it very quickly indeed.

Let’s investigate further and see just how much memory we can allocate on this machine with memory3 . c.
Since it’s now clear that Linux can do some very clever things with requests for memory, we’ll allocate
memory just 1K at a time and write to each block that we obtain.

Try It Out Available Memory

This is memory3. c. By its very nature, it’s extremely system-unfriendly and could affect a multiuser
machine quite seriously. If you're at all concerned about the risk, it’s better not to run it at all; it won’t
harm your understanding if you don’t:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define ONE K (1024)

int main()
char *some memory;
int size to allocate = ONE K;
int megs obtained = 0;
int ks obtained = 0;

while (1) {
for (ks obtained = 0; ks obtained < 1024; ks obtained++) {
some memory = (char *)malloc(size to allocate);

if (some memory == NULL) exit (EXIT FAILURE) ;
sprintf (some memory, “Hello World”) ;

}

megs_obtained++;
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printf (*“Now allocated %d Megabytes\n”, megs obtained) ;

}

exit (EXIT SUCCESS) ;

}
This time, the output, again abbreviated, is

$ . /memory3
Now allocated 1 Megabytes

Now allocated 1535 Megabytes

Now allocated 1536 Megabytes

Out of Memory: Killed process 2365
Killed

and then the program ends. It also takes quite a few seconds to run, and slows down significantly around
the same number as the physical memory in the machine, and exercises the hard disk quite noticeably.
However, the program has allocated, and accessed, more memory than this author physically has in his
machine at the time of writing. Finally, the system protects itself from this rather aggressive program and
kills it. On some systems it may simply exit quietly when malloc fails.

How It Works

The application’s allocated memory is managed by the Linux kernel. Each time the program asks for
memory or tries to read or write to memory that it has allocated, the Linux kernel takes charge and
decides how to handle the request.

Initially, the kernel was simply able to use free physical memory to satisfy the application’s request for
memory, but once physical memory was full, it started using what'’s called swap space. On Linux, this is

a separate disk area allocated when the system was installed. If you're familiar with Windows, the Linux
swap space acts a little like the hidden Windows swap file. However, unlike Windows, there are no local
heap, global heap, or discardable memory segments to worry about in code — the Linux kernel does all
the management for you.

The kernel moves data and program code between physical memory and the swap space so that each
time you read or write memory, the data always appears to have been in physical memory, wherever it
was actually located before you attempted to access it.

In more technical terms, Linux implements a demand paged virtual memory system. All memory seen
by user programs is virtual; that is, it doesn’t actually exist at the physical address the program uses.
Linux divides all memory into pages, commonly 4,096 bytes per page. When a program tries to access
memory, a virtual-to-physical translation is made, although how this is implemented and the time it
takes depend on the particular hardware you're using. When the access is to memory that isn’t physi-
cally resident, a page fault results and control is passed to the kernel.

The Linux kernel checks the address being accessed and, if it’s a legal address for that program, determines

which page of physical memory to make available. It then either allocates it, if it has never been written
before, or, if it has been stored on the disk in the swap space, reads the memory page containing the data
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into physical memory (possibly moving an existing page out to disk). Then, after mapping the virtual
memory address to match the physical address, it allows the user program to continue. Linux applications
don’t need to worry about this activity because the implementation is all hidden in the kernel.

Eventually, when the application exhausts both the physical memory and the swap space, or when the
maximum stack size is exceeded, the kernel finally refuses the request for further memory and may pre-
emptively terminate the program.

This “killing the process” behavior is different from early versions of Linux and many
other flavors of UNIX, where malloc simply fails. It’s termed the “out of memory
(OOM) killer,” and although it may seem rather drastic, it is in fact a good compromise
between letting processes allocate memory rapidly and efficiently and having the
Linux kernel protect itself from a total lack of resources, which is a serious issue.

So what does this mean to the application programmer? Basically, it’s all good news. Linux is very good
at managing memory and will allow applications to use very large amounts of memory and even very
large single blocks of memory. However, you must remember that allocating two blocks of memory
won’t result in a single continuously addressable block of memory. What you get is what you ask for:
two separate blocks of memory.

Does this apparently limitless supply of memory, followed by preemptive killing of the process, mean that
there’s no point in checking the return from malloc? Definitely not. One of the most common problems in
C programs using dynamically allocated memory is writing beyond the end of an allocated block. When
this happens, the program may not terminate immediately, but you have probably overwritten some data
used internally by the malloc library routines.

Usually, the result is that future calls to malloc may fail, not because there’s no memory to allocate,
but because the memory structures have been corrupted. These problems can be quite difficult to track
down, and in programs the sooner the error is detected, the better the chances of tracking down the
cause. In Chapter 10, on debugging and optimizing, we’ll discuss some tools that can help you track
down memory problems.

Abusing Memory

Suppose you try to do “bad” things with memory. In this exercise, you allocate some memory and then
attempt to write past the end, in memory4 . c.

Try It Out Abusing Your Memory
#include <stdlib.h>

#define ONE K (1024)
int main()

{

char *some memory;
char *scan ptr;
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}

some memory = (char *)malloc (ONE K) ;
if (some memory == NULL) exit (EXIT FAILURE)

scan_ptr = some memory;

while (1) {
*scan ptr =
scan_ptr++;

\\OI;

}

exit (EXIT SUCCESS) ;

The output is simply

$ /memory4
Segmentation fault

How It Works

The Linux memory management system has protected the rest of the system from this abuse of memory.
To ensure that one badly behaved program (this one) can’t damage any other programs, Linux has ter-
minated it.

1

Each running program on a Linux system sees its own memory map, which is different from every other
program’s. Only the operating system knows how physical memory is arranged, and not only manages
it for user programs, but also protects user programs from each other.

The Null Pointer

Unlike MS-DOS, but more like newer flavors of Windows, modern Linux systems are very protective
about writing or reading from the address referred to by a null pointer, although the actual behavior is
implementation-specific.

Try It Out

Accessing a Null Pointer

Let’s find out what happens when you access a null pointer in memory5Sa. c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main ()

{

char *some memory = (char *)O0;

printf (A read from null %$s\n”, some memory) ;

sprintf (some memory, “A write to null\n”);

exit (EXIT SUCCESS) ;

261



Chapter 7: Data Management

The output is

$ ./memory5a
A read from null (null)
Segmentation fault

How It Works

The first print £ attempts to print out a string obtained from a null pointer; then the sprintf attempts to
write to a null pointer. In this case, Linux (in the guise of the GNU “C” library) has been forgiving about
the read and has simply provided a “magic” string containing the characters (nu 1 1) \o0. It hasn’t been
so forgiving about the write and has terminated the program. This can sometimes be helpful in tracking
down program bugs.

If you try this again but this time don’t use the GNU “C” library, you'll discover that reading from loca-
tion zero is not permitted. Here is memory5b. c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()

{
char z = *(const char *)O0;
printf (I read from location zero\n”);

exit (EXIT SUCCESS) ;

}
The output is

$ ./memory5b
Segmentation fault

This time you attempt to read directly from location zero. There is no GNU 1ibc library between you
and the kernel now, and the program is terminated. Note that some versions of UNIX do permit reading
from location zero, but Linux doesn't.

Freeing Memory

Up to now, we've been simply allocating memory and then hoping that when the program ends, the
memory we’ve used hasn’t been lost. Fortunately, the Linux memory management system is quite capable
of reliably ensuring that memory is returned to the system when a program ends. However, most pro-
grams don’t simply want to allocate some memory, use it for a short period, and then exit. A much more
common use is dynamically using memory as required.

Programs that use memory on a dynamic basis should always release unused memory back to the mal-

loc memory manager using the free call. This enables separate blocks to be remerged and enables the
malloc library to look after memory, rather than have the application manage it. If a running program
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(process) uses and then frees memory, that free memory remains allocated to the process. Behind the
scenes, Linux is managing the blocks of memory the programmer is using as a set of physical “pages,”
usually 4K bytes each, in memory. However, if a page of memory is not being used, then the Linux mem-
ory manager will be able to move it from physical memory to swap space (termed paging), where it has
little impact on the use of resources. If the program tries to access data inside the memory page that has be
moved to swap space, then Linux will very briefly suspend the program, move the memory page back
from swap space into physical memory again, and then allow the program to continue, just as though the
data had been in memory all along.

#include <stdlib.h>

void free(void *ptr to memory) ;

A call to free should be made only with a pointer to memory allocated by a call to malloc, calloc, or
realloc. You'll meet calloc and realloc very shortly.

Try It Out Freeing Memory

This program is called memoryé . c:

#include <stdlib.h>
#include <stdio.h>

#define ONE K (1024)

int main()

{

char *some memory;
int exit code = EXIT FAILURE;

some memory = (char *)malloc (ONE K) ;

if (some memory != NULL) {
free (some memory) ;
printf (“Memory allocated and freed again\n”);
exit code = EXIT SUCCESS;

}

exit (exit code) ;

}
The output is

$ ./memoryé6
Memory allocated and freed again

How It Works

This program simply shows how to call £ree with a pointer to some previously allocated memory.
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Remember that once you've called free on a block of memory, it no longer belongs
to the process. It’s not being managed by the malloc library. Never try to read or
write memory after calling free on it.

Other Memory Allocation Functions

Two other memory allocation functions are not used as often as malloc and free: calloc and realloc.
The prototypes are

#include <stdlib.h>

void *calloc(size t number of elements, size t element size);
void *realloc(void *existing memory, size t new size);

Although calloc allocates memory that can be freed with free, it has somewhat different parameters
from malloc: It allocates memory for an array of structures and requires the number of elements and the
size of each element as its parameters. The allocated memory is filled with zeros; and if calloc is success-
ful, a pointer to the first element is returned. Like malloc, subsequent calls are not guaranteed to return
contiguous space, so you can’t enlarge an array created by calloc by simply calling calloc again and
expecting the second call to return memory appended to that returned by the first call.

The realloc function changes the size of a block of memory that has been previously allocated. It’s
passed a pointer to some memory previously allocated by malloc, calloc, or realloc and resizes it
up or down as requested. The realloc function may have to move data around to achieve this, so it’s
important to ensure that once memory has been realloced, you always use the new pointer and never
try to access the memory using pointers set up before realloc was called.

Another problem to watch out for is that realloc returns a null pointer if it has been unable to resize
the memory. This means that in some applications you should avoid writing code like this:

my ptr = malloc (BLOCK SIZE) ;

my ptr = realloc(my ptr, BLOCK SIZE * 10);
If realloc fails, then it returns a null pointer; my_ptr will point to null; and the original memory allocated
with malloc can no longer be accessed via my_ptr. It may therefore be to your advantage to request the
new memory first with malloc and then copy data from the old block to the new block using memcpy

before freeing the old block. On error, this would allow the application to retain access to the data stored
in the original block of memory, perhaps while arranging a clean termination of the program.

File Locking

File locking is a very important part of multiuser, multitasking operating systems. Programs frequently
need to share data, usually through files, and it’s very important that those programs have some way of
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establishing control of a file. The file can then be updated in a safe fashion, or a second program can stop
itself from trying to read a file that is in a transient state while another program is writing to it.

Linux has several features that you can use for file locking. The simplest method is a technique to create
lock files in an atomic way, so that nothing else can happen while the lock is being created. This gives a
program a method of creating files that are guaranteed to be unique and could not have been simultane-
ously created by a different program.

The second method is more advanced; it enables programs to lock parts of a file for exclusive access.
There are two different ways of achieving this second form of locking. We'll look at only one in detail,
as the second is very similar — it just has a slightly different programming interface.

Creating Lock Files

Many applications just need to be able to create a lock file for a resource. Other programs can then check
the file to see whether they are permitted to access the resource.

Usually, these lock files are in a special place with a name that relates to the resource being controlled.
For example, when a modem is in use, Linux creates a lock file, often using a directory in the /var/
spool directory.

Remember that lock files act only as indicators; programs need to cooperate to use them. They are
termed advisory locks as opposed to mandatory locks, where the system will enforce the lock behavior.

To create a file to use as a lock indicator, you can use the open system call defined in fcntl.h (which
you met in an earlier chapter) with the 0_CREAT and 0_EXCL flags set. This enables you to check that the
file doesn’t already exist and then create it in a single, atomic operation.

Try It Out Creating a Lock File

You can see this in action with lockl.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

int main()

int file desc;
int save errno;

file desc = open(“/tmp/LCK.test”, O RDWR | O CREAT | O EXCL, 0444);
if (file desc == -1) {
save_errno = errno;

printf (“Open failed with error %d\n”, save errno);

else {
printf (“Open succeeded\n”) ;
}

exit (EXIT SUCCESS) ;
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The first time you run the program, the output is

$ ./lockl
Open succeeded

but the next time you try, you get

$ ./lockl
Open failed with error 17

How It Works

The program calls open to create a file called /tmp/LCK. test, using the 0_CREAT and 0_EXCL flags. The
first time you run the program, the file doesn’t exist, so the open call is successful. Subsequent invoca-
tions of the program fail because the file already exists. To get the program to succeed again, you have to
manually remove the lock file.

On Linux systems at least, error 17 refers to EEXIST, an error used to indicate that a file already exists.
Error numbers are defined in the header file errno.h or, more commonly, by files included by it. In this
case, the definition, actually in /usr/include/asm-generic/errno-base.h, reads

#define EEXIST 17 /* File exists */
This is an appropriate error for an open (O_CREAT | O_EXCL) failure.

If a program simply needs a resource exclusively for a short period of its execution, often termed a critical
section, it should create the lock file using the open system call before entering the critical section, and use
the unlink system call to delete it afterward, when the program exits the critical section.

You can demonstrate how programs can cooperate with this locking mechanism by writing a sample
program and running two copies of it at the same time. You'll use the getpid call, which you saw in
Chapter 4; it returns the process identifier, a unique number for each currently executing program.

Try It Out Cooperative Lock Files

1. Here's the source of the test program, lock2 . c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

const char *lock file = “/tmp/LCK.test2”;
int main ()
{

int file desc;
int tries = 10;
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}

while (tries--) {
file desc = open(lock file, O RDWR | O CREAT | O_EXCL, 0444);
if (file desc == -1) {
printf (“%d - Lock already present\n”, getpid()) ;
sleep(3);
}
else {

The critical section starts here:

printf (“*%d - I have exclusive access\n”, getpid());
sleep (1) ;

(void) close (file desc) ;

(void)unlink (lock file);

It ends here:
sleep(2) ;
}
}

exit (EXIT SUCCESS) ;

To run the program, you should first use this command to ensure that the lock file doesn’t exist:

$ rm -f /tmp/LCK.test2

Then run two copies of the program by using this command:

$ ./lock2 & ./lock2

This starts a copy of Lock2 in the background and a second copy running in the foreground. This is
the output:

1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
1284 - I have exclusive access
1283 - Lock already present
1283 - I have exclusive access
1284 - Lock already present
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The preceding example shows how the two invocations of the same program are cooperating. If you try
this, you'll almost certainly see different process identifiers in the output, but the program behavior will
be the same.

How It Works

For the purposes of demonstration, you make the program loop 10 times using the while loop. The
program then tries to access the critical resource by creating a unique lock file, /tmp/LCK. test2. If this
fails because the file already exists, then the program waits for a short time and tries again. If it succeeds,
then it can access the resource and, in the part marked “critical section,” carry out whatever processing
is required with exclusive access.

Since this is just a demonstration, you wait for only a short period. When the program has finished with
the resource, it releases the lock by deleting the lock file. It can then carry out some other processing
(just the s1leep function in this case) before trying to reacquire the lock. The lock file acts as a binary
semaphore, giving each program a yes or no answer to the question, “Can I use the resource?” You will
learn more about semaphores in Chapter 14.

It’'s important to realize that this is a cooperative arrangement and that you must write
the programs correctly for it to work. A program failing to create the lock file can’t
simply delete the file and try again. It might then be able to create the lock file, but
the other program that created the lock file has no way of knowing that it no longer
has exclusive access to the resource.

Locking Regions

Creating lock files is fine for controlling exclusive access to resources such as serial ports or infrequently
accessed files, but it isn’t so good for access to large shared files. Suppose you have a large file that is written
by one program but updated by many different programs simultaneously. This might occur if a program is
logging some data that is obtained continuously over a long period and is being processed by several other
programs. The processing programs can’t wait for the logging program to finish — it runs continuously —
so they need some way of cooperating to provide simultaneous access to the same file.

You can accommodate this situation by locking regions of the file so that a particular section of the file is
locked, but other programs may access other parts of the file. This is called file-segment, or file-region, locking.
Linux has (at least) two ways to do this: using the fent1 system call and using the 1ockf£ call. We'll look
primarily at the fcnt1 interface because that is the most commonly used interface. lockf is reasonably
similar, and, on Linux, is normally just an alternative interface to fcnt1. However, the fcntl and lockf
locking mechanisms do not work together: They use different underlying implementations, so you should
never mix the two types of call; stick to one or the other.

You met the fcnt1 call in Chapter 3. Its definition is

#include <fentl.h>

int fcntl(int fildes, int command, ...);
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fcntl operates on open file descriptors and, depending on the command parameter, can perform different
tasks. The three command options of interest for file locking are as follows:

Q F _GETLK

U F SETIK

U F_SETLKW

When you use these the third argument must be a pointer to a struct flock, so the prototype is effec-
tively this:

int fcntl(int fildes, int command, struct flock *flock structure);

The flock (file lock) structure is implementation dependent, but it will contain at least the following
members:

U  short 1 type;
short 1_whence;
off t 1 start;

Q
Q
U  off t 1 len;
Qa

pid t 1 pid;

The 1_type member takes one of several values, also defined in fcnt1.h. These are shown in the fol-
lowing table:

Value Description

F_RDLCK A shared (or “read”) lock. Many different processes can have a shared lock
on the same (or overlapping) regions of the file. If any process has a shared
lock, then no process will be able to get an exclusive lock on that region. In
order to obtain a shared lock, the file must have been opened with read or
read/write access.

F_UNLCK Unlock; used for clearing locks

F_WRLCK An exclusive (or “write”) lock. Only a single process may have an exclusive
lock on any particular region of a file. Once a process has such a lock, no other
process will be able to get any sort of lock on the region. To obtain an exclu-
sive lock, the file must have been opened with write or read /write access.

The 1_whence, 1_start,and 1_len members define a region — a contiguous set of bytes — in a file.. The
1_whence must be one of SEEK_SET, SEEK CUR, SEEK_END (from unistd.h). These correspond to the start,
current position, and end of a file, respectively. 1 _whence defines the offset to which 1_start, the first byte
in the region, is relative. Normally, this would be SEEK_SET, so 1_start is counted from the beginning of
the file. The 1_len parameter defines the number of bytes in the region.

The 1_pid parameter is used for reporting the process holding a lock; see the F_GETLK description
that follows.
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Each byte in a file can have only a single type of lock on it at any one time, and may be locked for shared
access, locked for exclusive access, or unlocked. There are quite a few combinations of commands and
options to the fent1 call, so let’s look at each of them in turn.

The F GETLK Command

The first command is F_GETLK. It gets locking information about the file that £i1ldes (the first parameter)
has open. It doesn’t attempt to lock the file. The calling process passes information about the type of lock

it might wish to create, and fcntl used with the F_GETLK command returns any information that would
prevent the lock from occurring.

The values used in the £1lock structure are described in the following table:

Value Description

1_type Either F_RDLCK for a shared (read-only) lock or ¥ WRLCK for an exclusive
(write) lock

1 _whence One of SEEK_SET, SEEK_CUR, or SEEK_END LCK
1_start The start byte of the file region of interest
1_len The number of bytes in the file region of interest
1 pid The identifier of the process with the lock

A process may use the F_GETLK call to determine the current state of locks on a region of a file. It should
set up the £lock structure to indicate the type of lock it may require and define the region it’s interested
in. The fentl call returns a value other than -1 if it’s successful. If the file already has locks that would
prevent a lock request from succeeding, it overwrites the £1ock structure with the relevant information.
If the lock will succeed, the £1ock structure is unchanged. If the F_GETLX call is unable to obtain the
information, it returns -1 to indicate failure.

If the F_GETLK call is successful (i.e., it returns a value other than -1), the calling application must check
the contents of the £1ock structure to determine whether it was modified. Since the 1_pid value is set
to the locking process (if one was found), this is a convenient field to check to determine whether the
flock structure has been changed.

The F SETLK Command

This command attempts to lock or unlock part of the file referenced by £ildes. The values used in the
flock structure (and different from those used by F_GETLK) are as follows:

Value Description

1 _type One of the following:
F_RDLCK for a read-only, or shared, lock
F_WRLCK for an exclusive or write lock
F_UNLCK to unlock a region

1 pid Unused
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As with F_GETLK, the region to be locked is defined by the values of the 1_start, 1_whence,and 1_len
fields of the £lock structure. If the lock is successful, fcnt 1 returns a value other than -1; on failure, -1 is
returned. The function always returns immediately.

The F_ SETLKW Command

The F_SETLKW command is the same as the F_SETLK command above except that if it can’t obtain the
lock, the call will wait until it can. Once this call has started waiting, it will return only when t