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PREFACLE.

IN the work, of which the present volume is an instal-
ment, my endeavour has been to lay before the reader
a connected exposition of the theory of sound, which
should include the more important of the advances made
in modern times by Mathematiciuns and Physicists.
The importance of the object which T have had in view
will not, I think, be disputed by those competent to
Judge. At the present time many of the most valuable
contributions to science are to be found only in scattered
periodicals and transactions of societies, published in
various parts of the world and in several languages, and
are often practically inaccessible to those who do not
happen to live in the neighbourhood of large public
libravies.  In such a state of things the mechanical
impediments to study entail an amount of unremunera-
tive labour and consequent hindrance to the advance-
ment of science which it would be difficult to over-
cstimate,

Since the well-known Article on Sound in the Ency-
clopadic Metropolitana, by Sir John Hersehel (1845),
no complete work has been published in which the
subject is treated mathematically. DBy the premature
death of Prof. Donkin the scientific world was deprived
of one whose mathematical attainments in combination
with a practical knowledge of music qualified him in a
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vi PREFACE.

special manner to write on Sound. The first part of his
Acoustics (1870), though little more than n fragment, is
sufficient to shew that my labours would have been un-
necessary had Prof. Donkin lived to complets his work.

In the choice of topics to be dealt with in a work
on Sound, I have for the most part followed the example
of my predecessors. To a great extent the theory of
Sound, as commonly understood, covers the same ground
as the theory of Vibrations in general ; but, unless some
limitation were admitted, the consideration of such sub-
Jects as the Tides, not to speak of Optics, would have to
be included. As a general rule we shall confine ourselves
to those classes of vibrations for which our ears afford a
ready made and wonderfully sensitive instrument of in-
vestigation, Without ears we should hardly care much
more about vibrations than without eyes we should care
about light,

The present volume includes chapters on the vibra-
tions of systems in gencral, in which, I hope, will be
recognised some novelty of treatment and results, fol-
lowed by a more detailed consideration of special systems,
such as stretched strings, bars, membranes, and plates,
The second volume, of which a considerable portion is
already written, will commence with airial vibrations.

My best thanks are due to Mr H. M. Taylor of
Trinity College, Cambridge, who has been good enough
to read the proofs. By his kind assistance several errors
and obscurittes have been eliminated, and the volume
generally has been rendered less imperfect than it would
otherwise have been.

Any corrections, or suggestions for improvements, with

which my readers may favour me will be highly appre-
ciated.

TerrNG Prace, Wirnay,
April, 1877,
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CHAPTER L

INTRODUCTION,

1. Tnr sensation of sound is a thing sui generis, not com-
parable with any of our other sensations. No onc can express
the relation between a sound and a colour or a smell, Directly
or indirectly, all questions connected with this subject must
come for decision to the ear, as the organ of hearing; and
from it thore can be no appeal. But we are not thercfore to
infer that all acoustical investigations are conducted with the
unassisted car. When once we have discovered the physical
phenomena which constitute the foundation of sound, our ex-
plorations arc in great measure transferred to another field lying
within the dominion of the principles of Mechanics. Important
laws are in this way arrived at, to which the sensations of the ear
cannot but conform,

2. Very cursory obscrvation often suffices to shew that
sounding bodies arc in a state of vibration, and that the phe-
nomena of sound and vibration are closely connected. When a
vibrating bell or string is touched by the finger, the sound ceases
at the same moment that the vibration is damped. But, in order
to affect the sense of hearing, it is not enough to have a vibrating
instrument ; there must also be an uninterrupted communication
between the instrument and the ear. A bell rung @n wacuo, with
proper precautions to prevent the communication of motion,
remains inaudible. In the air of the atmosphere, however,
sounds have a universal vehicle, capable of conveying them
without break from the most- variously constituted sources to
the recesses of the ear.

3. The passage of sound is not instantancous. When a gun
is fired at a distance, a very perceptible interval separates the
R. I



2 INTRODUCTION, (3.

report from the flash, This represents the time occupied by
sound in travelling from the gun to the obsecrver, the retardation
of the flash due to the finite velocity of light being altogether
negligible. The first accurate experiments were made by some
members of the French Academy, in 1738, Cannons were fired,
and the retardation of the reports at different distances observed,
The principal precaution mecessary is to reverse alternately the
dircction along which the sound travels, in order to climinate the
influence of the motion of the air in mass, Down the wind, for
instance, sound travels relatively to the earth faster than its
proper rate, for the velocity of the wind is added to that proper
to the propagation of sound in still air. For still dry air at a
temperature of 0°C., the French observers found a velocity of 337
metres per second.  Observations of the same character were
made by Arago and others in 1822 ; by the Duteh physicists Moll,
van Beck and Kuytenbrouwer at Amsterdam; by Bravais and
Marting between the top of the Faulhorn and a station below ;
and by others. The general result has been to give a somewhat
lower value for the velocity of sound—about 332 metres per
second. The effeet of alteration of temperature and pressure on the
propagation of sound will be best considered in connection with
the mechanical theory.

4. It is a direct consequence of observation, that within wide
limits, the velocity of sound is independent, or at lenst very nearly
independent, of its intensity, and also of its pitch.  Were thisg
otherwise, a quick piece of music would be heard at a little
distance hopelessly confused and discordant. But when the dis-
turbances are very violent and abrupt, so that the alterations of
density concerned arc comparable with the whole density of the
air, the simplicity of this law may be departed from,

5. An claborate series of experiments on the propagation of
sound in long tubes (water-pipes) has been made by Regnault?,
He adopted an automatic arrangement similar in principle to that
used for measuring the speed of projectiles. At the moment when
a pistol is fired at one cnd of the tube a wire conveying an electric
current is ruptured by the shock., This causes the withdrawal of a
tracing point which was previously marking a linc on a revolving
dram. At the further end of the pipe is a stretched membrano so
arranged that when on the arrival of the sound it yields to the

v Mémoires de U'dcadémic de France, t. xxxvir,




5.] VELOCITY OF SOUND. 3

impulse, the circuit, which was ruptured during the passage of the
sound, is reeompleted. At the same moment tho tracing point
falls back on the drum. Tho blank space left unmarked corre-
spouds to the time occupied by the sound in making the journcy,
and, when the motion of the drum is known, gives the means of
determining it.  The length of the journey between the first wire
and the membranc is found by direct measurement. In these
experiments the velocity of sound appeared to be not quite inde-
pendent of the diameter of the pipe, which varied from 0™108
to 1™100. The discrepancy is perhaps duc to friction, whose
influence would be greater in smaller pipes.

6. Although, in practice, air is usually the vehicle of sound,
other gases, liquids and solids are equally capable of conveying
it. In most cases, however, the means of making a direct measure-
ment of the velocity of sound are wanting, and we are not yet in
a position to consider the indircet methods. But in the caso of
water the same difficulty does not occur. In the year 1826,
Colladon and Sturm investigated the propagation of sound in the
Lake of Citeneva. The striking of a bell at one station was
simultancous with a flash of gunpowder. The observer at a
second station measured the interval between the flash and the
arrival of the sound, applying Iis car to a tube carried beneath
the surface. At a temperature of 8°C, the velocity of sound in
water was thus found to be 1435 metres per second.

7. The conveyance of sound by solids may be illustrated by a
pretty experiment due to Wheatstone. One end of » metallic wire
ig connected with the sound-board of a pianoforte, and the other
taken through the partitions or floors into another part of the
building, where naturally nothing would be audible. If a reso-
nance-board (such as a violin) be now placed in contact with the
wire, a tune played on the piano is easily heard, and the sound
seems to emanate from the resonance-board.

8. In an open space the intensity of sound falls off with great
rapidity as the distance from the source increases, The same
amount of motion hasto do duty over surfaces ever increasing as the
squares of the distance. Anything that confines the sound will
tend to diminish the falling off of intensity. Thus over the flat
surface of still water, o sound carries further than over broken
ground; the corner between a smooth pavement and a vertical wall
is still better; but the most effective of all is a tube-like enclosure,

1—2



4 - INTRODUCTION. (8.

which prevents spreading altogether. The use of speaking tubes
to facilitate communication between the different parts of abuilding
is well known, If il were not for certain effects (frietional wnd
other) due to the sides of the tube, sound might be thus conveyed
with little loss to very great distances.

9. Before proceeding further we must consider a distinction,
which is of great importance, though not free from difficulty.
Sounds may be classed as musical and unmusical ; the former for
convenience may be called notes and the latter noises. The
extreme cases will raise wo dispute; every one recognises the
difference between the note of a pianoforte and the creaking of a
shoc. But it is not so casy to draw the line of separation. In the
first place few notes are free from all unmusical accompaniment,
With organ pipes especially, the hissing of the wind as it escapes
at the mouth may be heard beside the proper note of the pipe.
And, secondly, many noiscs so far partake of a musical character as
to have a definite pitch, This is more casily recognised in a
sequence, giving, for example, the common chord, than by continued
attention to an individual instance. The experiment may be made
by drawing corks from Dbottles, previously tuned by pouring water
into them, or by throwing down on a table sticks of wood of suitablo
dimensions.  But, although noises are sometimes not entirely
unmusical, and notes are usually not quite free from noise, there is
no difficulty in recognising which of the two is the simpler pheno-
menon.  There is a certain smoothness and continuity about the
musical note. Moreover by sounding together a variety of notes—
for example, by striking simultaneously a number of consecutive
keys on a pianoforte—we obtain an approximation to a noisc;
while no combination of noises could ever blend into a musical note,

10. We are thus led to give our attention, in the first instance,
mainly to musical sounds, These arrange themselves naturally
in a certain order according to pitch—a quality which all can
appreciate to some cxtent. Trained ears can recognise an enormous
number of gradations—more than a thousand, probably, within
the compass of the human voice. These gradations of pitch are
not, like the degrees of a thermometric scale, without special
mutual relations, Taking any given note as a starting point,
musicians can single out certain others, which bear a definite
relation to the first, and are known as its octave, fifth, &e. The
corresponding differences of pitch are called wtervals, and are
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10.] PITCH, 5

spoken of as always the same for the same relationship. Thus,
wherover they may eccur in the scale, & note »~ndl its sctave are
scparated by the interval of the octave. It will be our object later
to explain, so far as it can be done, the origin and nature of the
consonant intervals, but we must now turn to consider the physical
aspect of the question,

Since sounds are produced by vibrations, it is natural to suppose
that tho simpler sounds, viz. musical notes, correspond to pertodic
vibrations, that is to say, vibrations which after a certain interval
of time, called the perivd, repeat themselves with perfect regularity.
And this, with a limitation presently to be notioed, is true,

11. Many contrivances may be proposed to illustrate the
generation of a musical note. One of the simplest is a revolving
wheel whose milled edge is pressed against a card. Each
projection as it strikes the card gives a slight tap, whose regular
recurrence, as the wheel turns, produces a note of definite pitch,
rising in the scale, as velocity of rotation tncreases. But the most
appropriate instrument for the fundamental experiments on notes
is undoubtedly the Siren, invented by Cagniard de la Tour. It
consists essentially of a stiff disc, capable of revolving about its
centre, aud picrced with one or more sets of holes, arranged at
equal intervals round the circumference of circles concentric with
the disc. A windpipe in conncction with bellows is presented
perpendicularly to the disc, its open end being opposite to onc of
the circles, which contains a set of holes. When the bellows are
worked, the stream of air escapes frecly, if a hole is opposite to the
end of the pipe; but otherwisc it is obstructed. As the disc turns,
a succession of puffs of air escapo throngh it, until, when the
velocity is sufficiont, they blend into a note, whose piteh rises
continually with the rapidity of the puffs. We shall have occasion
later to describe more elaborate forms of the Siren, but for our
immediate purpose the present simple arrangement will suffice.

12, Onc of the most important facts in the whole science is
cxemplified by the Siren—namely, that the piteh of a note depends
upon the period of its vibration. The size and shape of the holes,
the force of the wind, and other. elements of the problem may be
varied ; but if the number of puffs in a given time, such as one
sccond, remains unchanged, so also does the pitch.  We may even
dispense with wind altogether, and produce a note by allowing the
corner of a card to tap against the edges of the holes, as they



6 INTRODUCTION., [12.

"revolve ; the pitch will still be the same. Observation of other
sources of sound, such as vibrating solids, leads to the same con-
clusions, though the difficulties are often such as to render
necessary rather refined experimental methods.

But in saying that pitch depends wupon period, there
lurks an ambiguity, which descrves attentive consideration,
as it will lead us to a point of great importance. If a
variable quantity is periodic in any time r, it is also periodic
in the times 2r, 37, &c. Conversely, a recurrence within a given
period 7, docs not exclude a more rapid reourrence within
periods which are the aliquot parts of 7. It would appear
accordingly that a vibration really recurring in the time 3= (for
cxample) may be regarded as having the period 7, and therefore by
the law just laid down as producing a note of the pitch defined by
7. The force of this consideration cannot be entircly evaded by
defining as tho period the least time required to bring about a
repetition.  In the first place, the necessity of such a restriction is
in itself almost sufficient to shew that we have not got to the root
of the matter ; for although a right to the period = may be denied
to a vibration repeating itsclf rigorously within a time 37, yet it
must be allowed to a vibration that may differ indefinitely little
therefrom.  In the Siren experiment, suppose that in one of the
circles of holes containing an even number, every alternate hole is
displaced along the arc of the circle by the same amount. The
displacement may be mnade so small that no change can be detected
in the resulting note; but the periodic time on which the pitch
depends has been doubled.  And secondly it is evident from the
nature of periodicity, that the superposition on a vibration of period
7, of others having periods 47, ... &e., does not disturb the period 7,
while yet it cannot be supposed that the addition of the new cle-
ments has left the quality of the sound unchanged. Morcover, since
the piteh is not affected by their presence, how do we know that
clements of the shorter periods were not there from the beginning?

13. These considerations lead us to expect remarkable relations
between the notes whose periods are as the reciprocals of the
natural numbers.  Nothing can be easicr than to investigate the
question by meaus of the Siren. Imagine two circles of holes, the
iuner containing any convenient number, and the outer twice as
many. Then at whatever speed the dise may turn, the period of
- the vibration engendered by Llowing the first set will necessarily
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be the double of that belonging to the second. On making the -
experiment the two notes are found to stand to each other in
the relation of octaves; and we conclude that in passing from any
note to its octave, the frequency of vibration ts doubled. A similar
method of experimenting shews, that to the ratio of periods 8 : 1
corresponds the interval known to musicians as the fwelfth, made
up of an octave and a fifth; to the ratio of 4 : 1, the double
octave; and to the ratio 5 : 1, the interval made up of two octaves -
and a magor third. In order to obtain the intervals of the fifth
and third themselves, the ratios must be made 3 : 2 and 5 4

respectively.

14. From these experiments it appears that if two notes
stand to one another in a fixed rclation, then, no matter at what
part of the scale they may be situated, their periods are in a
certain constant ratio characteristic of the relation. The same
may be said of their frequencies’, or the number of vibrations
which they cxecute in a given time. The ratio 2:1 is thus
characteristic of the octave interval. If we wish to combine
two intervals,—for instance, starting from a given note, to take
a step of an octave and then another of a fifth in the same
direction, the corresponding ratios must be compounded :

2.3 _3

1271
The twelfth part of an octave is represented by the ratio ¥/2: 1,
for this is the step which repeated twelve times leads to an
octave above the starting point. If we wish to have a measure
of intervals in the proper sense, we must take not the character-
istic ratio itself, but the logarithm of that ratio. Then, and then
only, will the measure of a compound 1nt0rval be the sum of the
measures of the componénts,

15. From the intervals of the octave, fifth, and third con-
sidered above, others known to musicians may be derived. The
difference of an octave and a fifth is called a fourth, and has the

ratio 2—; =§ This process of subtracting an interval from

the octave is called snverfing it. By inverting the major third

! A single word to denote the numbor of vibrations excounied in the unit of time
is indisponsable: I know no bottor than * frequency,’ which was used in this sense
by Young. The ssmo word is employed by Prof, Everett in his excellent cdition
of Deschanel’s Natural Philosophy.
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we obtain the minor sixth, Again, by subtraction of a major
third from a fifth we obtain the minor third; and from this by
inversion the major sixth. The following table exhibits side by
side the names of the intervals and the corresponding ratios of
frequencies :

Octave ....ovveevriiieniinnns 2:1
Fifth oo cciiens 3:2
Fourth .......ccoocovvvinnnen, 4.3
Mujor Third........couunn.... 5:4
Minor Sixth..vovvvvuveiinnnns 8:5
Minor Third....cocvevvvinen. 6:5
Major Sixth ......c.ovvvnnnens 5:3

These are all the consonant intervals comprised within the
limits of the octave. It will be remarked that the corresponding
ratios arc all expressed by mecans of small whole numbers, and
that this is more particularly the case for the more consonant
intervals.

The notes whose frequencics are multiples of that of a given
one, are called its harmonics, and the whole scries constitutes
a harmonic scale. As is well known to violinists, they may all
be obtained from the same string by touching it lightly with the
finger at certain points, while the bow is drawn.

The establishment of the connection between musical intervals
and definite ratios of frequency—a fundamental point in Acoustics
—is duc to Mersenne (1636). It was indeed known to the
Grecks in what ratios the lengths of strings must be changed
in order to obtain the octave and fifth; but Mersenne demon-
strated the law counccting the length of a string with the period
of its vibration, and made the first determination of the actual
rate of vibration of a known musical note.

16. On any note taken as a key-note, or tonic, a diatonic
scale may be founded, whose derivation we now proceed to ex-
plain. If the key-note, whatever may be its absolute pitch, be
called Do, the fifth above or dominant is Sol, and the fifth below
or subdominant is Fa. The common chord on any mnote is pro-
duced by combining it with its major third, and fifth, giving the
ratios of frequency 1 ‘%3 or 4:5:6. Now if we take the
common chord on the tonic, on the dominant, and on the sub-
dominant, and transpose them when necessary into the octave
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lying immediately above the tonic, we obtain notes whose fre-
quencies arranged in order of magnitude are:

Do Re Mi Fa Sol La Si Do
9 5 4 3 5 15
1: g ’ Z) 5) '2': §: —8- ’ 2.
Here the common chord on Do is Do—Mi—Sol, with the
4 J
ratios 1: :; :g; the chord on Sol is Sol—~Si—Re, with the ratios
Jrd |4 .
g —13) 1 2% g =1: i :g; and the chord on Fa is Fa—La—Do,
still with the same ratios. The scale is completed by repeating
these notes above and below at intervals of octaves.
If we take as our Do, or key-note, the lower ¢ of a tenor
voice, the diatonic scale will be

’

c d ¢ f g a b c.

Usage differs slightly as to the mode of distinguishing the
different octaves; in what follows I adopt the notation of Helm-
holtz. The octave below the one just referred to is written with
capital letters—C, D, &c.; the next below that with a suffix—
C,D,, &c.; and the one beyond that with a double suffix—C,,, &e.
On the other side accents denote elevation by an octave—c/, ¢,
&e.  The notes of the four strings of a violin are written in this

notation, g—d’—a'—e”. The middle c of the pianoforte is ¢’

17.  With respect to an absolute standard of pitch there has
been no uniform practice. At the Stuttgard conference in 1834,
¢' =264 complete vibrations per sccond was reccommended. This
corresponds to a'=4+0. The French pitch makes a'=4335. In
Handel's time the pitch was much lower, If ¢’ were taken at 256
or 28 all the ¢'s would have frequencies represented by powers
of 2, This pitch is usually adopted by physicists and acoustical
instrument makers, and has the advantage of simplicity.

The determination ab initio of the frequency of a given note is
an opcration requiring some care. The simplest method in prin-
ciple is by means of the Siren, which is driven at such a rate as to
give a note in unison with the given one. The number of turns
effected by the disc in one second is given by a counting apparatus,
which can be thrown in and out of gear at the beginning and end
of a measured interval of time. This multiplied by the number of

. offective holes gives the required frequency. The consideration of

other methods admitting of greater accuracy must be deferred.

Ty e e T
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18. Bo long as we keep to the diatonic seale of ¢, the notes above
written are all that are required in a musical composition, But it
is frequently desired to change the key-note. Under these cireum-
stances a singer with a good natural car, accustomed to perform
without accompaniment, takes an entirely fresh departure, con- .
structing a new diatonic scale on the new key-note. In this way,
after a few changes of key, the original scale will be quite departed
from, and’an immense variety of notes be used. On an instrument
with fixed notes like the piano and organ such a multiplication is
impracticable, and some compromise is necessary in order to allow
the same note to perform different functions, This is not the
place to discuss the question at any length; we will therefore tako
as an illustratien the simplest, as well as the commonest case—
modulation into the key of the dominant, :

By definition, the diatonic scale of ¢ consists of the common
chords founded on ¢, g and £  In like manner the scale of g con-
sists of the chords founded on g dand e The chords of ¢ and g
arc then common to the two scales; but the third and fifth of
introduce new notes. The third of d written f'# has a frequency

¢ 435 . .
gx 45-= 5?5, and is far removed from any note 1 the scale of ¢,

But the fifth of d, with ga frequency gxg=-12%, differs but

little from a, whose frequéncy is g In oxdinary keyed instruments

the interval between the two, represented by g—(l), and called o

comma, is neglected, and the two notes by a suitable compromise
or temperament are identified.

19. Various systems of temperament have been used ; the
simplest and that now most gencrally used, or at least aimed at, is
the equal temperament. QOn referring to the table of frequencies for
the diatonic scale, it will be seen that the intervals from Do to Re,
from Re to Mi, from Fa to Sol, from Sol to La, and from La to Sj,

arc ncarly the same, being represented by —é—) or 199 ; while the

intervals from Mi to Fa and from Si to Do, represented by i? , are
. 5
about half as much. The cqual temperament treats these ap-

proximate relations as exact, dividing the octave into twelve equal
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parts called mean semitones. From these twelve notes the diatonic
scale belonging to any key may be selected according to the fol-
lowing rule. Taking the key-note as the first, fill up the series
with the third, fifth, sixth, eighth, tenth, twelfth and thirteenth
.notes, counting upwards. In this way all difficulties of modulation
arc avoided, as the twelve notes serve as well for one key as for
another. But this advantage is obtained at a sacrifice of true in-
tonation. The equal temperament third, being the third part of
an octave, is represented by the ratio /2 :1, or approximately
1-2599, while the true third is 125, The tempered third is thus
higher than the true by the interval 126 : 125. The ratio of the
tempered fifth may be obtained from the consideration that seven
scmitones make a fifth, while twelve go to an octave. The ratio is

therefore 217 ; 1, which =1-4983. The tempered fifth is thus too
low in the ratio 14983 : 15, or approximately 881 : 882, This
error is insignificant; and even the error of the third is not of
much consequence in quick music on instruments like the piano-
forte. DBut when the notes are held, as in the harmonium and
organ, the consonance of chords is materially impaired.

20. The following Table, giving the twelve notes of the chro-
matic scale according to the system of equal temperament, will be
convenicnt for reference’, The standard employed is a'=440; in
order to adapt the Table to any other absolute pitch, it is only
necessary to multiply throughout by the proper constant. -

/ " U4 114
C, C, C c c c c c

¢ {16-35 3270|6541 | 1308 | 2617 | 523-3 | 10466 | 2093-2.
Cf | 17-32 | 34:65 | 69:30 | 138 | 277°2 | 544+4 | 11088 22177
D | 18353671 | 7342|1468 | 293-7 | 587+4 | 11748 | 23496
D$ | 1944 | 38:80 | 7779 | 1556 | 311-2 | 6223 | 12446 | 24893
L | 20-60|41-20 | 8241 | 1648 | 329-7 | 6593 | 13186 | 26373
F | 21-83|43:65 | 87°31 | 1746 | 349-2 | 6985 | 13970 | 27940
F% | 23-12 | 46-25 | 92'50 | 185°0 | 370-0 | 7400 | 14800 | 29601
G | 24-50|49-00| 98:00 | 196:0 | 392:0 | 784:0 | 15680 | 3136-0
G# 2595 {51911 10382076 | 415-3 | 830:6 | 16612 | 3322'5
A | 275055001100 2200 | 440:0 | 8800 | 17600 } 35200
A# 29-13 | 58-27 | 1165 | 2331 | 466°2 | 932:3 | 18646 | 3729-2
B | 308661731235 | 2469 | 4930 | 987'7 { 1975'56 | 305610

! Zamminor, Die Musik und die musikalischen Inatrumente. Giessen, 1855,
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The ratios of the intervals of the equal temperament scale are
given below (Zamminer) :—

Note, . Frequency. Note, Irequency.

o = 1:00000 oY - 141401
b 27% = 105040 g 217 2 1-40831
4 217 = 112246 g 27 = 158740
A 91% 118921 a 217 - 1.68179
o 217 = 1-25902 o 237 - 178180
£ 217133484 b2t 1ggrrs

¢ = 2000

21. Returning now for a moment to the physical aspeet of the
question, we will assume, what we shall afterwards prove to be
true within wide limits,—that, when two or more sources of sound
agitate the air simaltancously, the resulting disturbance at any
point in the external air, or in the car-passage, is the simple sum
(in the extended geometrical sensc) of what would be caused by
cach source actipg scparately, Let us consider the disturbance
due to a simultanecous sounding of a note and any or all of its
harmonics, By definition, the complex whole forms a note having
the same period (and therefore pitch) as its gravest element, We
have at present no criterion by which the two can be distinguished,
or the presence of the Ligher harmonics recognised, And yet—in
the case, at any rate, where the component sounds have an inde-
pendent origin—it is usually not difficult to detect them by the
car, 50 as to cffect an analysis of the mixture, This is as much as
to say that a strictly periodic vibration may give rise to a sensa-
tion which is not simple, but susceptible of further analysis, In
poiut of fact, it has long been known to musicians that under
certain cireumstances the harmonies of a note may be heard along
with it, even when the note is due to a single source, such as a
vibrating string; but the significance of the fact was not under-
stood.  Since attention has heen drawn to the subject, it has been
proved (mainly by the labours of Ohm and Helmboltz) that almost
all musical notes are highly compound, consisting in fact of the
notes of a harmonie scale, from which in particular cases one or
more members may be missing. The reason of the uncertainty
and difficulty of the analysis will be touchod upon presently.
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22, That kind of note which the ear cannot further resolve is
enlled by Helmholtz in German a “ton.” Tyndall and other recent
writers on Acoustics have adopted ‘tone’ as an English equivalent,
—a practice which will be followed in the present-work. The
thing is so important, that a convenient word is almost a matter
of nccessity, Notes then are in general made up of tones, the
pitch of the note being that of the gravest tone which it contains.

23. In strictness the quality of pitch must be attached in the
first instance to simple tones only ; otherwise the difficulty of dis-
continuity before referred to presents itself.  The slightest change
in the nature of a note may lower its pitch by a whole octave, as
was exemplified in the case of the Siren. 'We should now rather
say that the cffect of the slight displacement of the alternate
holes in that experiment wag to introduce a new feeble tone an
octave lower than any previously present. This is sufficient to
alter the period of the whole, but the great mass of the sound
remains very ncarly as before. .

In most musical notes, however, the fundamental or gravest
tone is present in sufficient intensity to impress its character on
the whole. The effect of the harmonic overtones is then to
modify the quality or character* of the note, independently of pitch.
That such a distinction exists is well known, Thenotes of a violin,
tuning fork, or of the human voice with its different vowel sounds,
&e., may all have the same pitch and yet differ independently of
loudness; and though a part of this difference is due to accompany-
ing noises, which are cxtraneous to their nature as notes, still there
is a part which is not thus to be accounted for. Musical notes may
thus be clagsified as variable in three ways : First, pitch. This we
have already sufficiently considered. Sccondly, character, depend-
ing on the proportions in which the harmonic overtones are com-
bined with the fundamental: and thirdly, loudness. This has to be
taken last, because the ear is not capable of comparing (with any
precision) the loudness of two notes which differ much in pitch or
character. We shall indeed in a future chapter give a mechanical
measure of the intensity of sound, including in one system all
gradations of pitch; but this is nothing to the point. We arc here
concerned with the intensity of. the sensation of sound, not with a
measure of its physical cause. The difference of loudness is,
however, at once recognised as one of more or less; so that we

1 German, ‘Klangfarbe’ —-French, ‘timbre.’ The word ‘character’ isused in this
gongo by Iverett.
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have hardly any choice but to regard it as dependent cceteris
paribus on the magnitude of the vibrations concerned.

24 We huve seun that a musical note, as such, is due to a
vibration which is necessarily periodic; but the converse, it is
evident, cannot be true without limitation. A periodic repetition
of a noise at intervals of a second—for instance, the ticking of
clock—would not result in a musical note, be the repetition ever
so perfect. In such a case we may say that the fundamental tone
lies outside the_limits of hearing, and although some of the
harmonic overtones would fall within them, these would not give
riso to a musical note or even to a chord, but to a noisy mass of
sound like that produced by striking simultaneously the twclve
notes of the chromatic scale. The experiment may be made with
the Siren by distributing the holes quite irregularly round the
circumference of a circle, and turning the disc with a moderato
velocity. By the construction of the instrument, everything re-
curs after each complete revolution,

25. The principal remaining difficulty in the theory of notes
and tones, is to explain why notes are sometimes analysed by the
ear into tones, and sometimes not. If a mote is really complex,

. why is not the fact immediately and certainly perceived, and the
components disentangled ? The feebleness of the harmonic over-
tones is not the reason, for, as we shall sec at a later stage of our
inquiry, they are often of surprising loudness,and play a prominent
part in music. On the other hand, if a note is sometimes perceived
as a whole, why does not this happen always? Tlhese questions
have been carefully considered by Helmholtz!, with a tolerably
satisfactory result. The difficulty, such as it is, is not peculiar to
Acoustics, but may be paralleled in the cognate science of Physio-
logical Optics.

The knowledge of external things which we derive from the
indications of our sensos, is for the most part the result of inference.
When an object is before us, certain nerves in our retinm are
excited, and certain sensations are produced, which we are
accustomed to associate with the object, and we forthwith infer its
presence. In the caso of an unknown object the process is much
the ssme.  We interpret the sensations to which we are ‘subject so
as to form a pretty good idea of their exciting canse. From the
slightly different perspective views reccived by the two cyes we
infer, often by a highly claborate process, the actual relicf and

’ ! Tonempfindungen, 8rd odition, p, 98,
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distance of the object, to which we might otherwise have had no
clne. These inferences are made with extreme rapidity and quite
unconsciously,  Thoe whole life of each one of us is a continued
lesson in interpreting the signs presented to us, and in drawing
conclusions as to the actualitics outside. Onlyso far as we succeed
in doing this, are our sensations of any use to us in the ordinary
affairs of life.  This being so, it is no wonder that the study of our
sensations themselves falls into the background, and that subjective
phenomena, as they are called, become exceedingly difficult of
obscrvation. As an instance of this, it is sufficient to mention the-
‘blind spot’ on the retina, which might @ priori have been
expected to manifest itself as a conspicuous phenomenon, though
as a fact probably-not one person in a hundred million would find
it out for themselves. The application of these remarks to the
question in hand is tolerably obvious. Inthe daily use of our ears
our object is to disentangle from the whole mass of sound that
may reach us, the parts coming from sources which may interest
us at the moment. When welisten to the conversation of a friend,
we fix our attention on the sound proceeding from him and
endeavour to grasp that as a whole, while we ignore, as far as
possible, any other sounds, regarding them as an interruption,
There arc usually sufficient indications to assist us in making this
partial analysis. 'When a man speaks, the ‘whole sound of his
voice rises and falls together, and we have no difficulty in recog-
nising its unity. It would be no advantage, but on the contrary
a great source of confusion, if we were to carry the analysis further,
and resolve the whole mass of sound present into its component
tones.  Although, as regards scnsation, a resolution into toncs
might be expected, the necessities of our position and the practice
of our lives lead us to stop the analysis at the point, beyond
which it would ccase to be of serviee in deciphering our sensa-
tions, considercd as signs of external objects’.

But it may sometimes happen that however much we may
wish to form a judgment, the materials for doing so are absolutely
wanting. When a notc and its octave are sounding close togcether
and with perfect uniformity, there is nothing in our sensations to
cnable us_to distinguish, whether the notes have a double or a
single origin. In the mixture stop of the organ, the pressing down
of each key admits the wind to a group of pipes, giving a note and

! Most probably the powor of attending to the important and ignoring the
unimportant part of our sensations is to o great oxtent inherited—tq how great an
extent we shall perhaps never know.
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its first three or four harmonics. The pipes of each group always
sound together, and the result is usually perceived as a single
nete, although it does nut procced from a single source,

26. The resolution of a note into its component tones is a
matter of very different difficulty with different individuals, A
considerable effort of attention is required, particularly at first ;
and, until a habit has been formed, some external aid in the shape
of a suggestion of what is to be listened for, is very desirable,

The difficulty is altogether very similar to that of learning to

“draw. From the machinery of vision it might have heen expected

that nothing would be casicr than to make, on a plane surface, a
representation of surrounding solid objects ; but experience shews
that much practice is generally required.

We shall return to the question of the analysis of notes at a
later stage, after we have treated of the vibrations of strings, with
the aid of which it is best clucidated; but a very instructive
experiment, due originally to Ohm and improved by Helmholtz,
may be given here. Helimholtz® took two bottles of the shape
represented in the figure, one about twice as large as the other.
These were blown by streams of air directed across
the mouth and issuing from gutta-percha tubes,
whose ends had been softened and pressed flat, A
so as to reduce the bore to the form of a narrow FIG. 7,
slit, the tubes being in connection with the same
bellows. By pouring in water when the note is too
low and by partially obstructing the mouth when
the note is too high, the bottles may be made to
give notes with the exact interval of an octave,
such as b and b, The larger bottle, blown alone, gives a somewhat,
muffled sound similar in character to the vowel U ; but, when both
bottles are blown, the character of the resulting sound is sharper,
resembling rather the vowel O. For a short time after the notes
had been heard separately Helmholtz was able to distinguish them
in the mixture; but as the memory of their separate impressions
faded,. the higher note scemed by degrees to amalgamate with
the lower, which at the same time became londer and acquired
a sharper character. This blending of the two notes may take
place even when the high note is the louder.

27. Sceing now that notes are usually compound, and that
only a particular sort called tones are incapable of further analysis,
U Tonempfindungen, p. 109,
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we are led to inquire what is the physical characteristic of tones,
to which they owe their peculiarity 2 What sort of periodic vibra-
tion s it, which produces a simple tone? According to what
mathematical function of the time does the pressure vary in
the passage of the car ? No question in Acoustics can be more
important.

The simplest periodic funetions with which mathematicians arc
acquainted are the circular functions, expressed by a sine or
cosine; indeed there arc no others at all approaching them in
simplicity. They may be of any period, and admitting of no
other variation (except magnitude), seem well adapted to produce
simple tones.  Moreover it lias been proved by Fourier, that the
most general single-valued periodic function ean be resolved into
a serics of circular functions, having periods which are submultiples
of that of the given function, Again, it is a conscquence of the
general theory of vibration that the particular type, now suggested
as corresponding to a simple tone, is the only one capable of
preserving its integrity among the vicissitudes which it may
have to undergo. Any other kind is liable to a sort of physical
analysis, onc part being differently affected from another. If the
analysis within the ear proceeded on a different principle from that
cffccted according to the laws of dead matter outside the ear,
the consequence would be that a sound originally simple might
become compound on its way to the observer. There is no reason
to suppose that anything of this sort actually happens. When it
1s added that according to all the ideas we can form on the subject,
the analysis within the car must take place by means of a physical
machinery, subject to the same laws as prevail outside, it will be
seen that a strong case has been made out for regarding tones as
duc to vibrations expressed by circular functions. We are not
however left entirely to the guidance of general considerations like
these. In the chapter on the vibration of strings, we shall see
that in many cases theory informs us beforehand of the nature of
the vibration exccuted by a string, and in particular whether any
~ specified simple vibration is a component or not. Herc we have
a decisive test. It is found Dy experiment that, whenever according
to theory any simple vibration jis present, the corresponding tone
can be heard, but, whenever the simple vibration is absent, then
the tone canuot be heard.  We are therefore Justified in asserting
that simple tones and vibrations of a circular type are indissolubly
connceted.  This law was discovered by Ohm.

R. 2



CHAPTER IIL

HTARMONIC MOTIONS,

28. Tue vibrations expressed by a circular function of the
time and variously designated as simple, pendulous, or harmonic,
arc so important in Acoustics that we cannot do better than devote
a chapter to their consideration, before entering on the dynamical
part of our subject. The quantity, whose variation constitutes
the ‘vibration, may be the displacement of a particle measured
in a given dircction, the pressure at a fixed point in a fluid
medium, and 8o on. Inany casc denoting it by %, we have

2
u=acos(T7Tt—e).... ................ (1),

in which a denotes the amplitude, or extreme value of u; 7 is
the periodic time, or period, after the lapse of which the values
of u recur; and e determines the phase of the vibration at the
moment from which ¢ is measured.

Any number of harmonic vibrations of the same period affect-
ing a variable quantity, compound into another of the same type,
whose clements are determined as follows :

9
u=2acos(“—7rt—e)
T

Ot . 27t )
=08 ~— 3 @ cos e+ sin - asine

2mt
=17 COS (—;—-— ) ................................. (2),

if r={(Zacose)’+ (Sasin eth............ evrenns (8),

and tan =2 ¢ sin e+ Jacose......... e (4).
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For example, let there be two components,

7V N

2mt S ; fnit '
U= @ COo8 ( o e) T el );

then r={a’+ a®+ 204 c0s (6 = €)}hrinninriniinn (B),
tan §= T AEREINE e (6),

T @cos € +a cose
Particular cases may be noted. If the phases of the two com-
ponents agrec,
. 2ot
u=(a+a') cos <—-——e) .
T
If the phases differ by half a period,
. 2mt
u=(a~-da)cos (—T——e ,

so that if ¢’ =g, w vanishes, In this case the vibrations are often
sald to interfere, but the expression is rather misleading, Two
sounds may very properly be said to interfere, when they together
cause silence; but the mere superposition of two vibrations
(whether rest is the consequence, or not) cannot properly be so
called. At least if this be interforence, it is difficult to say what
non-interference can be. It will appear in the course of this
work that when vibrations exceed a certain intensity they no
longer compound by mere addition; #is mutual action might
morc properly be called interference, but it is a phenomenon
of a totally different nature from that with which we are now
dealing.

Again, if the phases differ by a quarter or by three-quaxters of
a period, cos (e~¢) =0, and

r={a'+a?3

Harmonic vibrations of given period may be represented
by lines drawn from a pole, the lengths of the lines being pro-
portional to the amplitudes, and the inclinations to the phases
of the vibrations, The resultant of any number of harmonic
vibrations is then represented by the geometrical resultant of
the corresponding lines, For cxample, if they are disposed
symmetrically round the pole, the resultant of the lines,  or
vibrations, is zero. ‘

20. If we measure off along an axis of = distances pro-
§ portional to the time, and take » for an ordinate, we obtain the

harmonic curve, or curve of sincs,
2—2

SEARTLTT DT
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u=acos(2—7—r-?—-e),

(SN

where A, called the wave-length, is written in place of 7, both
quantities denoting the range of the independent variable corre-
sponding to a complete recurrence of the function. The harmonic
curve is thus the locus of a point subject at once to a uni-
form motion, and to a harmonic vibration in a perpendicular
direction, In the next chapter we shall sec that the vibration
of a tuning fork is simple harmonic; so that if an excited tuning
fork is moved with uniform velocity parallel to the line of its
handle, a tracing point attached to the end of onc of its prongs
describes a harmonic curve, which may be obtained in a permanent
form by allowing the tracing point to bear gently on a picee of
smoked paper, In Fig. 2 the continuous lines are two harmonic
curves of the same wave-length and amplitude, but of different

phases ; the dotted curve represents half their resultant, being
the locus of points midway between those in which the two
curves are met by any ordinate.

30. If two harmonic vibrations of different periods coexist,
(27rt ) , Ot ,)
U=qcos|{— —¢)+a cos (—r—e .
T T

The resultant cannot here be represented as a simple harmonic
motion with other clements. If 7 and 7 be incommensurable, the
value of w never recurs; but, if r and 7' be in the ratio of two
whole numbers, « recurs after the lapse of a time equal to the
least common multiple of 7 and «'; but the vibration is not
simple harmonic. For example, when a note and its fifth are
sounding together, the vibration recurs after a time equal to
twice the period of the graver.
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One case of the composition of harmonic vibrations of different
periods is worth special discussion, namely, when the difference
of the periods is small. If we fix our attention on the course
of things during an interval of time including mercly a few
periods, we sec that the two vibrations arc necarly the same as
if their periods were absolutely equal, in which case they would,
as we know, be cquivalent to another simple harmonic vibration
of the same period. For a few periods then the resultant
motion is approximately simple harmonie, but the same har-
monic will not continue to represent it for long, The vibration
having the shorter period continually gains on its fellow,
thercby altering the difference of phase on which the clements
of the resultant depend.  For simplicity of statement let us
suppose that the two components have cqual amplitudes, fre-
quencies represented by m and #, where m—n is small, and
that when first observed their phascs agree. At this moment
their cffects conspire, and the resultant has an amplitude double
of that of the components. But after a time 1+ 2 (m—n) the
vibration m will have gainced half a period relatively to the
other; and the two, being now in complete disagreement, neu-
tralize cach other. After a further interval of time equal to
that above named, m will have gained altogether a whole vibra-
tion, and complete accordance is once more re-cstablished. The
resultant motion is therefore approximately simple harmonie,
with an amplitude not constant, but varying from zero to twice
that of the components, the frequency of these alterations Leing
m—ma. If two tuning forks with frequencies 500 and 501 be
cqually excited, there is every sceond a rise and fall of sound
corresponding to the coincidence or opposition of their vibrations,
This phenomenon is called beats.  We do not here fully discuss
the question how the car behaves in the presence of vibrations
having nearly equnal frequencies, but it is obvious that if the motion
in the neighbourhood of the ear almost ceases for a considerable
fraction of a sccond, the sound must appear to fall.  For reasons
that will afterwards appear, beats are best heard when the in-
terfering sounds are simple tones. Consceutive notes of the
stopped  diapason of the organ shew the phenomenon very
well, at Least in the lower parts of the scale. A permanent inter-
ference of two notes may be obtained by mounting two stopped
organ pipes of similar construction and identical pitch side
Ly side on the same wind chest. The vibrations of the two
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pipes adjust themselves to complete opposition, so that at a
little distance nothing can be heard, cxcept the hissing of the
wind. If by a rigid wall between the two pipes one sound
could be cut off, the other would be instantly restored. Or the
balance, on which silence depends, may be upset by connecting
the ear with a tube, whose other end lics close to the mouth of
one of the pipes.

By mcaus of beats two notes may be tuned to umison with
great cxactness, The object is to make the beats as slow as
possible, since the number of beats in a second is equal to the
differcnce of the frequencies of the notes, Under favourable
circumstances beats so slow as one in 30 seconds may be re-
cognised, and would indicate that the higher note gains only
two vibrations a minute on the lower, Or it might be desited
mercly to ascertain the difference of the frequencics of two notes
nearly in unison, in which case nothing morc is necessary than
to count the number of beats. It will be remembered that the
difference of frequencies does not determine the #nterval Lotween
the two notes; that depends on the ratio of frequencies, Thus
the rapidity of the beats given by two notes nearly in unison
is doubled, when both are taken an cxact octave higher.

Analytically

u = a cos (2mmt — €) + a' cos (2mnt — €),
where m — # is small.

Now cos (2mnt — €) may be written

: cos {2mmt — 2w (m —n) t —¢€'},
and we have

w=7rco82mmt—0) ........oo i 1),
where ™ =0a"+a" + 2aa’ cos (2 (m —n) t + € —¢€] ...... (2),
tan 0= © sin €+ @’ sin {27 (m —n) ¢ + €} 3)

T acose+a cos (2w (m—n)t+ €]

The resultant vibration may thus be considered as harmonic
with elements r and 6, which are not constant but slowly varying
functions of the time, having the frequency m —n. The amplitude
r is at its maximum when

cos {2r(m—n)t+e —e=+1,
and at its minimum when
cos {27 (m—n)t+e —ej=—1,

the corresponding values being « +a’ and a — o' respectively.
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31. Another caso of great importance is the composition of
vibrations corresponding to a tone and its harmonics. It is known
that the most gencral single-valued finite periodic function can
be expressed by a series of simple harmonics—

n= @ 2
u=0a,+ 2%, a,cos (~7—:n—-t - e,,) (1),

a theorem usually quoted as Fourier's, Analytical proofs will be
found in Todhunter's Integral Calculus and Thomson and Tait's
Nutural Philosoply ; and a line of argument almost if not quite
amounting to a demonstration will be given later in this work.
A few remarks arc all that will be required here.

Fourier's theorem is not obvious, A vague notion is not un-
common that the infinitude of arbitrary constants in the series
of nccessity endows it with the capacity of representing an arbi-
trary periodic function. That this is an error will be apparent,
when it is observed that the same argument would apply equally,
if onc term of the series were omitted ; in which case the expan-
sion would not in gencral be possible.

Another point worth notice is that simple harmonics are not
the only functions, in a series of which it is possible to cxpand
one arbitrarily given, Instead of the simple elementary term

(Q'n'nt )
os{———¢,),
T

we might take

2mnt ) 1 4t
08 (—-—e,, + 5 cos (—— e,,),
T 2 T

formed by adding a similar one in the same phasc of half the
amplitude and period. It is evident that these terms would

scrve as well as the others; for

2t Qmrnt 1 darnt
cos|— ~——¢€, ] =4C0S| —— —§€, +5co8( —— —¢,
T T 2 T
1 drnt 1 8mnt
— 5 {C08 —€, |+ cos —€,
2 T 2 T

1 (S'mzt ) 1 107mrnt
+ — Jcos{ — —~€, ) + 5 cos —€
4 T " 2 ( T ”)

so that each term in Fourier's series, and therefore the sum of
the series, can be expressed by means of the double elementary

L e e e <



24 TIARMONIC ‘MOTIONS [31.

terms now suggested. This is mentioned here, because students,
not, being ncquainted with ether expansions, may imagine that
simple harmonis functions arc by nature thie only ones quulified
to bo the clements in the development of a periodic function.
The reason of the preeminent importance of Fourier's series in
Acoustics is the mechanical one referred to in the preceding
chapter, and to be explained more fully hereafter, namely, that,
in general, simple harmonic vibrations are the only kind that arce
propagated through a vibrating system without suffering decom-
position,

39 As in other cases of a similar character, c.g Taylor's
theorem, if the possibility of the expansion be known, the co-
officients may be determined by a comparatively simple process.
We may write (1) of § 31

2nmt | Gnee . 2nmt

u=A,+ E::TA,,cos——T— + 3y B, sin =— veeenn (D),

‘s 2n .2 . :
Multiplying by cos —%ﬂ or sin —%ﬂ', and intcgrating over
a complete period from ¢=0 to ¢ =7, we find

9 (r
A =~—f 1t cos Znmt dt
), T

n

o . TR ¢)
B"=-—f w sin 22 g,
TS T

An immediate integration gives
1f(r
A°=—f U eveerineeeeeiieiiincniinienennd(3),
TJo ,

indicating that 4, is the mean value of u throughout the period.

The degree of convergeney in the expansion of » depends in
general on the continuity of the function and its derivatives,
The series formed by successive differentiations of (1) converge
less and less rapidly, but still remain convergent, and arithmetical
representatives of the differential cocfficients of u, so long as
these latter are cverywhere finite, Thus (Thomson and Tait,
§ 77), if all the derivatives up to the m™ inclusive arc free
from infinite values, the series for w is more convergeut than

one with
1 1

2'1711 3"” _i_m yrees

], ..&C.,

for cocfficients,
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83. Another class of compounded vibrations, interesting from
the facility with which they lend themselres to optical observa-
tion, veeur whea wo harmonic vibrations o Oocting A gavas puc-
ticle arc exccuted ¢n perpendicular directions, more especially
when the periods are not only commensurable, but in the ratio
of two small whole numbers, The motion is then completely
periodic, with a period not many times greater than those of the
components, and the curve described is re-entrant, If « and v
be the co-ordinates, we may take

w=u cos (2mnt—¢), v=>cos k5% SRR § B}

First let us suppose that the periods arc cqual, so that n'=n;
the climination of ¢ gives for the equation of the curve deseribed,

2 k] %)
W v 2w .
— 2 cose —sin®e =0 .nieennnee(2),

A
representing in general an cllipse, whose position and dimensions
depend upon the amplitudes of the original vibrations and upon
the difference of their phases. If the phases differ by a quarter

. . .,.a—b""‘-s\
period, cos €= 0, and the equation becomes, -7ty ™\

2 2 s S ‘ I N\
w 1) .. ”

Stm=1/ =N
(A A . TN V-

i AR
In this case the axcs of the cllipse: coincide with ~those of
co-ordinates. If further the two compenents have equal ampli-
tndes, the locus degenerates into the circte._ L
W =a’,
which is deseribed with uniform velocity. This shews how a
uniform circular motion may be analysed into two rectilincar
h: rpponic motions, whose directions are perpendicular.
If the phases of the components agree, e=0, and the cllipse
degenerates into the coincident straight lines AT

w v\ =
(— - ) =0; A 2
“ b v\ =4
s . . . R ety e e
or if the ditference of phase amount to half a period, inte '\ A WY I‘i‘:)
[ /

w v\ T /
— - =O' \’”
(a + b> e ~-‘«"//
When the unison of the two vibrations is exact, the clliptic
path remains perfectly steady, but in practice it will almost
always happen thut therc is a slight difference between the

periods. The counsequence is that though a fixed ellipse represents
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the curve deseribed with sufficient accuracy for a fow periods,
the ellinse itself gradually clangos in vorrespondence with the
raderation i th muguitude of e It becomes therefore a matter
of interest to consider the system of cllipses represented by (2),
supposing a and b constants, but ¢ variable.

Since the extreme values of u and v are + a, + b respectively,
the cllipse is in all cases inscribed in the rectangle whose sides
arc 2q, 2b.  Starting with the phases in agreement, or e =0, we

. oo . : 1
have the cllipse coincident with the diagonal (—:—% =0, As

e increases from 0 to 4o, the cllipse opens out until its cquation

becomes
2 3
w v
- .]- —_—

at U

From this point it closes up again, ultimately coinciding with the

=1,

. w v . .
other diagonal - + A 0, corresponding to the increase of ¢ from 3o
a

to . After this, as e ranges from 7 to 2, the cllipse retraces
its course until it again coincides with the first diagonal, Tho
sequence of changes is exhibited in Fig. 3,

F/G.3.
/‘ F \ “\‘
,/ \\\_ _// \‘~

~e
Sa,

N

L)
.

The cllipse, having alrcady four given tangents, is completely
determined by its point of contact P (Fig. 4) with the linc v=2d,

/G 4

A ] A

L1~
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In order to connect this with €, it is sufficient to observe that
when w=0b, cos2mnt=1; and thercforc u=a cose. Now if the
elliptic paths be the susult of the superpusition of two harmcaie
vibrations of nearly coincident pitch, e varies uniformly with the
time, so that I’ itself cxccutes a harmonic vibration along 4.4’
with a frequency equal to the difference of the two given fre-
quencics,

34, Lissajous' has shewn that this system of cllipses may be
regarded as the different aspects of onc and the same cllipse
deseribed on the surface of a transparent cylinder. In Fig. 5

g

F7G.85.

AA'B'B represents the cylinder, of which AD' is a planc section.
Seen from an infinite distance in the direction of the common
tangent at A to the planc scctions, the cylinder is projected into a
rectangle, and the cllipse into its diagonal. Suppose now that the
cylinder turns upon its axis, carrying the planc scction with it.
Its own projection remains a constant rectangle in which the pro-

.

A p A
. A
Seee. e ”
‘____._..'.'::.—.---::2'.' _______
B'\h————-—‘)B
F/G. 6.

jection of the cllipse is inscribed. Fig. 6 represents the posi-
tion of the cylinder after a rotation through a right angle. It
appears thercfure that by turning the cylinder round we obtain in
succession all the ellipses corresponding to the paths described by
a point subject to two harmonic vibrations of equal period and fixed
amplitudes, Morcover if the cylinder be turnced continuously

1 Annales de Chimie (8) L1 147.
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with uniform velocity, which insures a harmonic motion for P,
we obtain a complete representation of the varying orbit
deseribed by the point when the periwds of the two components
differ slightly, each complete revolution answering to a gain or
loss of a single vibration'. The revolutions of the eylinder are
thus synchronous with the beats which would result from the
composition of the two vibrations, if they were to act in the same
direction.

35. Vibrations of the kind here considered are very casily
realized experimentally. A heavy pendulum-bob, hung from a
fixed point by a long wire or string, describes ellipses under the
action of gravity, which may in particular cases, according to the
circumstances of projection, pass into straight lines or circles.
But in order to sec the orbits to the best advantage, it is necessary
that thcy should be deseribed so quickly that the impression
on the retina made by the moving point at any part of its course
has not time tofade materially, before the point comes round again
to renew its action. This condition is fulfilled by the vibration
of a silvered bead (giving by reflection a luminous point), which is
attached to a straight metallic wire (such as a knitting-needle),
firmly clamped in a vice at the lower end. When the system is sct
into vibration, the luminous point describes cllipses, which appear
as finc lines of light. These ellipses would gradually contract in
dimensions under the influence of friction until they subsided
into a stationary bright point, without undergoing any other
change, were it not that in all probability, owing to some want
of symmetry, the wire has slightly differing periods according to
the planc in which the vibration is exccuted. Under these cir-
cumstances the orbit is scen to undergo the eycle of changes
already cxplained.

36. So far we have supposcd the periods of the component
vibrations to be equal, or nearly equal; the next case in order of
simplicity is when one is the double of the other.  We have

w=a cos (4nwt —e), v =20 cos 2nwt.

The locus resulting from the elimination of ¢ may be written

v -’)E’i_) 9 qi ’3\/ v
. cose(..,b, 1)+ 2sine /1= 3z rerrernnn (1),

1 By o vibration will always bo meaut in this work a complete cyclo of
changes,
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which for all values of e represents a curve inscribed in the rect-
angle 2a, 2b. If e=0, or m, we have
¥ 2\
=14+ -
v 2( - u)’
representing parabolas. Fig. 7 shews the various curves for the
intervals of the octave, twelfth, and fifth,

FI6.7

B33
2255
9% %

To all these systems Lissajous’ method of represcntation by
the transparent cylinder is applicable, and when the relative
phase is altered, whether from tho different circumstances of
projection in different cases, or continuously owing to a slight de-
viatior from exactness in the ratio of the periods, the cylinder will
appear to turn, so as to present to the cye different aspects of the
sapic line traced on its surface.

37 There is no difficulty in arranging a vibrating system 8o
that the motion of a point shall consist of two harmonic vibrations
in perpendicular planes, with their periods in any assigned ratio.
The simplest is that known as Blackburn’s pendulum, A wire
ACD is fastened at A and B, two fixed points at the same level.
The bob P is attached to its middle point by another wire CP.
For vibrations in the planc of the diagram, the point of suspension
is practically C, provided that the wires are sufficiently stretched ;
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but for a motion perpendicular to this plane, the bob turns about
D, carrying the wire ACB with it. The pexiods of vibration in

A

Or

the principal plancs are in the ratio of the square roots of CP and
DF. Thus if DC=8CP, the bob describes the figures of the
octave.  To obtain the sequence of curves corresponding to
approximate unison, ACE must be so nearly tight, that CD is
relatively small,

38.  Another contrivance called the kaleidophone was origin-
ally invented by Wheatstone, A straight thin bar of steel carrying
a bead at its upper end is fastened in a vice, as cxplained in g
previous paragraph. If the section of the bar is Square, or circular,
the period of vibration is independent of tho plane in which it is
performed. But let us suppose that the section is a rectangle
with uncqual sides, The stiffuess of the bar—the force with
which it resists bending—is then greater in the planc of greater
thickness, and the vibrations in this plane have the shorter period.
By a suitable adjustment of tle thicknesses, the two periods of
vibration may be brought into any required ratio, and the eor-
responding curve exhibited.

The defect in this arrangement is that the same bar will give
only onc sct of figures. In order to overcome this objection
the fullowing modification has been devised, A slip of steel i

taken whose rectangular section is very clongated, so that as
regards bending in one plane the stiffucss is so great as to amount
practically to rigidity, The bar is divided into two parts, and the
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broken ends reunited, the two picces being turned on one another
through a right angle, so that the planc, which contains the small
vhickitess of one, wuntaing the great thickness of the other, ¥Whon
the compound rod is clamped in a vice at a point below the junc-
tion, the period of the vibration in one dircction, depending almost
entirely on the length of the upper piccc, is nearly constant; but
that in the sccond direction may be controlled by varying the
point at which the lower pieco is clamped.

89. In this arrangement the luminous point itsclf exccutes
the vibrations which are to be observed; but in Lissajous’ form of
the experiment, the point of light remains really fixed, while its
image is thrown into apparcnt motion by means of successive
reflection from two vibrating mirrors. A small hole in an opaque
scrcen placed close to the flame of a lamp gives a point of light,
which is observed after reflection in the mirrors by means of a
small telescope. The mirrors, usually of polished steel, arc attached
to the prongs of stout tuning forks, and the whole is so disposed
that when the forks are thrown into vibration the luminous point
appears to deseribe harmonic motions in perpendicular directions,
owing to the angular motions of the reflecting surfaces. The
amplitudes and periods of these harmonic motions depend upon
thosc of the corresponding forks, and may be made such as to give
with enhanced brilliancy any of the figures possible with the
kalecidophone, By a similar arrangement it is possible to project
the figures on a screen.  In cither case they gradually contract as
the vibrations of the forks dic away.

40. 'The principles of this chapter have reccived an important
application in the investigation of rectilincar periodic motions,
When a point, for instance a particle of a sounding string, is
vibrating with such a period as to give a note within the limits of
hearing, its motion is much too rapid to be followed by the eye;
so that, if it be required to know the character of the vibration,
some indirect method must be adopted. The simplest, theo-
retically, is to compound the vibration under examination with a
uniform motion of translation in a perpendicular direction, as when
a tuning fork draws a harmonic curve on smoked paper. Instead
of moving the vibrating body itsclf, we may make usc of a revol-
ving mirror, which provides us with an vmage in motion. In this
way we obtain a representation of the function characteristic of
the vibration, with the abscissa proportional to time.
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But it often happens that the application of this method would
be difficult or inconvenient, Tn such cases we may substitute for
the upiform motion a bnrmenic vibrution < suitable period in tho
same direction. To fix our ideas, let us supposec that the point,
whose motion we wish to investigate, vibrates vertically with a
period 7, and let us cxamine the result of combining with this a
horizontal harmonic motion, whose period is some multiple of 7,
say, nr. Take a rectangular piece of paper, and with axes parallel
to its edges draw the curve representing the vertical motion (by
setting off abscissee proportional to the time) on such a scale that
the paper just contains 2 repetitions or waves, and then bend the
paper round so as to form a cylinder, with a re-entrant curve run-
ning round it. A point describing this curve in such a manner
that it revolves uniformly about the axis of the cylinder will
appear from a distance to combine the given vertical motion of
period 7, with a horizontal harmonic motion of period ar. Con-
verscly therefore, in order to obtain the representative curve of
the vertical vibrations, the cylinder containing the apparent path
must be imagined to be divided along a generating line, and
developed into a plane.  There is less difficulty in conceiving the
cylinder and the situation of the curve upon it, when the adjust-
ment of the periods is not quite exact, for then the cylinder
appears to turn, and the contrary motions serve to distinguish
those parts of the curve which lie on its nearer and further face.

41. The auxiliary harmonic motion is generally obtained
optically, by means of an instrument called a vibration-microscope
invented by Lissajous. One prong of a large tuning fork carries
a lens, whose axis is perpendicular to the direction of vibration ;
and which may be used either by itself, or as the object-glass of
a compound microscope formed by the addition of an eye-picce
independently supported. In either case a stationary point is
thrown into apparent harmonic motion along a line parallel to
that of the fork’s vibration.

The vibration-microscope may be applied to test the rigour
and universality of the law connecting pitch and period. Thus
it will be found that any point of a vibrating body which gives
a pure musical note will appear to describe a re-entrant curve,
when examined with a vibration-microscope whose note is in
strict unison with its own. By the same mecans the ratios of
frequencies characteristic of the consonant intervals may be
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verified; though for this latter purpose a more thoroughly
acoustical method, to be deseribed in a future chapter, may be
preferred.

42, Another method of examining the motion of a vibrating
hody depends upon the use of intermittent illumination, Suppose,
for cxample, that by means of suitable apparatus a scries of
clectric sparks are obtained at regnlar intervals 7. A vibrating
body, whose period is also 7, examined by the light of the sparks
must appear at rest, becausc it can be seen only in one position,
If, however, the period of the vibration differ from = ever so
Jittle, the illuminated position varies, and the body will appear
to vibrate slowly with a frequency which is the difference of that
of the spark and that of the body. The type of vibration can
then be observed with facility.

The series of sparks can be obtained from an induction-coil,
whose primary circuit is periodically broken hy a vibrating fork,
or by some other interrupter of sufficient regularity. But a better
result is afforded by sunlight rendered intermittent with the aid of
a fork, whose prongs carry two small plates of metal, parallel to
the plane of vibration and close together., In each plate is a slit
parallel to the prongs of the fork, and so placed as to afford a
free passage through the plates when the fork is at rest, or passing
through the middle point of its vibrations. On the opening so
formed, a beam of sunlight is concentrated by means of a burning-
glass, and the object under examination is placed in the cone of
rays diverging on the further side’.  When the fork is made to
vibrate by an electro-magnetic arrangement, the illumination is cut
off except when the fork is passing through its position of equi-
librium, or nearly so. The flashes of light obtained by this method
are not so instantancous as clectric sparks (especially when a
jar is conncected with the sccondary wire of the coil), but in my
experience the regularity is more perfect. Care should Le taken
to cut off extrancous light as far as possible, and the cffect is then
very striking.

A similar result may be arrived at by looking at the vibrating
body through a series of holes arranged in a circle on a revolving
dise.  Several series of holes may be provided on the same
disc, but the observation is not satisfactory without some pro-
vision for securing uniform rotation,

1 Tipler, IPhil. Mag. Jan, 18067.
R. 3
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Except with respect to the sharpness of definition, the result is
the same when the period of the light is any multiple of that of.
the vibruting vedy, This poind st be attended to when the
revolving wheel is used to determine an unknown frequency.

When the frequency of intermittence is an exact multiple of
that of the vibration, the object is seen without apparent motion,
but generally in more than one position, This condition of things
is sometimes advantageous.

Similar effects arise when the frequencies of the vibrations
and of the flashes are in the ratio of two small whole numbers. If,
for example, the number of vibrations in a given time be half
as great again as the number of flashes, the body will appcar
stationary, and in general double.



CHAPTER IIL
SYSTEMS IHAVING ONE DEGREE OF FREEDOM.

43. THE material systems, with whose vibrations Acoustics is
concerned, are usually of considerable complication, and are sus-
ceptible of very various modes of vibration, any or all of which
may coexist at any particular moment. Indeed in some of the
most important musical instruments, as strings and organ-pipes,
the number of independent modes is theoretically infinite, and
the consideration of several of them is essential to the most prac-
tical questions relating to the mnature of the consonant chords.
Cases, however, often present themselves, in which one mode is
of paramount importance ; and even if this were not so, it would
still be proper to commence the consideration of the general pro-
blem with the simplest case—that of one degrce of freedom. It
need not be supposed that the mode treated of is the only one
possible, because 8o long as vibrations of other modes do not occur
their possibility under other circumstances is of no moment.

44, The condition of a system possessing one degree of free-
dom is defined by the value of a single co-ordinate w, whose origin
may be taken to correspond to the position of cquilibrium. The
kinetic and potential encrgics of the system for any given position
are proportional respectively to 4 and * :—

T=fmid’, V=hpd . ooiiiiiinnnnon. (1),

where 7 and p are in general functions of . But if we limit our-
selves to the consideration of positions i the tmmediate neigh-
bourhood of that corresponding to equilibrium, u is a small quantity,
and m and wpare sensibly constant. On this understanding we
3—2
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now procced. If there be no forces, cither resulting from ‘internal
friction or viscosity, or impressed on the system from without, the
v/hole energy remains constant, Thus

T+ V =constant.

Substituting for 7' and V their valucs, and differentiating with
respect to the time, we obtain the cyuation of motion

mih+ pu=0.... e (2)
of which the complete integral is
U=@COS (N — @) venvenrrriiinnnenenn e (3),

where 22 = u + m, representing a harmondc vibration. It will be
scen that the period alone is determined by the nature of the
system itself; the amplitude and phase depend on collateral cir-
cumstances. If the differential equation were exact, that is to
say, if 7' were strictly proportional to % and V to «* then, without
any restriction, the vibrations of the system about its configuration
of equilibrium would be accurately harmonic. But in the majority
of cases the proportionality is only approximate, depending on an
assumption that the displacement u is always small—how small
depends on the nature of the particular system and the degree of
approximation required ; and then of course we must be careful
not to push the application of the integral beyond its proper
limits.

But, although not to be stated without a limitation, the prin-
ciple that the vibrations of a system about a configuration of
equilibrium have a period depending on the structure of the
system and not on the particular circumstances of the vibration,
is of supreme importance, whether regarded from the theoretical
or the practical side. If the pitch and the loudness of the note
given by a musical instrument were not within wide limits in-
dependent, the art of the performer on many instruments, such
as the violin and pianoforte, would be revolutionized.

The periodic time

8o that an increase in m, or a decrease in u, protracts the duration
of a vibration. By a gencralization of the language employed in
the case of a material particle urged towards a position of equili-
brium by a spring, m may be called the inertia of the system, and
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p the foree of the equivalent spring.  Thus an augmentation of
mass, or a relaxation of spring, inereases the perindie time. By
means of this principle we may somectimes obtain limits for
the value of a period, which cannot, or cannot casily, be caleulated
exactly.

45. The absence of all forces of a frictional character is an
ideal case, never realized but only approximated to in practice.
The original energy of a vibration is always dissipated sooner or
later by conversion into heat. But there is another source of loss,
which though not, properly speaking, dissipative, yet produces
results of much the same nature. Consider the case of a tuning-
fork vibrating <n wecuo. The internal friction will in time stop
the motion, and the original energy will be transformed into
heat.  But now suppose that the fork is transferred to an open
space. In strictness the fork and the air swrounding it consti-
tute a single system, whose parts cannot be treated separately.
In attempting, however, the exact solution of so complicated a
problem, we should generally be stopped by mathematical diffi-
culties, and in any case an approximate solution would be de-
girable. The cffect of the air during a few periods is quite insig-
nificant, and becomes important only by accumulation. We are
thus led to consider its cffect as a disturbance of the motion which
would take place 9 vacrwo. The disturbing force is periodic (to
the same approximation that the vibrations are so), and may be
divided into two parts, onc proportional to the acceleration, and
the other to the velocity. The former produces the same cffect as
an alteration in the mass of the fork, and we have nothing more
to do with it at present, The latter is a force arithmetically pro-
portional to the vclocity, and always acts in opposition to the
motion, and therefore produces effects of the same character as
those due to friction, In many similar cascs the loss of motion by
communication may be treated under the same head as that due
to dissipation proper, and is represented in the differential equa-
tion with a degree of approximation sufficient for acoustical pur-
poses by a term proportional to the velocity. Thus

(R R T | ¢ §

is the equation of vibration for a system with one degree of
frcedom subject to frictional forces, The solution is

w=Adetcos (P~ t—a) vrerrrenrenrnnnnn(2),
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If the friction be so great that 14® > n?, the solution changes its
form, and no longer corresponds to an oseillatory motion; but in
all acoastical appiications « is a small quantity. Under these
circumstances (2) may be regarded as expressing a harmonie vibra-
tion, whose amplitude is not constant, but diminishes in geo-
metrical progression, when considered after cqnual intervaly of
time. The difference of the logarithms of successive extreme
excursions is nearly constaut, and is called the Logarithmic Decre-
ment. It is expressed by der, if 7 be the periodie time.

The frequeney, depending on 22 — 14, involves only the sccond
power of «; so that to the first order of approximation the friction
has no effect on the period,—a principle of very general application,

The vibration here considered is called the free vibration, Tt
1s that cxecuted by the system, when disturbed from equilibrium,
and then left to itself.

46. 'We must now tarn our attention to another problem, not
less important,—the behaviour of the system, when subjected to a
force varying as a harmonic function of the time, In order to save
repetition, we may take at once the more genceral case including
friction. If there be no friction, we have only to put in our results
k=0. The differential equation is

Ut witn'u=Lcospt.......coerv.nn.. (1),
Assume
U=0C08 (PE—€).orirriiiiinrnnnninnn. (2),
and substitute:

@ (' = p°) cos ( pt ~ €) — wpa sin pt—¢€)
= Ii'cos € cos (pt — €) — Esin esin (pt— €);
whenee, on equating coefficients of cos (pt =€), sin (pt— e),
a (0~ p*)=Ecose
@ = Eainel o),
pr=Lsine
so that the solution may be written

Esine
= e 3 bl tteecteser e nerasaans 'l')
u e cos ( pt — e) ()

K
where taue:—/’ P t: )
n—p-

This is called a forced vibration; it is the responsce of the system
to a force imposcd upon it from without, and is maintained by the
continued operation of that force. The amplitude is proportional
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to J.—the magnitude of the force, and the period is the same
as that of the force.

Let us now suppose I given, and trace the effect on a given
system of a variation in the period of the force. The effects
produced in different cases are not strictly similar; because the
frequency of the vibrations produced is always the same as that of
the foree, and therefore variable in the comparison which we are
about to institute. We may, however, compare the energy of the
system in different cases at the moment of passing through the
position of equilibrium. It is necessary thus to specify the moment
at which the energy is to be computed in each case, because the
total encrgy is not invariable throughout the vibration. During
onc part of the period the system receives energy from the
impressed force, and during the remainder of the period yields it
back again.

From (4), if ©u=0,

energy o @ oc sin’e,
and is therefore & maximum, when sine=1, or, from (5), p=n. If
the maximum kinetic energy be denoted by 7', we have
7 n2
T=T, sin%...... N (B

The kinctic energy of the motion is therefore the greatest possible,
when the period of the force is that in which the system would
vibrate freely under the influence of its own clasticity (or other
internal forces), without frictton, The vibration is then by (4)
and (5),

I .
U= — SIn nt,
nK

and, if ¢ be small, its amplitude is very great. Its phase is a
quarter of a period behind that of the force.

The case, where p=n, may also be treated independently.
Since the period of the actual vibration is the same as that
natural to the system,

%+ n*u =0,
so that the ditferential equation (1) reduces to
ki = If cos pt,
whence by integration
U= —szcospt dt = £ sin pt,
K pr

as before,
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If p be less than n, the retardation of phase relatively to the
force lies between zero and a quarter period, and when p is greater
than 52, between w guarier pesiod .l o Lulf petiod,

In the ease of a system devoid of friction, the solution is

1,
u= fﬁ COSPbevivennininiinernnnn (7).

When p is smaller than », the phase of the vibration agrees with
that of the force, but when p is the greater, the sign of the vibra-
tion is changed. The change of phase from complete agreement
to complete disagreement, which is gradual when friction acts,
here tukes place abruptly as p passcs through the value . At the
same time the expression for the amplitude becomes infinite,  Of
course this only means that, in the case of cqual periods, friction
must be taken into account, Lowever small it may be, and however
insignificant its result when p and n are not approximately equal,
The limitation as to the magnitude of the vibration, to which we
arc all along subject, must also be borne in mind,

That the excursion should be at its maximum in onc direction
while the generating force is at its maximum in the opposite
dircction, as happens, for example, in the canal theory of the tides,
is somctimes considered a paradox. Any difficulty that may be
felt will be removed by considering the extreme case, in which the
“spring” vanishes, so that the natural period is infinitely long. In
fuct we need only consider the force acting on the bob of a com-
mon pendulum swinging frecly, in which case the excursion on one
side is greatest when the action of gravity is at its maximum
in the opposite direction.  Wlien on the other hand the inertia of
the system is very small, we have the other extreme case in which
the so-called equilibrium theory becomes applicable, the force and
excursion being in the same phase.

When the period of the foree is longer than the natural period,
the cffect of an increasing friction is to introduce a retardation
in the phase of the displacement varying from zero up to a quarter
period,  1If, however, the period of the natural vibration be the
longer, the original retardation of half a period is diminished by
something short of a quarter period; or the cffect of friction is to
accelerate the phase of the displacement estimated from that corre-
sponding to the absence of friction. In cither case the influence
of friction is to cause an approsimation to the state of things that
would prevail if friction were paramount,
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If o force of nearly equal period with the free vibrations
vary slowly to a maximum and then slowly decrease, the dis-
placement does not reach its maximum until after the force has
begnn to diminish. Under the operation of the force at its
maximum, the vibration continues to Increase until a certain limit
is approached, and this increase continues for a time even although
the force, having passed its maximum, beging to diminish. On
this principle the retardation of spring tides hehind the days of
new and full moon has been explained’,

47. Trom the linearity of the cquations it follows that the
motion resulting from the simultancous action of any number of
forces is the simple sum of the motions due to the forces taken
separately,  Each force causes the vibration proper to itsclf,
without regard to the presence or absence of any otheis. The
peculiarities of a force are thus in a manner transmitted into the
motion of the system. For example, if the force be periodic in
time 7, so will be the resulting vibration. Each harmonic ele-
ment of the force will call forth a corresponding harmonic vibration
in the system. But since the retardation of phase €, and the ratio
of amplitudes « : E, is not the same for the different components,
the resulting vibration, though periodic in the same time, is dif-
ferent in character from the force. It may happen, for instance,
that one of the components is isochronous, or nearly so, with the
free vibration, in which case it will manifest itsclf in the motion
out of all proportion to its original importance. As another
example we may consider the case of a system acted on by two
forces of nearly equal period.  The resulting vibration, being com-
pounded of two nearly in unison, is intermittent, according to the
principles explained in the last chapter.,

To the motions, which are the immediate effects of the im-
pressed forces, must always be added the term expressing free
vibrations, if it be desired to obtain the most general solution.
Thus in the case of one impressed force,

o
0= L—}“)S—];L?cos (pt—€) + Ae”* cos (Wrn'=3k" t—a} oo (1),

where 4 and a arc arbitrary,

48, The distinction between forced and free vibrations is very

1 Airy’'s Tides and Vaves, Art, 328,
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important, and must be clearly understood. The period of the
former is determined solely by the force which is supposed to act
ot he syt fiom without; while that of the latter depends only
on the constitution of the system itself.  Another point of differ-
ence is that so long as the external influence continues to operate,
a forced vibration is permancnt, being represcnted strictly by a
harimonic function; but a free vibration gradually dies away, be-
coming ncgligible after a time. Suppose, for example, that the
system is at rest when the foree Z cos pt begins to operate. Such
tinite values must be given to the constants A and « in (1) of § 47,
that both « and @ are initially zero. At first then there is a
free vibration not less important than its rival, but after a time
friction reduces it to insignificance, and the forced vibration is left
in complete possession of the field, This condition of things will
continue so long as the force operates. When the foree is removed,
there is, of course, no discontinuity in the values of % or %, but
the forced vibration is at once converted into a free vibration,
and the period of the force is exchanged for that natural to the

system,

During the coexistence of the two vibrations in the carlier part
of the motion, the curious phenomenon of beats may occur, in
case the two periods differ but slightly.  For, # and p being nearly
equal, and x small, the initial conditions are approximately satis-
fied Dy

u=qacos (pt—e) —ae * cos Wi =1kt t - ).

There is thus a rise and fall in the motion, so long as e remaing
sensible, This intermittence is very conspicuous in the earlier
stages of the motion of forks driven by electro-magnetism (§ G3).

49.  Vibrating systems of onc degree of freedom may vary in
two ways according to the values of the constants n and k. The
distinction of pitch is sufficiently intelligible; but it is worth while
to examine more closely the consequences of a greater or less
degree of damping.  The most obvious is the more or less rapid
extiuction of a free vibration. The effect in this dircetion may be
measured by the number of vibrations which must clapse before
the amplitude is reduced in a given ratio. Initially the amplitude

may be taken as unity; after a time ¢, let it be 8, Then 6 = ¢,
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2
If t = 27, we have 2 = — . log . In a system subject to only a
inoderate degree ol dampiug, we may iake approximately,
T=27r+n;
so0 that &= —— log@ ooiiviiinnnn (1),
K

This gives the number of vibrations which are performed, before
the amplitude falls to 6.

" The influence of damping is also powerfully fclt in a forced
vibration, when there is a ncar approach to isochronism. In the
case of an exact equality between p and », it is the damping alone
which prevents the motion becoming infinite,  We might casily
anticipate that when the damping is small, a comparatively slight
deviation from perfect isochronism would cause a large falling off
in the magnitudo of the vibration, but that with a larger damping,
the same precision of adjustment would not be required. From

the equations

I'=1T, sin’e, tane= ——’fp-
n*—p*’

ﬁ:lf-\/&_—l' %) .
we get ‘ o 7 PP () §-

so that if « be small, » must be very nearly equal to #, in order to
produce a motion not greatly less than the maximum.

The two principal effects of damping may be compared by
climinating « between (1) and (2). The result is

100'0 P w \/—'T“'
8¢ (ﬁ'j>) iy S )

where the sign of the square root must be so chosen as to make
the right-hand side negative.

If, when a system vibrates freely, the amplitude be reduced in
the ratio @ after x vibrations; then, when it is acted on by a force
(p), the energy of the resulting motion will be less than in the
case of perfect isochronism in the ratio 7": 7). It is a matter of
indifference whether the forced or the free vibration be the higher;
all depends on the wnterval.

In most cases of interest the interval is small; and then, putting
p =n+0n, the formula may be written,

logH 9#8;1\/ l’ 4
Ly
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The following table calculated from these formule has been
given by Helmholtz* ;

Interval corresponding to a reduction Nl}l)lber'()f vibrations uftcr .wlxic-}x the
of thie resonance to one-tenth, Intensity of a freo vibration is re-
T T,=1: 10, duced to Oll(!-lcilﬂl.
0% =,
1 tone, 3800
1 tone, 19:00
1 tone. 9:50
# tone, 6:33
Whole tone, 475
£ tone, 380
4 tone = minor third. 317
3 tone, 271
T'wo whole tones == major third. 237

Formula (4) shews that, when 8n is small, it varies cewters
. 1
paribus as =,
x

50. From observations of forced vibrations due to known

forces, the natural period and damping of a system may be deter-
mined. The formulw are

Isine
U=—"--~cos (pt—e),
1)[6
14
where tane= ._,7 e
n—p

On the cquilibrium theory we should have

o
U= 54 €08 L
The ratio of the actual amplitude to this s
Lsine FE n*sine

v g

pr n J L3

If the equilibrium theory be known, the comparison of ampli-
2 L
tudes tells us the value of 252 €
PK

H

n'sine
pe

2

Y Tonempfindungen, p, 221,
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and e is also known, whence

="+ (1 - (—:ES—-(-:) , and « = PENE (1).
@ @ — COS€

51. Ashas been already stated, the distinction of forced and
free vibrations is important ; but it may be remarked that most of
the forced vibrations which we shall have to consider as affecting
a system, take their origin ultimately in the motion of a second
system, which influences the first, and is influcnced by it. A
vibration may thus have to be reckoned as forced in its rclation
to a system whose limits are fixed arbitrarily, cven when that
system has a share in determining the period of the force which
acts upon it. On a wider view of the matter cmbracing both the
systems, the vibration in question will be recognized as free.  An
cxample may make this clearer. A tuning-fork vibrating in air
is part of a compound system including the air and itself, and
in respect of this compound system the vibration is free. But
although the fork is influenced by the reaction of the air, yet the
amount of such influence is small. For practical purposes it is
convenient to consider the motion of the fork as given, and that of
the air as forced. No crror will be committed if the actual motion
of the fork (as influenced by its surroundings) be taken as the
basis of caleulation. But the peculiar advantage of this mode of
conception is manifested in the case of an approximate solution
being required. It may then suffice to substitute for the actual
motion, what would be the motion of the fork in the absence of
air, and afterwards introduce a correction, if nccessary.

59. Tllustrations of the principles of this chapter may be
drawn from all parts of Acoustics. We will give here a few
applications which deserve an early place on account of their
simplicity or importance.

A string or wire ACB is stretched between two fixed points
A and B, and at its centre carries a mass M, which is supposed to
De so considerable as to render the mass of the string itsclf negli-
gible. When A is pulled aside from its position of equilibrium,
and then It go, it exccutes along the line CAf vibrations, which
are the subject of inquiry. AC=CB=a. CN=z. The tension
of the string in the position of equilibrium depends on the amount
of the stretching to which it Las been subjected. In any other
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position the tension is greater ; but we limit ourselves to the case
of vibrations so small that the additional stretching is a negligible
fraction of the whole. Oax this eanditinn the teusion way be
treated as constant. We denote it by 7'

Fi¢c.9.
Thus, kinetic energy = 4 M4,
—_— { ,2 .
and potential energy=27{/*+ &' — a} = T% approximately.

The cquation of motion (which may be derived also inde-
pendently) is therefore

ME+2T:=O ........ eemrerneenenn (1),

from which we infer that the mass M executes harmonic vibra-

tions, whose period
2
T all @)

The amplitude and phase depend of course on the initial cir-
cumstances, being arbitrary so far as the differential equation is
concerned.

Equation (2) expresses the manner in which 7 varies with cach
of the independent quantities 7, M, a: results which may all be
obtained by consideration of the dimensions (in the technical sense)
of the quantities involved. The argument from dimensions is so
often of importance in Acoustics that it may be well to consider
this first instance at length,

In the first place we must assure ourselves that of all the
. Quantitics on which 7 may depend, the only ones involving a
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reference to the three fundamental units—of length, time, and
mass—are ¢, M, and 7. Let the solution of the problem be
writbenr

r= (e, M T) oo (),

This equation must retain its form unchanged, whatever may
be the fundamental units by means of which the four quantities
arc numerically expressed, as is evident, when it is considered
that in deriving it no assumptions would be made as to the mag-
nitudes of those units. Now of all the quantitics on which f
depends, 7' is the only one involving time; and since its dimen-
sions are (Mass) (Length) (Time)™, it follows that when @ and A
arc constant, e 7% ; otlerwise a change in the unit of time
would necessarily disturb the equation (3). This being admitted,
it is easy to sce that in order that (3) may be independent of the

unit of length, we must have e T3 . o¥, when M is constant ; and
finally, in order to secure independence of the unit of mass,

T T3 MY ad

To determine these indices we might proceed thus:—assume
T I MY . o
then by considering the dimensions in time, space, and mass, we
obtain respectively
l==22 O=a+z O=ax+y,

whence as above

=1
y A=y

x=—

y Y=

Dol -

1O] w=t

There must be no mistake as to what this argument does and
docs not prove. We have assumed that there is a definite
periodic time depending on no other quantities, having dimen-
sions in space, time, and mass, than those above mentioned. For
cxample, we have not proved that 7 is independent of the ampli-
tude of vibration. That, so far as it is true at all, is a consc-
quence of the linearity of the approximate differential cquation.

From the necessity of a complete enumeration of all the
quantities on which the required result may depend, the method
of dimensions is somewhat dangerous ; but when used with proper
cnre it is unquestionably of great power and value.
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53.  The solution of the present problem might be made the
foundation of a method for (he absolute measurement of pitch,
The prineipal impediment to accuracy would probably Jbe the
difficulty of making M sulicicntly large in relation to the mass of
the wire, without at the same time lowering the note too much in
the musical scale,

A-— &) B
r
Flg.lo < w'

The wire may be stretched by a weight M’ attached to its
further end heyond a bridge or pulley at . The periodic time
would be caleulated from

The ratio of M’ ¢ M is given by the balance. If ¢ be measured
in fect, and 9= 322, the periodic time is expressed in seconds,

54, In an ordinary musical string the weight, instead of being
concentrated in the centre, is uniformly distributed over its length.
Nevertheless the present problem gives some idea of the nature of
the gravest vibration of such a string. Let us compare the two
cases more closcly, supposing the amplitudes of vibration the same
at the middle point,

M
A C\B
Fra, Il

When the uniform string is straight, at the moment of passing
through the position of equilibrivm, its different parts are ani-
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mated with a variable velocity, increasing from either end towards
the centre.  If we attribute to the whole mass the velocity of the
centre, it is evident that the kinetic encrgy will be considerably
over-cstimated. Again, at the moment of maximum excursion,
the uniform string is more stretched than its substitute, which
follows the straight courses AN, MB, and accordingly the poten-
tial energy is diminished by the substitution. The concentration
of the mass at the middle point at once increases the kinectic
cnergy when @= 0, and deereasces the potential energy when = 0,
and therefore, according to the principle explained in § 44, prolongs
the periodic time. For a string then the period is less than that
calculated from the formula of the last section, on the supposition
that 2/ denotes the mass of the string. It will afterwards appear
that in order to obtain a correct result we should have to take in-

stead of A only -?, M. Of the factor ;:—, by far the more import-
™
ant part, viz. i, is duc to the difference of the kinetic encrgies.

55, As another example of a system possessing practically but
one degree of frecdom, let us consider the vibration of a spring, onc
end of which is clamped in a vice or otherwise held fast, while the
other carries a heavy mass.

In strictness, this system like the last has
an infinite number of independent modes of vi-
bration; but, when the mass of the spring is
relatively small, that vibration which is nearly
independent of its inertin becomes so much the
most important that the others may be ignored.
Pushing this idea to its limit, we may regard the
spring mercly as the origin of a force urging the
attached mass towards the position of equilibrium,
and, if a certain point be not excecded, in simple =
proportion to the displacement, The result is a <7
harmonic vibration, with a period dependent on 2 |
the stiffness of the spring and the mass of the
load.

F10C1/2,

56. In consequence of the oscillation of the centre of inertia,
there is a constant tendency towards the communication of motion
to the supports, to resist which adequately the latter must be
very firm and massive, In order to obviate this inconvenience,
) 4

e}
Le
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two precisely similar springs and loads may be mounted on
the same frame-work in a symmectrical manner.

If the two loads perform vibrations of equal ampli- @ O
tude in such a manner that the motions arc always
opposite, or, as it may otherwise be expressed, with
a phase-difference of half a period, the centre of
incrtia of the whole system remains at rest, and
there is no tendency to set the frame-work into
vibration. We shall sce in a future chapter that
this peculiar relation of phases will quickly csta-
blish itself, whatever may be the original disturb-
ance. In fact, any part of the motion which does
not conform to the condition of leaving the centre
of inertia unmoved is soon extinguished by damp-
ing, unless indeed the supports of the system are
more than usually firm,

&1015

57. Asin our first example we found a rough illustration of
the fundamental vibration of a musical string, so here with the
spring and attached load we may compare a uniform slip, or bar,
of elastic material, one end of which is sceurcly fastened, such for
instance as the tongue of a reed instrument. It is true of course
that the mass is not concentrated at one end, but distributed
over the whole length; yet on account of the smallness of
the motion ncar the point of support, the inertia of that part
of the bar is of but little account, We infer that the fundamental
vibration of a uniform rod cannot be very different in character
from that which we have been considering.  Of course for pur-
poses requiring precise calculation, the two systems are sufficiently
distinet ; but where the object is to form clear ideas, precision may
often be advantageously exchanged for simplicity.

In the same spirit we may regard the combination of two
springs and loads shewn in Fig. 18 as a representation of a
tuning fork. This instrument, which has been much improved
of late years, is indispensable to the acoustical investigator. On
a large scale and for rough purposes it may be made by welding
a cross piece on the middle of a bar of steel, so as to form a T, and
then bending the bar into the shape of a horse shoc. On the
handle a screw should be cut. But for the better class of tuning
forks it is preferable to shape the whole out of one Picee of stecl.
A division running from one end down the middle of a bar is first
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made, the two parts opened out to form the prongs of the forlk,
and the whole worked by the hammer and file into the required
shape.  The two prongs must be exactly symmictrical with respect
to a planc passing through the axis of the handle, in order that
during the vibration the centre of incrtia may remain unmoved,
—unmoved, that is, in the dircction in which the prongs
vibrate,

The tuning is cffected thus. To make the note higher, the
cquivalent inertia of the system must be reduced.  This is done
by filing away the ends of the prongs, cither diminishing their
thickness, or actually shortening them. On the other hand, to
lower the pitch, the substance of the prongs near the bend may
be reduced, the effect of which is to diminish the force of the
spring, leaving the inertia practically unchanged; or the inertia
may be increased (a method which would be preferable for tem-
porary purposes) by loading the ends of the prongs with wax, or
other material.  Large forks are sometimes provided with move-
able weights, which slide along the prongs, and can be fixed in
any position by screws. As these approach the ends (where the
velocity is greatest) the equivalent inertia of the system increases.
In this way a considerable range of pitch may be obtained from
one fork. The number of vibrations per sceond for any position
of the weights may be marked on the prongs.

The relation between the piteh and the size of tuning forks is
remarkably simple, In a future chapter it will be proved that,
provided the material remains the same and the shape constant,

- the period of vibration varies directly as the lincar dimension.
af Thus, if the linear dimensions of a tuning fork be doubled, its
¥ note falls an octave,

, 58. The note of a tuning fork is a necarly pure tone. Imme-
 diately after a fork is struck, high tones may indeed be heard,
corresponding to modes of vibration, whose nature will be subse-
quently considered; but these rapidly die away, and even while
they exist, they do not blend with the proper tone of the fork,
partly on account of their very high pitch, and partly because
 they do not belong to its harmonic. scale, In the forks examined
- hy Helmholtz the first of these overtones had a frequency from 5-8
L to 66 times that of the proper tone.

Tuning forks are now generally supplied with resonance cases,
whose effect is greatly to augment the volume and purity of the

4—2
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sound, according to principles to be hercafter developed.  In
order to excite them, a violin or cello bow, well supplied with
swahy, oo drawn acrowm the prongs in the direction of vibration,

The sound so produccd will last a minute or more.

59. As standards of pitch tuning forks are invaluable. The
pitch of organ-pipes varies with the temperature and with the
pressure of the wind; that of strings with the tension, which can
never be retained constant for long; but a tuning fork kept clean
and not subjected to violent changes of temperature or magnet-
ization, preserves its pitch with great fidelity.

By means of beats a standard tuning fork may be copied with
very great precision. The number of beats heard in a sceond i
the difference of the frequencies of the two tones which produce
them; so that if the beats can be made so slow as to occupy half
a minute each, the frequencies differ by only 1-30th of a vibra-
tion. Still greater precision might be obtained by Lissajous’
optieal method.

Very slow beats being difficult of obscrvation, in conscyuence
of the uncertainty whether a falling off in the sound is due to
interference or to the gradual dying away of the vibratiohs,
Scheibler adopted a somewhat woditied plan.  He took a fork
slightly different in pitch from the standard—whether higher or
lower is not material, but we will say, lower,—and counted the
‘number of beats, when they were sounded together.  About four
beats a second is the most suitable, and these may be counted for
perhaps a minute. The fork to be adjusted is then made slightly
higher than the auxiliary fork, and tuncd to give with it precisely
the same number of beats, as did the standard. In this way a
copy as cxact as possible is secured.  To facilitate the counting
of the beats Scheibler employed pendulums, whose periods of
vibration could be adjusted.

60. The method of beats was also employed by Scheibler to
determine the absolute pitch of his standards. Two forks were
tuned 'to an octave, and a number of others prepared to bridge
over the interval Ly steps so small that each fork gave with its
immediate neighbours in the series a number of beats that could
be casily counted. The ditferenee of frequency corresponding to
cach step was observed with all possible accuracy. Their sum,
being the difference of frequencies for the interval of the octave,
was cqual to the frequency of that fork which formed the starting
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point at the bottom of the series. The piteh of the other forks
could be deduced.

If consceutive forks give four beats per second, 65 in all will
be required to bridge over the interval from ¢ (256) to ¢’ (512).
On this account the method is laborious; but it is probably the
most aceurate for the original determination of piteh, as it is liable
to no errors but such as care and repetition will climinate. It
may be observed that the essential thing is the measurement of
the difference of frequencies for two notes, whose ratio of frequen-
cies is independently known.  If we could De sure of its accuracy,
the interval of the fifth, fourth, or even major third, might be sub-
stituted for the octave, with the advantage of reducing the number
of the necessary interpolations. It is probable that with the aid
of optical methods this course might be successlully adopted, as
the corresponding Lissajous’ figures arc casily recognised, and
their steadiness is a very severe test of the accuracy with which
the ratio is attained,

The frequency of large tuning forks may be determined by
allowing them to trace a harmonic curve on smoked paper, which
may conveniently be mounted on the cirenmicrence of a revolving
drum. The number of waves exceuted in a sccond ol time gives

the frequency.
In many cases the use of intermittent illumination deseribed
in § 42 gives o convenient method of determining an unknown

frecquency.

G1. A serics of forks ranging at small intervals overan octave
is very useful for the determination of the frequency of any
musical note, and is called Scheibler’s Tonometer, It may also
be useld for tuning a nole to any desired piteh. In cither casc
the frequency of the note is determined by the number of beats
which it gives with the forks, which lic nearest to it (on cach
side) in pitch,

For tuning pianofortes or organs, a sct of twelve forks may be
used giving the notes of the chromatic scale on the cqual tempe-
rament, or any desired system, The corresponding notes are
adjusted to unison, and the others tuned by octaves, It is better,
however, to prepare the forks so as to give four vibrations per
sccond less than is above proposed. Each note is then tuned o
little higher than the corresponding fork, until they give when
sounded together exactly four heats in the second. It will he
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observed that the addition (or subtraction) of a constant number
to the frequencics is not the same thing as a mere displacement
of the scale in absolute pitch,

In the ordinary practice of tuners ¢’ is taken from a fork, and
the other notes determined by cstimation of fifths, It will be
remembered that twelve true fifths are slightly in excess of seven
octaves, so that on the cqual temperament system cach fifth is a
little flat. The tuner proceeds upwards from ¢’ by successive
fifths, coming down an octave after about every alternate step, in
order to remain in nearly the same part of the scale. Twelve
fifths should bring him back to «. If this be not the case, the
work must be readjusted, until all the twelve fifths are too flat by,
as nearly as can be judged, the same small amount.  The inevita-
ble error is then impartially distributed, and rendered as little
sensible as possible.  The octaves, of course, are all tuned truc.
The following numbers indicate the order in which the notes may
be taken:

ak b ¢ c'# ddgeff '# g g'# a a'# Vo' kA cl"# e’
18351681911 314 6 17 9 1 12 415 7 18 10 2

In practice the equal temperament is only approximately at-
tained; but this is perhaps not of much consequence, considering
that the system aimed at is itself by no means perfection.

Violins and other instruments of that class arc tuned by truc
fifths from o'

62. In illustration of forced vibration let us consider the casc
of a pendulum whose point of support is subject to a small hori-
zontal harmonic motion, @ is
the bob attaclied by a fine wire
to a moveable point P 0’ =
x, I’Q =1, and « is the horizon-
tal co-ordinate of Q. Since the
vibrations arc supposed small,
the vertical motion 1way le
neglected, and the tension of
the wire equated to the weight
of Q. Hence for the horizontal FICl4,

0 P

notion & + &2 -+ fl/ (@ — ) =0,
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Now =z, « cos pt; so that putting g + =2 our equation takes
the form already treated of, viz,

@+ kx+ n'r = I cos pt.

If p be equal to 2, the motion is limited only by the friction,
The assumed horizontal harmonic motion for P may be realized by
means of a second pendulum of massive construction, which carries
P with 1t in its motion. An efficient arrangement is shewn in
the figure. 4, B are iron rings screwed into a beam, or other firm

support; C, D similar rings attached to a stout bar, which carries
equal heavy weights &, 11, attached ncar its ends, and is supported
in a horizontal position at right angles to the beam by a wire
passing through the four rings in the manner shewn.  When the
pendulum ig mnade to vibrate, a point in the rod midway between
C and D executes a harmonic motion in a direction parallel to
CD, and may be made the point of attachment of another pen-
dulum 22Q. 1If the weights £ and F be very great in rclation
to @, the upper pendulum swings very nearly in its own proper
period, and induces in @ a foreed vibration of the same period.
When the Jength P@Q is so audjusted that the natural periods of the
two pendulumg are nearly the same, Q will be thrown into violent
motion, even though the vibration of 2 be of but inconsiderable
amplitude. In this case the difference of phase is about a quarter
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of a period, by which amount, the upper pendulum is in advance.
If the two periods be very different, the vibrations cither agrec
or are completely opposed in plase, according to equations (4)
and (3) of § 4G.

63. A very good example of a forced vibration is afforded by
a fork under the influence of an intermittent clectric current,

. Fl1G. 16,
S =%
L—I ’——'\ — Fl
. ] . S
2o _C
E

whose period is nearly equal to its own, ACB is the fork; /7 a
small electro-magnet, formed by winding insulated wire on an iron
core of the shape shewn in Z (similar to that known as “Siemens’
armature’), and supported between the prongs of the fork.  When
an intermittent current is sent through the wire, a periodic force
acts upon the fork.  This force is not expressible by a simple cir-
cular function; but may be expanded by Fourier's theorem in a
series of such functions, having periods 7, 4 7, § 7, & If any of
these, of not too small amplitude, be nearly isochronous with the
fork, the latter will be caused to vibrate; otherwise the cffect is
insignificant. In what follows we will suppose that it is the com-
plete period 7 which nearly agrees with that of the fork, and con-
sequently regard the series expressing the periodic foree as reduced
to its first term,

In order to obtain the maximum vibration, the fork must be
carefully tuned hy a small sliding picee or by wax', until its natural
period (without friction) is equal to that of the force,  This is hest
done by actual trial.  When the desired cquality is approached,
and the fork is allowed to start from rest, the forced and com-
plementary free vibration are of nearly equal amplitudes and
frequencics, and thercfore (§ 48) in the beginning of the motion
produce beats, whose slowness is a measure of the accuracy of

! For this purpose wax may conveniently be softened by melting it with a littla
turpentine,
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the adjustment, It is not until after the free vibration has had
time to subside, that the motion assumes its peru:anent character..
The vibrations of a tuning fork properly constructed and mounted
arc subject to very little damping; consequently a very slight
deviation from perfoet isochronism occasions a marked falling off
in the intensity of the resonance.

The amplitude of the forced vibration can be observed with
sufficient accuracy by the car or eyc; but the experimental verifi-
cation of the relations pointed out by theory between its phase
and that of the force which causes it, requires a modified arrange-
ment.

Two similar clectro-magnets acting on similar forks, and in-
cluded in the same circuit, are excited by the same intermittent
current.  Under these circumstances it is clear that the systems
will be thrown into similar vibrations, because they are acted on
by cqual forces, This similarity of vibrations refers both to phase
and amplitude, Let us suppose now that the vibrations are
effccted in perpendicular directions, and by means of onc of
Lissajous’ methods are optically compounded. The resulting figure
is nccessarily a straight line.  Starting from the case in which the
amplitudes arc a maximum, viz. when the natural periods of both
forks are the same as that of the force, let one of them be put a
little out of tunc. It must be remembered that whatever their
natural periods may be, the two forks vibrate in perfect unison
with the foree, and therefore with onc another. The principal
cffect of the difference of the natural periods is to destroy the
synchronism of phase. The straight line, which previously repre-
sented the compound vibration, becomes an ecllipse, and this
remains perfectly steady, so long as the forks are not touched.
Originally the forks are both a quarter period behind the force.
When the pitch of one is slightly lowered, it falls still more behind
the force, and at the same time its amplitude diminishes. Let the
difference of phase between the two forks be €, and the ratio of
amplitudes of vibration a: @, Then by (G) of § 46

@=,cos €.
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The following table shews the simultancous values of « : t,
and €.

¢ a, €
10 0
) 25° 50’
‘8 36° 52’
7 45° 34
G 53° 7
5 60°
4 66° 25
3 72° 32
2 78° 27
1 84° 15"

It appears that a considerable alteration of phase in either
direction may be obtained without very materially reducing the
amplitude. When one fork is vibrating at its maximum, the
other may be made to differ from it on cither side by as much as
60” in phase, without losing more than half its amplitude, or by as
much as 45, without losing more than half its energy. By allow-
ing onc fork to vibrate 45° in advance, and the other 45° in arrcar
of the phasc corresponding to the case of maximum resonance, we
obtain a phase difference of 90" in conjunction with an equality of
amplitudes. Lissajous’ figure then becomes a circle,

64. The intermittent current is best obtained by a fork-
interrupter invented by Helmholtz, This may consist of a fork
and clectro-magnet mounted as before. The wires of the magnct
are connected, one with one pole of the battery, and the other with
a mereury cup.  The other pole of the battery is connected with
a second merecury cup. A U-shaped rider of insulated wire is
carricd by the lower prong just over the cups, at such a height
that during the vibration the circuit is alternately made and
broken by the passage of one end into and out of the mercury.
The other end may be kept permanently immersed. By means
of the periodic force thus obtained, the cffcet of friction is com-
pensated, and the vibrations of the fork permanently maintained.
In order to sct another fork into forced vibration, its associated
clectro-magnet may be included, either in the same driving-circuit,

Y Tonempfindungen, p, 190,
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or in a second, whose periodic interruption is effected by another
rider dipping into mercury cups’,

The nwdus operends of wns Kind of sell-acting instrument is
often imperfectly apprehended, If the force acting on the fork
depended only on its position—on whether the circuit were open
or closed—the work done in passing through any position would
be undone on the return, so thut after a complete period there
would be nothing outstanding by which the effect of the frictional
forces could be compensated.  Any explanation which does not
take account of the retardation of the current is wholly beside the
mark. The causes of retardation are two: irregular contact, and
self-induction.  When the point of the rider first touches the mer-
cury, the clectric contact is imperfect, probably on actount of
adhiering air. On the other hand, in leaving the mercury the
contact is prolonged by the adhesion of the liquid in the cup to
the amalgamated wire.  On both accounts the current is retarded
bebind what would correspond to the mere position of the fork.
But, even if the resistance of the circuit depended only on the
position of the fork, the current would still be retarded by its self-
induction. However perfect the contact may be, a finite current
cannot be generated until after the lapse of a finite time, any
more than in ordinary mechanics a finite velocity can be suddenly
impressed on an inert body. From whatever causes arising’, the
offect of the retardation is that more work is gained by the fork
during the retreat of the rider from the mercury, than is lost
during its entrance, and thus a balance remains to be set off
against friction,

If the magnctic force depended only on the position of the fork,
the phase of its first harmonic component might be considered to
Le 180° in advance of that of the fork’s own vibration. The re-

11 have arranged several interrupters on the above plan, all the component
parts being of home manufacture, The forks were made by the village blacksmith.
T'ho cups consisted of iron thimbloes, soldered on one end of copper slips, tho
further end being scrowed down on tho base board of the inslrument. Somo
means of adjusting the level of the mercury surface is necessary, In Helmholts’
interrupter & horse-shoo clectro-magnot embracing the fork is adopted, but I am
inclined to prefer the present arrangement, at any rato if the pilch bo low. In
some cases & greater molive power is obtained by a borse-shoe magnet ncling on a
soft iron armature carried horizontally by the upper prong aud perpendicular to it.
1 have usually found a single Smee cell suflicient battery power.

3 Any desired rotardation might bo obtained, in defanlt of other means, by
attaching tho rider, mot to the prong itself, but to the further end of n light
straight spring carried by the prong and set into forced vibration by the motion of
its point of attachment,
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tardation spoken of reduces this advance. If the phase-difference
be reduced to 90" the force acts in the most favourable mauncr,
wtd b groatent possitle vibeation Is produced.

It is important to notice that (except in the case just referred
to) the actual pitch of the interrupter differs to some extent from
that natural to the fork according to the law expressed in (5) of
§ 46, ¢ being in the present case a preseribed phase-difference
depending on the nature of the contacts and the magnitude of the
self-induction.  If the intermittent current he employed to drive
a sccond fork, the maximum vibration is obtained, when the fre-
quency of the fork coincides, not with the natural, but with the
modified frequency of the interrupter.

The deviation of a tuning-fork interrupter from its natural
piteh is practically very small; but the fact that such a deviation
s possible, is at first sight rather surprising. The explanation (in
the case of a small retardation of current) is, that during that half
of the motion in which the prongs arc the most separated, the
clectro-magnet acts in aid of the proper recovering power due to
rigidity, and so naturally raises the pitch. Whatever the relation
of phases may be, the force of the magnet may be divided into
two parts respectively proportional to the velocity and displace-
ment (or acceleration).  To the first exclusively is due the sustain-
ing power of the force, and to the second the alteration of pitch.

65. The general phenomenon of resonance, though it cannot
be exhaustively considered under the head of one degree of free-
dom, is in the main referable to the same general principles.
When a forced vibration is excited in one part of a system, all
the other parts arce also influenced, a vibration of the same period
being excited, whose amplitude depends on the constitution of the
system considered as a whole. But it not unfrequently happens
that interest centres on the vibration of an outlying part whose
connection with the rest of the system is but loose. In such a case
the part in question, provided a certain limit of amplitude be
not excceded, is very much in the position of a system possessing
one degree of freedom and acted on by a force, which may be
regarded as guwen, independently of the natural period. The
vibration is accordingly governed by the laws we have already
investigated. In the case of approximate cquality of periods to
which the name of resonance is generally restricted, the ampli-
tude may be very considerable, ¢ven though in other eases it
might be so small as to he of little account; and the precision
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required in the adjustment of the periods in order to bring out
the effect, depends on the degree of damping to which the system
is subjected.

Among bodies which resound without an extreme precision of
tuuing, may be mentioned stretched membranes, and strings asso-
ciated with sounding-boards, as in the pianoforte and the violin.
When the proper note is sounded in their neighbourhood, these
bodies are caused to vibrate in a very perceptible manner, The
experiment may be made by singing into a pianoforte the note
given by any of its strings, having first raised the corresponding
damper.  Or if one of the strings belonging to any note be plucked
(like a harp string) with the finger, its fellows will be set into
vibration, as may immediately be proved by stopping the first.

The phenomenon of resonance is, however, most striking in
cases where a very accurate cquality of periods is nccessary in
order to clicit the full eftect.  Of this class tuning forks, mounted
on resonance boxes, are a conspicuous example. When the unison
is perfect the vibration of one fork will be taken up by another
across the width of a room, but the slightest deviation of pitch
is sufficient to render the phenomenon almost insensible. Forks
of 256 vibrations per second are commonly used for the purpose,
and it is found that a deviation from unison giving only one beat
in a second makes all the difference. When the forks are well
tuncd and close together, the vibration may be transferred back-
wards and forwards between them several times, by damping them
alternately, with a touch of the finger. -

Illustrations of the powerful effects of isochronism must bLe
within the experience of cvery one.  They are often of importance
in very different ficlds from any with which acoustics is concerned.
For example, few things are more dangerous to a ship than to lic
in the trough of the sea under the influence of waves whose period
is nearly that of its own natural rolling.

66. The solution of the equation for free vibration, viz.
Utrw+nu=0.....cooiennnnn (1)

may be put into another form by cxpressing the arbitrary con-
stants of integration A and « in terms of the initial values of u
and %, which we may denote by », and »,,  'We obtain at once

S | osin 't £ .
u=e {uo o Tl <cos n't +35;, sin 'n’t)} v (2),
[2 P4

where n =t =k
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If there be no friction, x = 0, and then

e
=N

. sinnt
Y N

. 2
duyeosnd L e v A0
(2 -

These results may be employed to obtain the solution of the
complete equation
At e+ n'u=U...........co..c.. (4),

where Uis an explicit function of the time; for from (2) we sce
that the cffect at time ¢ of a velocity 8i communicated at time
t'is )

. ’ ’
. dett-r) SIn R (E~1t)
u =8¢ ML 'L

n

The effect of Uis to generate in time df a velocity 7dt, whose
result at time ¢ will therefore be

u =7% Udt e ¥ gin o’ (¢~ ¢),

and thus the solution of (4) will be
¢

u= 7—}// ¥ sing (t~1) Udt ............ (5).
If there be no friction, we have simply
t
U= %fsin n@—E)Ud o (6),

U being the foree at time ¢,

The lower limit of the integrals is so far arbitrary, but it will
generally be convenient to make it zero,

On this supposition » and 4 as given by (6) vanish, when
t=0, and the complete solution is

St (.osinn't Kk .
us=¢t {uo +u, (cos n't+ 55 Sin n't)}

7
1 [
ta[ e s oty var.. ),
Vo
or if there be no friction
. sin nt L. , ;
u= 7‘0"1‘%& + %, cos nt 4 ;llf sinn(t-t)Udt......... (8).

. 0
When ¢ is sufficiently great, the complementary terms tend to
vanish on account of the factor e and may then be omitted.
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¢7. Tor most acoustical purposes it is sufficient to consider
the vibrations of the systems, with which we may have to deal,
as infinitely small, or rather as similar to infinitely small vibra-
tions. This restriction is the foundation of the important laws
of isochronism for tree vibrations, and of persistence of period
for forced vibrations. There are, however, phenomena of a sub-
ordinate but not insignificant character, which depend  essentially
on the square and higher powers of the motion.  We will therefore
devote the remainder of this chapter to the discussion of the
motion of a sytem of one degree of freedom, the motion not being
so small that the squares and higher powers can be altogether
neglected,

The approximate expressions for the potential and kinctic
energics will be of the furm g

T=% (m,+mu) o', V=5§ (1 + p,0) o

If the sum of 7" and V be differentiated with respeet to the
time, we find as the cquation of motion

1 3 ‘
. . X .0 bt 2 _ . .
gl + pg A med + 5ma 4 5 g = Impressed Forcee,

which may be treated by the method of successive approximation,
For the sake of simplicity we will take the case where m, =0,
a supposition in no way affeccting the cssence of the question.
The nertia of the systemn is thus constant, while the force of
restitution is a composite function of the displacement, partly pro-
portional to the displacement itsclf and partly proportional to
its squarc—accordingly unsymmetrical with respect to the position
of cquilibrium, Thus for free vibrations our equation is of the
form
Tt 22U+ au?=0..coooinnivininnann(1),

with the approximate solution
w=A cosnbiiiiiiiniiiiniinn(2),

where A—the amplitude—is to be trcated as a small quantity.
Substituting the value of w cxpressed by (2) in the last

term, we find
Al
i+ n"u=—~a 5 (1 4 cos 2nt),

whence for a second approximation to the value of «

ad?  ad?
u = cognt— ot o cos2nt..eiviiiinninn(B)
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shewing that the proper tone (n) of the system is accompanicd
by its octave (2n), whose relative importance increases with the
amplitnde of vibration. A irained car ean guncrally perceive the
octave in the sound of a tuning fork caused to vibrate strongly by
means of a bow, and with the aid of appliances, to be explained
later, the existenee of the octave may be made manifest to any
one. By following the same method the approximation can
be carried further ; but we pass on now to the case of a system
in which the recovering power is symmetrical with respeet to
the position of equilibrium, The equation of motion is then
approximately
W +10u 4 B =0.iivviniiinnin . (4),

which may be understood to vefer to the vibrations of a heavy
pendulum, or of a lowd carried at the end of a st aight spring.

If we take as a first approximation w= A cosnt, corresponding
to 8=0, and substitute in the term multiplied by B, we get

i+ n'u=— R4 cos 3nt — 3847 cos nt,
4 4

Corresponding to the last term of this equation, we should
obtain in the solution a term of the form ¢t sinnt, becoming
greater without limit with ¢ This, as in a parallel case in the
Lunar Theory, indicates that our assumed first approximation
is not really an approximation at all, or at least docs not continue
to be such, If, however, we take as our starting point u = A cosmd,
with a suitable value for m, we shall find that the solution may
be completed with the aid of periodic terms only, In fact it is
cvident beforchand that all we are entitled to assume is that, the
motion is approximately simple harmonic, with a period  ap-
proximately the same, as if =0, A very slight examination
1s sufficient to shew that the term varying as u’, not only may,
but must affect the period. At the same time it is evident
that a solution, in which the period s assumed wrongly, no
matter by how little, must at length ccase to represent the motion
with any approach to accuracy.

We tale then for the approximate cquation

Lo 3B4? 1° B
Ut nu=— —%— cos mt — E;— cos 3mt......... (5),

of which the solution will be

. BA® cos 3t
u =24 cos mt + AT G gttt ....(6G),
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provided that m be taken so as to satisfy

an 4
A {4 ¥ = — "fii’; ,
12
o =t B (D).

The term in B thus produces two cffects. It alters the piteh
of the fundamental vibration, and it introduces the twelfih as
a nccessary accompaniment. The alteration of pitch is in most
cases exceedingly small—depending on the square of the amplitude,
but it is not altogcther insensible, Tuning forks generally rise
a little, though very little, in pitch as the vibration dics away.
It may be remarked that the same slight dependence of pitch
on amplitude occurs when the force of restitution is of the
form n*u+au’, as may be scen by continuing the approximation
to the solution of (1) one step further than (3). The result in that
case 13

e o, ad?
M= T (8).

The difference m®—n’ is of the same order in 4 in both cases ;
but in one respect there is a distinction worth noting, namely,
that in (8) m’ is always greater than =% while in (7) it depends
on the sign of B whether its effect is to raise or lower the pitch.
However, in most cases of the unsymmetrical cldss the change
of pitch would depend partly on a term of the form aw® and
partly on another of the form B v° and then
o®4? 1?
et B ),

mi=n®+

68. We now pass to the consideration of the vibrations
forced on an unsymmetrical system by two harmonic forces

E cospt, Fcos (gt —¢).
The cquation of motion is
U+ n'u=—au’+ Ecospt+ Feos (gt —e) ......(1).
To find a first approximation we neglect the term contain-
ing a. Thus '
u =608 b+ £CoS (gt ~ €} rvrurerannannn. (2),

K F
3 f" __j‘ TR (3)

where e=

,“I_[)Q - 7L'2~g2 .
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Substituting this in the term multiplied by a, we get

1 + n'u=Ecos pt+ F cos (gt — ¢)

2 2 2 2
~a [c Jﬁi + 5 cus 2t 4§ cos 2(gt ~ ) + ¢fcos {(p ~g) t+ ¢]

+efeos ((p+g)t-d] |

whence as a second approximation for y

_ ' _ a (& + 1% ce o
w=ccos pt + fcos (gt — €) — —g,u Y cos 2pt
af* aef
— 27[%1-__(12) COoS 2((_lt'— f:')'—-'ﬁq')—;T)2 COS {(p '—'Q) t+ G}
ae
—m?(»z'f:i_—q),cos{(p+q)t—e] ..... ..........(4').

The additional terms represent vibrations having frequencies
which are severally the doubles and the sum and difference of
those of the primarics. Of the two latter the amplitudes are
proportional to the product of the original amplitudes, shewing
that the derived tones increase in relative importance with
the intensity of their parent tones,

In a future chapter we shall have to consider the important
conscquences which Helmholtz has deduced from this theory.



CHAPTER IV.

VIBRATING SYSTEMS IN GENERAL

G9. WE have now examined in some detail the oscillations
of a system possessed of one degree of freedom, and the results,
at which we have arrived, have a very wide application.  Bug
material systems enjoy in general more than one degree of
freedom.  In order to define their configuration at any moment
several independent varviable quantities must be specified, which,
by a gencralization of language originally cmployed for a point,
arce called the co-ordinates of the system, the number of indepen-
dent co-ordinates being the dndea of freedom. Strictly speaking,
the displacements possible to a natural system are infinitely
various, and cannot be represented as made up of a finite number
of displacements of specified type. To the clementary parts of
a solid body any arbitrary displacements may be given, subject
to conditions of continuity. It is only by a process of abstraction
of the kind so constantly practised in Natural Philosophy, that
solids arc treated as rigid, fluids as incompressible, and other sim-
plifications introduced so that the position of a.system comes to
depend on a finite number of co-ordinates. It is not, however,
our intention to exclude the consideration of systems possessing
infinitely various freedom; on the contrary, some of the most
interesting applications of the results of this chapter will lie in
that dircction.  But such systems are most conveniently conceived
as limits of others, whose freedom is of a more restricted kind,
We shall accbrdingly commence with a system, whose position
is specified by a finite number of independent co-ordinates +,,

Vo ¥ e,

70. The main problem of Acoustics consists in the investi-
gation of the vibrations of a system about a position of stable
cquilibrium, but it will be convenient to commence with the
statical part of the subject. By the Principle of Virtual Ve-

5—2
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68 VIBRATING SYSTEMS IN GENERAL. [70.

locitics, if we reckon the co-ordinates A, Y, &c. from the
configuration of cquilibrium, the potential cnergy of any other
configuruiion will be a homogencons quadratic function of the
co-ordinates, provided that the displacement be sufficiently small,
This quantity is called ¥; and represents the work that may be
guined in passing from the actual to the equilibrium configuration,
We may write

V= %cu\l"ln + %022‘1’22 toet clz‘h‘l’n + cas\h\”n tFoenn (1)‘
Since by supposition the equilibrium is thoroughly stable, the
quantities c,,, c,,, 6, &c. must be such that V is positive for
all real values of the co-ordinates,

71. If the system be displaced from the zero configuration
by the action of given forces, the new configuration may be
found from the Principle of Virtual Velocitics. If the work done
by the given forces on the hypothetical displacement 8y, 3y,
&e. be

W + W8 e, (1),
this expression must be equivalent to 87, so that since &V, 84,
&e. are independent, the new position of equilibrium is decter-
mined by

av v .
‘m—-\y” -(7‘{»’;:\1”, &C ................... (.2),

or by (1) of § 70,
C“‘\[/‘l + cn‘h + cxs‘h Fon = ‘I',
czx‘]’x + Cza"l’g + Cﬁ\l"s Foeireen = "I’, .

L A N N R TN I I S teeesnsa e

where there is no distinction in value between ¢, and ¢,,.

From these equations the co-ordinates may be determined in
terms of the forces. If y be the determinant

vV=| ¢ Cigs Crgs ore
cm ) C,H, Cas, #9080 | sereesrstrevsnane (4‘)’
cﬂl’ csﬂ’ C:m’ e

the solution of (8) may be written

d
V.= ¢7V— W, + Y-

N
1
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These cquations determine 4, 4, &c. uniquely, since ¢ docs
not vamish, as appeste from the considerution thni the wijuations
av . o .

v =0, &c. could otherwise be satisficd by finite values of the

1
co-ordinates, provided only that the ratios were suitable, which is
contrary to the hypothesis that the system is thoroughly stable

in the zero configuration,

72 If A, ..., .oand ), L T, L, be two sets of dis-
placements and corresponding forces, we have the following re-
ciprocal relation,

Vo, + W, + o =V Y + T, 4 (1),
as may be scen by substituting the values of the forces, when each
side of (1) takes the form,

cu‘l’l‘h/ + C”\[l‘.‘\b‘; + o
+ 0 (Wl + YY) + 0 (Yl + ) + ..

Suppose in (1) that all the forces vanish except ¥, and ¥';

then
\I,R\llfﬂ, = \pl'\[fl ........ verersesrennann ..(2).

If the forces ¥, and ¥, be of the same kind, we may suppose
them equal, aud we then recognise that a force of any type acting
alone produces a displacement of a second type equal to the
displacement of the first type due to the action of an equal force
of the scecond type. For example, if 4 and B be two points
of a rod supported horizontally in any manncr, the vertical de-
fleetion at 4, when a weight T is attached at B, is the same as
the deflection at B, when TV is applied at 4%

73. Since Vis a homogencous quadratic function of the co-
ordinates,

av av
BV'= gy ot g bt (1),

(
or, if W, W, & be the forces nceessary to maintain the dis-
placement represented by , 4, &e.,

Q1 = T,
V=W, + W, o, (2).

If , + Ay, ¥, + A, &e. represent another displacement for
which the necessary forces are ¥ + AW, ¥, + AV, &c., the cor-

1 On this subject, soe Phil, Mag., Dco., 1874, and March, 1875,
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responding potential cnergy is given by
2V 4 AT ) (4 &) T 4 A ) 4
=2V+ W Ay + VA, + ..,
+ AW A AT A+
+ AW, Ay 4+ AV, A, .,
so that we may write
2AV=3V.AY+5 AV Y+ SAV Av......... (3),
where AV is the difference of the potential encrgies in the two
ases, and we must particululy notice that by the reeiprocal
relation, § 72 (1),
SVAY =AY A .o (),

From (3) and (%) we may deduce two important theorems,
relating to the value of V for a system subjected to given dis-
placements, and to given forees respectiyely,

74, The first theorem is to the effect that, if given displace-
ments (not suflicient by themselves to determine the configuration)
be produced in a system by forces of corresponding types, the re-
sulting value of ¥ for the system so displaced, and in equilibrium,
is s small as it can be under the given displacement conditions;
and that the value of V for any other configuration exceeds this
by the potential energy of the configuration which is the difference
of the two. The only difliculty in the above statement consists
in understanding what is meant by “forces of corresponding types.’
Suppose, for example, that the system is a stretched string, of
which a given point £” is to be subject to an obligatory displace-
ment; the foree of corresponding type is here a force applied
at the point 22 itsclf.  And generally, the forees, by which the
proposed displacement is to be made, must be such as would do
no work on the system, provided only that that displacement
were not made.

By a suitable choice of co-ordinates, the given displacement
conditions may be expressed by aseribing given values to the first
7 co-ordinates Y, v, ... Y, and the conditions as to the forces
will then be represented by miking the forees of the remaining
types W, W, & vanish, T A + Ay refer to any other con-
fignration of the system, and W+ AW be the corresponding forees,
we e to suppose that Ay, Adr, &eoons far as Ay, all vanish,
Thus for the first » suffixes Ay vanishes, and for the remaining
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suffixes W vanishes, Accordingly S . Ay is zero, and therefore
N AW e also zero. Henne
SAV=3AV.AVY v (1),

which proves that if the given displacements be made in any
other than the preseribed way, the potential energy is increased
by the energy of the difference of the configurations,

By means of this theorem we.may trace the cftect on ¥ of any
rclaxation in the stiffness of o system, subjeet to given displacement
conditions, For, if after the alteration in stifiness the original equi-
librium configuration be considered, the value of V corresponding
thereto is by supposition less than before; and, as we have just
seen, there will be a still further diminution in the value of V
when the system passes to equilibrium under the altered con-
ditions.  Hence we conclude that a diminution in V' as a function
of the co-ordinates entails also & diminution in the actual value
of ¥V when a system is subject to given displacements. It will
be understood that in particular cases the diminution spoken of
may vanish?,

TFor example, if a point I of a bar clamped at both ends be
displaced laterally to a given small amount by a force there ap-
plicd, the potential energy of the deformation will be diminished
by any relaxation (however local) in the stiffness of the bar,

75. The sccond theorem relates to a system displaced by given
Jorces, and asserts that in this case the value of V' in equilibrium
is greater than it would be in any other configuration in which
the system could be maintained at rest under the given forees, by
the operation of mere constraints. We will shew that the removal
of constraints increases the value of V.

The co-ordinates may be so chosen that the conditions of con-
straint arve expressed by

Yo =0, Ya=0, e, =0 rorerrrariersenn(1).
We have then to prove that when W, W,.,, & are given, the
value of V is least when the conditions (1) hold, The second
confignration being denoted as before by 4 + Ay, &e., we seo
that for suffixes up to 2 inclusive 4o vanishes, and for higher
suffixes AW vanishes, Henee
SVAY =3 AP =0,

1 Soo a paper on General Theorems relating to Equilibrium and Initial and

Steady Motions, Phil, May., March, 1875,
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and therefore
2AV=SATAY (D),

shewing that the increase in ¥ due to the removal of the con-
straints is cqual to the potential energy of the difference of the two
configurations,

76. We now pass to the investigation of the initjal motion of
a system which starts from rest under the. operation of given
impulses. The motion thus acquired is independent of any

. botential energy which the system may possess when actually

displaced, since by the nature of impulses we have to do only
with the initial configuration itsclf. The initial motion is also
independent of any forces of a finite kind, whether impressed on
the system from without, or of the nature of viscosity,

If P, @, R be the component impulses, parallel to the axes, on
a particle m whose rectangular co-ordinates arc Z, ¥, z, we have by
D’Alembert's Principle

Sm (@8z + 98y + 282) =3, (Péx+ Qoy + R82)......(1),

where 4, g, 2 denote the velocitios acquired by the particle in virtue
of the impulses, and &z, 8y, &z correspond to any arbitrary dis-
placement of the system which does not violate the councetion of its
parts. It is required to transform (1) into an equation expressed
by the independent generalized co-ordinates,

For the first side,

Sm (@8x+ ydy + £82) = 8y, S (aa%—+y£/—+zd{;>
1 1 1
' LAz Ay . d
+8\p,2m(mz‘%+y67'\;é +zé\%> ......
L de . dy dz
=8y, Sm [ e Tt g+,
Y, 2m (D(l\,lr,+ydt[r,+zd\,b,)+ ,
=8y, .52mi—(a§’+g)’+é’) Fonnn
&,
1T dT
=8‘Pl;+8‘#2~+ ................................. 2,
dr dyr, @

where 7, the kinetic energy of the system, is supposed to be ex-
pressed as a function of ,, 4, &.
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On the second side,

= (Pao+ 0y + Bes) =84 (P j\; +q ;{;{ B e
1 1 1

=& 0V, +E 0, +.nni. e 3),
: dy (lz _ '
if 2m< d‘l’1+Qd‘/ﬁ \lr)—_f" &c

The transformed equation is therefore
dT
& )8, +... =00, 4),
(g =& ) ot (G- 6) o (4

where 8y, 8y, &c. arc now completely independent. Hence to
determine the motion we have

ar dT

— = — =&y 7 5 )

d\l"l fl’ d‘\ll‘,‘ Ez ( )
where £, £, &c. may be considered as the generalized components
of impulse,

77. Since T is a homogeneous quadratic function of the gene-
ralized co-ordinates, we may take

I'= %au‘i’xa + %azz‘i’zg t . + am‘i’x‘i’a + a"za\i’z\pa Fo (1):
whence
ar .
Ex = 2‘;— =a, Y+ (RS RV P
7 . L 2),
Ez C(Z ‘# 21#’1 + aaz‘!’z + aza‘)b‘a """ ( )

where there is no distinction in value between e, and a,,.

Anam, by the nature of T
2T'=4, 4T

; dT

P +\p‘ e
&, ‘h

= El\{,l + Ez‘hz """""""""""""""" (3)

The theory of initial motion is closcly analogous to that of the

displacement of a system from a configuration of stuble equilibrinm

by steadily applicd forces. In the present theory the initial kinetic

cnergy I' bears to the velocities and impulses the same relations

as in the former V bears to the displacements and forces respect-
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ively. In one respect the theory of initial motions is the more
complete, inasmuch as 7' is exactly, while V' i, in general only
approximately, a homogencous quadratic function of the variables.
If gry Ay oon £, £, vee denote one set of veloeities and impulses
for o systemn started from rest, and 4o/, ¥, ..., €/, £/, ... a sceond
set, we may prove, as in § 72, the following reciprocal relation:
E;l‘ri"] + E-_:,\i’a.- +..0= El\i"l’ + E-.-‘j"-zl S aRTRTEPEPRRY (4)1
This theorem admits of interesting application to fluid motion.
It is known, and will be proved later in the course of this work,
that the motion of a frictionless incompressible liguid, which
starts from rest, 1s of such a kind that its component velocities
at any point are the corresponding ditferential cocflicients of a
certain function, called the velocity-potentinl.  Let the fluid be
sct in motion by a preseribed wrbitrary deformation of the surface
S of a closed spuce deseribed within it The resulting motion is
determined by the normal veloeitics of the clements of S, which,
being shared by the fluid in contact with them, are denoted by

du, if w be the veloeity-potential, which interpreted physically de-

dn

notes the impulsive pressure.  Henee by the theorem, if v be the
veloeity-potential of & sceond motion, corresponding to another

s ; e dy
set of arbitrary surfuce velocitics dn
v, du .
w o, dS= fv- dS.oiiiiiiiiiiiinnn (6
[_} dn dn (),
—an cquation immediately following from Green’s theorem, if
besides & there be only fixed solids immersed in the fluid. The
present method enables us to attribute to it a much higher gene-
rality.  Jor example, the immersed solids, instead of being fixed,
may be free, altogether or in part, to take the motion imposed
upon them by the fluid pressures.

78. A particular case of the general theorem is worthy of
special notice.  In the first motion let
‘i’x =4, ‘i’z =0, &=§ = ...=0;
and in the second,
‘P1’=0’ ‘#2,:‘4) E;;"_"E;’:Ea"""':()'

Then S ¢ 5 )
! Thomson and Tait, § 318 (/).
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In words, if, by means of a suitable impulse of the correspond-
ing type, o given arbitrary velocity of one co-ordinate be impressed
on & system, the impulse corresponding to a sccond co-ordinate
neeessary in order to prevent it from changing, is the same as
would be required for the first co-ordinate, if the given velocity
were impressed on the second,

As a simple example, take the case of two spheres 4 and B
immersed in a liquid, whose centres are free to move along certuin
lines. It 4 be set in motion with a given velocity, B will
naturally begin to move also,  The theorent asserts that the
impulse required to prevent the motion of B, is the same as if
the functions of A and B were exchanged @ and this even though
there be other rigid bodies, ¢4 D, &, i the fluid, cither fixed, or
free in whole or in part,

The case of cleetric currents mutually influencing cach other by
induction is precisely similar. Lot there be two circuits 4 and B,
in the neighbourhood of which there may be any number of other
wire cireuits or solid conductors, If a unit current be suddenly
developed in the circnit 4, the clectromotive impulse induced in
D is the sume as there would have been in 4, had the current been
forcibly developed in B,

79. The motion of a system, on which given arbitrary velocities
arc impressed by menns of the necessary impulses of the corre-
sponding types, possesses o remarkable property discovered by
Thomson, The conditions are that v, «,'D,_,, Yy .., are given,
while £, &.,,... vanish,  Let 4, 4, ... £, £, & correspond to
the actual motion; and

1"1 + A‘l’l’ ‘lb‘-z + A‘pz"" fx + AEU Ez +A€2""
to another motion satisfying the sume wvelocity conditions. For
cach suffix cither Ay or £ vanishes, Now for the kinctic cncrgy
of the supposed motion,
2(1+AT)= (£ +AE) (, +Ad,) +..
=27+ ElA‘i’] + E,_,A‘,il‘._, + ..
AL A AL At AEAY + AEAY,
But by the reciprocal relation (4) of § 77

ExA‘i"l +.. =AEV‘[’1 +..,
of which the former by hypothesis is zero; so that
2AT=AEAY, + AEAY, +.oovevnennn (1),
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shewing that the cnergy of the supposed motion exceeds that of
the actual motion by the energy of that motion which would have
to he compoundod with the lutier to predace the former, Phe
motion actually induced in the system has thus less energy than
any other satisfying the same velocity conditions. In g subscquent,
chapter we shall make use of this property to find a superior limit
to the energy of a system sct in motion with preseribed velocities,

If any diminution be made in the inertia of any of the parts of
a system, the motion corresponding to prescribed velocity conditions
will in general undergo a change. The value of 7' will necessarily
be less than before ; for thero would be a deercase cven if the
motion remained unchanged, and therefore « Jortiori when the
motion is such as to make 7' an absolute minimum, Conversely
any inerease in the inertia increases the initial value of 7'

This theorem is analogous to that of § 74, The analogue for
initial motions of the theorem of § 75, relating to the potential
cuergy of a system displaced by given forces, is that of Bertrand,
and may be thus stated i—If o system start from rest under the
operation of given impulses, the kinctic energy of the actual motion
cxceeds that of any other motion which the system might have
been guided to take with the assistance of mere constraints, by the
kinetic encrgy of the difference of the motions",

80. We will not dwell at any greater length on the mechanics
of a system subject to impulses, but pass on to investigate
Lagrange’s equations for continuous motion.  We shall suppese
that the connections binding together the parts of the system
are not explicit functions of the time 5 such cases of forced
motion as we shall have to consider will be specially shewn to
be within the scope of the investigation,

By D’Alembert’s Principle in combination with that of Virtual
Velocities,

Sm (£8z + 58y +£02) =5 (X8z + Y8y + 28z)......(1),
where 8z, 8y, 8z denote a displacement of the system of the most
general kind possible without violating the conncctions of jtg
parts.  Since the displacements of tho individual particles of
the system are mutually related, 8z, ... are not independent,  The
object now is to transform to other variables Y, 4, ..., which
shall be independent,  We have

" d ., .
&b = b7 (.eBr) — 3 8.7
! Thomson and Tuit, § 311, Phil, Mayg. March, 1875,
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s0 that
S (Bl gdy + 28z) = ((lit o (8de -+ §ly + 582) - 6T
But (§ 76) we have already found that

Sm (idz + 8y + 28z) =£ o, + T St oo,

d«h d,
while l‘l" 8\}rl 8\,0-1

if T be expressed as a quadmtlc functlon of 4., v, ..., whose
cocflicients are in general functions of Yr, Yr,,... . Also

3 )50 e

dt I, e
inasmucl 2 5y, =82
1asmuch as Ji r, = 7 Y.
Accordingly
: " " . d (dT
Zm (&8x + 8y + £82) = {(—2’—: <d\;b) v, } Y,
d(dT\ dT
+{J5(d\p) d\p}s"’* ....... (2).
Thus, if the transformation of the sccond side of (1) be
5 (Xox + Y8y + Z82) =W, 8y, + V.00, +..v.enn (3),
we have cquations of motion of the form
d (dT
: (w -5 ‘P ..................... (4).

Since W8y denotes the work done on the system during a
displacement &y, ¥ may be regarded as the generalized com-
ponent of force,

In the case of a conservative system it is convenient to
scparate from W those parts which depend only on the configura-
tion of the system. Thus, if ¥V denote the potential energy, we
may write

d (4T dT v .
g (N) SRS S (5),
where W is now limited to the forces acting on the system which

are not alrcady taken account of in the term Z}; .
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81. There is also another group of forces whose existence
it is often ad/antageous to recognize specially, namely those
arismg o evicn o viseestry, 1 we suppose  thai  each
particle of the system is rctarded by forces proportional to its
component velocitics, the cffect will be shewn in the fundamental
cquation (1) § 80 by the addition to the left-hand member of
the terms

= (b 8 + 1,7 8y + k5 82),
where «,, «, «, arc cocflicients independent of the veloeitics,
but possibly dependent on the configuration of the system, The
transformation to the independent co-ordinates Yo Y, &e s
cffected in a similar manner to that of

Sm (£8x + 8y + 282)
considered above (§ 80), and gives

dr dr s

(i\)l/*;a‘lfl-*-;Z\Pa Yot crevinnnnnn(1),

where =43 (k4 + 3 + ©,8)
= % b“.\j,ln + ’}bm‘j’f +o bm‘i’x‘l’a + bz:x\[’u‘{’a oo (2)

I, it will be observed, is like 7' a homogencous quadratic
function of the velocities, positive for all real values of ihe
variables. It represents half the rate at which energy is dissipated,

The above investigation refers to retarding forees proportional
to the absolute velocities; but it is cqually important to consider
such as depend on the relutive velocities of the parts of the
system, and fortunately this can be done without any increase
of complication. For example, if a force act on the particle 2,
proportional to @, —d,, there will be at the same moment an
equal and opposite force acting on the particle z,.  The additional
terms in the fundamental equation will be of the form

1, (8, — ) 8z, + &, (i, — ) Or,
which may be written

Ky (‘izx - d:z) 6 (wl - wz) = 8‘1’x JCHZD: {%Kx (-""1 - f':"z)a} +...,

and so on for any number of pairs of mutually influencing
particles.  The ouly effect is the addition of new terms to I,
which still appears in the form (2)', We shall sec presently that

! The differences roferred to in the toxt may of course pass into differential
coeflicicnts in the case of a body continuously deformed,
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the existence of the function 77, which may be called the Dis-
sipation Function, implics certain relations among the cocfficients
of the generalized equations of vibration, which carry with them
important conscquences’,

But although in an important class of cases the cffects of
viscosity are represented by the function F, the question remains
open whether such a method of representation is applicable in all
cases. I think it probable that it is so; but it is cvident that we
cannob expeet to prove any genmeral property of viscous forces
in the absence of a strict definition which will enable us to deter-
mine with certainty what forees are viscous and what are not, In
some cases considerations of symmetry are sufficient to shew
that the retarding forces may be represented as derived from a
dissipation function, At any rate whenever the retarding forces
arc proportional to the absolute or relative velocities of the
parts of the system, we shall have equations of motion of the form

d (ZT) _ (ZT+ (lF_}_(_lZ_

dt (clw{'r dy Ay dyr
82. We may now introduce the condition that the motion
takes place in the inumediate neighbourhood of a configuration
of thoroughly stable cquilibrium ; 7" and F are then homogencous
quadratic functions of the velocities with cocfficients which are
to be treated as constant, and ¥ is a similar function of the
co-ordinates themselves, provided that (as we suppose to be
the case) the origin of cach co-ordinate is taken to correspond

with the configuration of equilibrium,  Morcover all three

functions are ecssentially positive. Since terms of the form a1

dr

are of the second order of small quantities, the equations of motion
become linear, assuming the form

4 @T_) aF 4V _ .
dt (d\/} djr  dyr

where under W are to be included all forces acting on the system
not already provided for by the differential cocfficients of Fand ¥,

SRR ¢ 8

! The Dissipation Function appears for the first time, so far as I am aware, in
a paper on General Theorems relating to Vibrations, published in the Proceedings
of the Mathematical Society for June, 1873,
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The three quadratic functions will be expressed as follows :—

T=to '+ ba i+ . + g, + ...
F=%bu‘p1“+ %])22\/1*:+ vee bxz‘)i"x"pz'*' tee s (2)»
V= %OII\P‘:-*- %cza‘l’aa'l' et cm‘l’l‘l’z'*'

where the cocficients ¢, b, ¢ are constants,

From equation (1) we may of course fall back on previous
results by supposing Fand ¥, or Fand 7', to vanish.

A third set of theorems of interest in the application to Elue-
tricity may be obtained by omitting 7' and V, while F is retained,

but it is unnceessary to pursue the subjeet here,

If we substitute the values of T, F and ¥V, and write D for CZ ,

we obtain a system of equations which may be put into the form

cu"’n + elz‘l’n + e:n‘#a too= \Pl
621‘\!’1 + 62'41”2 + eza‘l’s te.o= \I’z """""""" (3)
cm'\bl + aau‘!’n + esa‘i’n o= ‘Pa

--------------------------------------

where ¢,, denotes the quadratic operator

t=a,D'+0,Dtc,......... e (4).
It must be particularly remarked that since
a’rl = an-! bfl bl’" cn = cor’
it follows that
€= eririririrnininnrines Cerreeren, (5).

83. Before proceeding further, we may draw an important
inference from the knearity of our equations, If corresponding
respectively to the two sets of forcos Y, ¥, .., ¥/, ¥, .. two
motions denoted by ¢, ¥, ..., ¥/, ¥, ... be possible, then must
also be possible the motion yr, +¥y, ¥, +4,, ... in conjunction
with the forces ¥, + ¥, Y, +¥/),... Or as a particular case,
when there are no impressed forces, the superposition of any two
natural vibrations constitutes also a natural vibration. This is the
celebrated principle of the Coexistence of Small Motions, first
clearly enunciated by Daniel Bernoulli, It will be understood
that its truth depends in general on the Justice of the assumption
that the motion is so small that its square may be neglected.
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84. To investigate the free vibrations, wo must put ¥, ¥, ...
equal to zero; and we will eommence with a system on which no
frictional forces act, for which therefore the coefficients e,,, &c. are
even functions of the symbol D. We have

eu‘l’x + em“P-z Fo = 0

62I‘Pl+e2‘l1p"l+ e = 0 }

From these equations, of which there arc as many (m) as the

system possesses degrees of liberty, let all but one of the variables

be climinated. The result, which is of the same form whichever be
the co-ordinate retained, may be writton

TV =0 i, (),

where ¢ denotes the determinant

e. é,, €

Car Cypr €y ove (3)
lllllllllllllllllllll L) ’

eSl’ 832’

------------------

and is (if there be no friction) an even function of D of degree 2m.
Let 2, £\, .., £ X, be the roots of y=0 considered as an
equation in D. Then by the theory of differential equations the

most general value of 4 is
p=Ad 4 AL B BeM L (4),

where the 2m quantities 4, A, B, B, &c. are arbitrary constants.
This forin holds good for cach of the co-ordinates, but the constants
in the different expressions are not independent. In fact if a
particular solution be

VY, = Ale)‘“, v, = Aze"", &e., '
the ratios 4, : 4, : A,... arc completely determined by the
equations

117 Y120 Vg 00t

€pys -

e, A +e, A, +e 4, +...... =0
e, A, +e, A, +e 4, +...... =0
where in each of the coefficients such as e, A, is substituted for D.
Equations (5) arc necessarily compatible, by the condition that A,
is a root of y=0. The ratios A, : 4, : 4, ... corresponding to
the root — A, are the same as the ratios 4, : 4,1 4,: ..., but for
the other pairs of roots A, =, &c. there are distinct systems of
ratios.
R. 6
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85. The nature of the system with which we are dealing
imposes an important rostriction on the possible values of A, If A,
were seal, either A, or — A, would be real and positive, and we
shotld obtain a particular solution for which the co-ordinates, and
with them the kinetic cnergy denoted by

AMda, A+, a, 4,4, + ...} e*2e,

increase without limit. Such a motion is obviously impossible for
a conservative system, whose whole cnergy can never differ from
the sum of the potential and kinctic energies with which it was
animated at starting. This conclusion is not evaded by taking 2,
negative ; because we arc as much at liberty to trace the motion
backwards as forwards. Tt is as certain that the motion never was
infinite, as that it never will be. The same argument excludes the
possibility of a complex valuc of .

We infer that all the values of A are purely imaginary, cor-
responding to real negative values of A% Analytically, the fact that
the roots of v = 0, considered as an equation in D? are all real and
negative, must he a consequence of the relations subsisting between
the cocfficicnts a,, a,, ..., €1 Cgyeee 10 virtue of the fact that for
all real values of the variables 7' and ¥ are positive. The case of
two degrees of liberty will be afterwards worked out in full,

86. The form of the solution may now be advantageously
changed by writing wn, for n,, & (where 2= v =1), and taking
new arbitrary constants, Thus
¥, =4, cos (nt—a) + B, cos (nt=B) + C, cos (nt ~y) + ...
Y, =4, co8 (nt —a) + B, cos (nt~B) + C, cos (nt— ) +...
Vs =4, cos (¢t —a) + B, cos (nt~B) + C,cos (nt — ) +

L

"’(] ))

where 2%, 0% &c. are the m roots of the equation of mt degree
in n* found by writing —n? for D? in v =0 For each valuc of »
the ratios 4,: 4, : 4,... are determinate and real.

This is the complete solution of the problem of the free vibra-
tions of a conservative system, We sec that the whole motion
may be resolved into m normal harmonic vibrations of (in general)
different periods, each of which is entirely independent of the
others, If the motion, depending on the original disturbance, be
such as to reducc itsclf to one of these (n,), we have

Vo=, cos (nt—a), = A, cos (nt-a), &e....... (2),

- A%
i
24
%
i
BS
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where the ratios 4, : 4, : 4,... depend on the constitution of the
system, and only the absolute amplitude and phase are arbitrary,
The several co-ordinates are always in similar (or opposite) phases
of vibration, and the whole system is to be found in the configura-
tion of equilibrium at the same moment,

We perceive here the mechanical foundation of the supremacy
of harmonic vibrations. If the motion be sufficiently small, the
differential equations become linear with constant cocfficients ;
while circular (and exponential) functions are the only ones which
retain their type on differentiation.

87. The m periods of vibration, determined by the equation
V =0, arc quantities intrinsic to the system, and must come out
the same whatever co-ordinates may be chosen to define the con-
figuration, But there is one system of co-ordinates, which is
cspecially suitable, that namely in which the normal types of
vibration are defined by the vanishing of all the co-ordinates but
one. In the first type the original co-ordinates Y, Yy, &e have
given ratios ; let the quantity fixing the absolute valucs be ¢,, 50
that in this type each co-ordinate is a known multiple of ¢,. So
in the second type cach co-ordinate may be regarded as a known
multiple of a sccond quantity ¢,, and so on. By a suitable deter-
mination of the m quantities ¢, é,, &c., any configuration of the
system may be represented as compounded of the m configurations
of these types, and thus the quantitics ¢ themselves may be looked
upon as co-ordinates defining the confignration of the system,
They are called the normal co-ordinates.

When expressed in terms of the normal co-ordinates, 7' and V
arc reduced to sums of squarcs; for it is casily scen that if the
products also appeared, the resulting cquations of vibration would
not be satisfied by putting any m—1 of the co-ordinates equal to
zero, while the remaining one was finite,

We might have commenced with this transformation, assuming
1)
from Algebra that any two homogencous quadratic functions can
be reduced by linear transformations to sums of squares. Thus

T= %al(ﬁla + %dzé: + b } 1
V=%cl¢12+%cu¢:+ s -"""""""'""( ),
where the cocfficients (in which the double suffixes are no longer
required) are necessarily positive,
' 6—2
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Lagrange's equations now become
@$, +eh, =0, agp,+ep, =0, &c. ... (2),
of which the solution is
¢, = A cos (nt —a), ¢, =Bcosnt-M), &e...... (3),
whero 4, B..., a, B... are arbitrary constants, and
n'=c+a, nl=c-+a, &c. ... e ().

88.  The interpretation of the equations of motion leads to a
theorem of considerable importance, which may be thus stated’,
The period of a conservative system vibrating in a constrained type
about a position of stable equilibrium is stationary in value when
the type is normal.  We might prove this from the original equa-
tions of vibration, but it will be more convenient to employ the
normal co-ordinates. The constraint, which may be supposed to
be of such a character as to leave only one degree of freedom, is
represented by taking the quantitics ¢ in given ratios.

If we put

b=40, ¢, =40 &c..coouvvnn..... (1),
6 is a variable quantity, and 4, 4, &e. are given for a given con-
straint.

The expressions for. 7 and V become
T={}a,4’+}a,4+ eend) 64
V={§cd’+3c,d4+ ...} 6,

whence, if @ varies as cos p,

a_6d’+ec AR+ .. +c,4,° (
ad+ad?4 .. +aw, A,

2),

This gives the period of the vibration of the constrained type;
and it is evident that the period is stationary, when all but one of
the coefficients A, A, ... vanish, that is to say, when the type
coincides with one of those natural to the system, and no coustraint
is needed,

P

By means of this theorem we may prove that an increase in
the mass of any part of a vibrating system is attended by a pro-
longation of all the natural periods, or at any rate that no period
can be diminished. Supposc the inerement of mass to be infi-
nitesimal.  After the alteration, the types of free vibration will in
general be changed ; but, by a suitable constraint, the system may

Y Proceedings of the Mathematical Society, June 1873,

%
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be made to retain any one of the former types. If this be done,
it is certain that any vibration which involves a motion of the part
whose mass has been increased will have its period prolonged.
Only as o particular case (as, for cxample, when a load is placed at
the node of a vibrating string) can the period remain unchanged.
The theorem now allows us to assert that the removal of the con-
straint, and the consequent change of type, can only affect the
period by a quantity of the sccond order; and that thercfore in the
limit the frec period cannot be less than before the change. By
integration we infer that a finite increase of mass must prolong the
period of every vibration which involves & motion of the part
affected, and that in no case can the period be diminished ; but in
order to sce the correspondence of the two sets of periods, it may
be nccessary to suppose the alterations made by steps.

Couversely, the effect of a removal of part of the mass of a
vibrating system must be to shorten the periods of all the free
vibrations,

In like manner we may prove that if the system undergo such
a change that the potential cnergy of a given configuration is
diminished, while the kinetic energy of a given motion is unaltered,
the periods of the frec vibrations arc all increased, and conversely.
This proposition may sometimes be used for tracing the cffects of
a constraint; for if we suppose that the potential energy of
any configuration violating the condition of constraint gradually
increases, we shall approach a state of things in which the
condition is observed with any desired degree of completeness.
During cach step of the process cvery free vibration becomes
(in general) more rapid, and a number of the free periods (equal
to the degrees of liberty lost) become infinitely small.  The
same practical result may be reached without altering the po-
tential cnergy by supposing the kinetic energy of any motion
violating the condition to increase without limit. In this case
one or morc periods become infinitely large, but the finite
periods are ultimatcly the same as those arrived at when the
potential energy is increased, although in one casc the periods
have been throughout increasing, and in the other diminishing.
This cxample shews the necessity of making the alterations by
steps; otherwise we should not understand the correspondence
of the two sets of periods. Further illustrations will be given
under the head of two degrecs of freedom,
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By means of the principle that the value of the frec periods
is stationary, we may easily caleulate corrections duc to any
devintion in the systers from theorntical simplivity,  1f wo tuke
as o hypothetical type of vibration that proper to the simple
system, the period so found will differ from the truth by quan- -
tities depending on the squares of the irregularitics. Several
examples of such caleulutions will be given in the course of
this work,

89,  Another point of importance relating to the period of o
system  vibrating in an arbitrary type remains to be noticed,
It appears from (2) § 88, that the period of the vibration cor-
responding to any hypothetical type is included Dbetween the
greatest and least of those natural to the system. In the case
of systems like strings and plates which arce treated as capable
of continuous deformation, there is no least natural period ;
but we may still assert that the period caleulated from any hy-
pothetical type camnot exceed that belonging to the gravest
normal type.  When therefore the object is to estimate the
longest proper period of system by mecans of caleulations
founded on an assumel type, we know a priors that the result
will come out too small,

In the choice of a hypothetical type Judgment must be
used, the object being to approach the truth gs nearly as can
be done without too great a sacrifice of simplicity, Thus the
type for a string heavily weighted at one point might suitably
be taken from the extremo casc of an infinite load, when the
two parts of the string would be straight,  As an example of
a caleulation of this kind, of which the result ig known, we
will take the case of a uniform string of length I stretched
with tension 7!, and inquire what the period would be on
certain suppositions as to the type of vibration,

Taking the origin of @ at the middle of tho string, let the
curve of vibration on the positive side be

Y =cospt {1 — (%)n} ................ e (1),

and on the negative side the image of this in the axis of KA
n being not less than unity. This form satisfies the condition
that y vanishes when a=+ 3. We have now to form the ex-
pressions for 7' and V, and it will Le sufficient to consider the
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positive half of the string only. Thus, p being the longitudinal
density,

:
[t e, pwllp’sin’pt
T*%fop‘ydw—2(n+l)(2n+l)’

?
o [EAy\ , 2T cos’pt
and V= u}.l’lfo (%) dx___——(Qn—l)l .
o _2@+1D@r+1) T,
Hencee pl= ) gl e veesenees (2)

If n=1, the string vibrates as if the mass were concentrated
in its middle point, and

, 127
p= pl“J'
If n =2, the form is parabolic, and
. 10T
) = ee——
pl?

2
Tho true value of p* for the gravest type is %2{—11’ so that

tho assumption of a parabolic form gives a period which is too
small in the ratio 7 : 4/10 or *9936 : 1. The minimum of p?

as given by (2), occurs when n=~/62+ 1_ 172474, and gives
T
2 __
P =98990 24

The period is now too small in the ratio
m : 498990 =-99851 : 1L
It will be seen that there is considerable latitude in the
choice of a type, even tho violent supposition that the string
vibrates as two straight pieces giving a period less than ten

per cent. in ecrror. And whatever type we choose to take, the
period calculated from it cannot be greater than the truth.

90. The rigorous determination of the periods and types of
vibration of a given system is usually a matter of great difficulty,
arising from the fact that the functions necessary to cxpress the
modes of vibration of most continuous bodies are not as yet recog-
nised in analysis. It is thereforc often nccossary to fall back on
methods of approximation, referring the proposed system to some
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other of a character more amenable to analysis, and calculating
corrections depending on the supposition that the difference be-
tween the twn aystems iz small. The problem of approgin. uoly
simple systems is thus one of great importance, more especially

as it is impossible in practice actually to realise the simple forms
about which we can most casily reason,

Let us suppose then that the vibrations of a simplo system are
thoroughly known, and that it is required to investigate those
of a system derived from it by introducing small variations in

the mechanical functions, If ¢, ¢,, &e. be the normal co-ordi-
nates of the original system,

T=%a1¢;x’+ %azdsﬂ’"—"' ?
V=%cx¢1'+’}ca¢’a'+ ree

and for the varied system, referred to the same co-ordinates,
which are now only approximately normal,

T+8T=}(a,+8, ) +... + 8a,.‘4'>,¢5z+---}
V8V=4 (o,+8,) ' +... + Sc, .8, + ...

in which 8a,,, 8a,,, 8c,,, d¢,,, &e. are to be regarded as small

quantities. In certain cascs new co-ordinates may appear, but
if so their coefficients must be small, From (1) we obtain for the
Lagrangian cquations of motion,

(al + 8“11 D’ + cl + 8011) ¢l + (8(112 'DR—*- 8012) ¢2 ]
+ (8a,, D'+ 8c,) b, + ... =0
(82, D+ 8c,,) ¢, + (a,+ 80, D + ¢, + 8c,) b, [eeeeen(2)
+ (8, D"+ 8c,) b, + ... =0
.................................................................. J 4
In the original system the fundamental types of vibration
are those which correspond to the variation of but a single co- P
ordinate at a time. Lot ug fix our attention on one of them, 3

involving say a variation of é,, while all the
ordinates vanish. The change in the s
entail an alteration in the fundamental or normal types; but
under the circumstances contemplated the alteration is small,
The new normal type is expressed by the synchronous variation
of the other co-ordinates in addition to ¢,; but the ratig of any
other ¢, to ¢ is small.  When these ratios are known, the normal
mode of the altered system will be determined.

remaining co-
ystem will in gencral |
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Since the whole motion is simple harmonic, we may suppose
that cach eu-ordinate vatics as cesp g, awl subslitute o the
differential equations —p? for D’ In the & equation ¢, occurs
with the finite coefficient ’

- a‘np"2 - 8au prn + C’ + 80“.
The coefficient of ¢, is
- 8a’rl pr2 + 80".

The other terms are to be neglected in a first approximation,
since both the co-ordinate (relatively to ¢,) and its cocfficient are
small quantities, Hence

8¢,, — p,*8a

4). . ¢r= W— ....... tvrarerenaes (3).
Now —a,pl+ec,=0,
)
and thus ¢, b= 7—)——“—'——_80" vererenneanend(4),

pi=p)
the required result,

If the kinetic energy alone undergo variation,

_ 8a 5
¢, b= i ()

The corrected value of the penod is determined by the 7th
equation of (2), not hitherto used. We may write it,

¢, {— p’a, = p’ 8an + ¢+ 8¢} + 2 b, (— p,” 80, + Be,) = 0
Substituting for ¢, : ¢, from (4), we get
+ 8¢ (8¢, — p*8a )?

_TE —“_Lr:-lf-)- e, (6).

The first term gives the value of p,? calculated without aHow-
ance for the change of type, and is sufficient, as we have already
proved, when the square of the alteration in the system may
be neglected. The terms included under the symbol 5, in
which the summation extends to all values of s other than 7,
give the correction due to the change of type and are of the
second order. Since «, and «, are posmve, the sign of any term
depends upon that of p?—p?2 If p’>p? that is, if the mode
s be more acute than the mode 7, the correction is ncgative,
and makes the calculated note graver than before; but if the
mode s be the graver, the correction raises the note. If # refer
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to the gravest mode of the system, the whole corrcetion is
negative; and if 2 refer to the acutest mode, the whole correction
is positive, as we have already scen by another method,

91. As an example of the use of these formule, we may
take the case of a stretched string, whose longitudinal density p
i8 not quite constant. If 2 be measured from one end, and y
be the transverse displacement, the configuration at any time ¢
will be expréssed by

Y=, sin —Wlic—i- ¢, sin 27;?+¢usin %’lr'?—F ......... 1),
! being the length of the string. ¢, ¢,,... arc the normal
co-ordinates for p=constant, and though here p is not strictly
constant, the configuration of the system may still be expressed
by means of the same quantities. Since the potential cnergy
- of any configuration is the same as if p=constant, §¥V'=0, For
the kinetic energy we have

T+8T=1}fop< lSinzrl‘—’c-{- ¢zsingt§.{€+“') dz 4
. 11 . 1 9 o
=%¢;’fPSill"zrzqdw+i:¢,’fpsin’—7;icdx+... o
0 0 .

2mrx

., [l
+¢l¢,‘fpsinzrlﬁ-:sin l--dw+...
0

i s LR s e

If p were constant, the products of the velocities would dis-

appear, since ¢,, ¢,, &c. are, on that supposition, the normal : ;
co-ordinates. As it is, the integral cocficients, though not actually 5
cvancscent, arc small quantities. Lot p=p,48p; then in our ¥
previous notation ‘

NS e

! . ! :
a.=%1lp,, 8a,= f 8p sin? 7—}-@ dr, 8a, = f dp sin 7—1;3 sin ‘?7;75 dz.
0 0

Thus the type of vibration is expressed by
NP E/’ in ™72 gin 57 7.
¢, : ¢’~p,’ R Py 08p sin’,=sin = de;
or, since Pl ipi=r S

2 (128 . g .
¢a:¢r= 7,2/'P' T2 fzrf

s =1
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Let us apply this result to ealculate tho displacement of the
nodal point of the second mode (r=2), which would be in the
middle, if the string were uniform. In the neighbourhood of
this point, if =41+ 8x, the approximate value of y is

. T . 2w 3
y=¢lsm§ +¢a,sm + ¢, sin - 5

+8.12{ ¢lcos + T ¢2 s%’f—{- }

’=¢1'— ¢’a+¢b— oo +:’lr8’lv ['—2¢a +2¢4+ "'}’
Hence when y=0,
80 = ¢2{¢,—¢,+¢,—.-.}...--.-.--.-(3)

approximately, where

4‘ 120p . 2mx . smr d

¢, P = T=4)o Ip, sin ~ysin = de (4).

To shew the apphcatlon of these formula, we may supposc
the irregularity to consist in a small load of mass pA situated
at = }1{, though the result might be obtained much more casily
dircetly, We have

-2x( 2 2 2 + 2
Ty \Fmd 34 B4 g e [
from which the value of 8z may be calculated by approximation.

The rcal value of 8z is, however, very simple, The serics within
brackets may be written

Ox =

1 1 11 1
1+g-5-gT5+ig—de
which is equal to
f 1+at dx
0 1 +CC‘ '

Tlic valuc of the definite integral is
7= 4sin g *

and thus

* Todhunter's Int, Calc. § 2565
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as may also be readily proved by equating the periods of vibra-
tion of the two parts of the string, that of the leaded part being
caleulated approximately on the assumption of unchanged type,

As an example of the formula (6) § 90 for the period, we
may take tho case of a string carrying a small load pN at its
middle point. . We have

L 7T . T . ST
= = 2 =5\ s .
a,=%1lp, Oa,=p\sin o 8a,, = p,\ sin 5 sin o,

and thus, if P, be the value corresponding to A = 0, we get when
ris even, p, =1, and when r is odd,

. 1 400 A2 -
pi=p; { TR } ------------- (5)
7

where the summation is to be extended to all the odd values
of s other than s, If »=1,

2A 4N 4 A®
1_. P __en "weog /
P, IL {1 l -+ I "’su__l la} .

Now

1 1 1
2263—-1_23—-1—28-}-1’

in which the values of s are 8, 5, 7,9.., Accordingly

1 1
z§—1=i’
2
and =P {1 - 2—?-{- “%+ ...... } e (6),

giving the pitch of the gravest tone accurately as far as the
square of the ratio n : /.
In the gencral case the value of p? correct as far as the
first order in 8p, will be
pl=Dr ’{1 - —83"}

r

a,
2 (t8p , v
=P8 - 2| 0P ;a2 i
=P, {1 Top, sin? — (Zm} ............ (7).

92. The theory of vibrations throws great light on expansions
of arbitrary functions in serics of other functions of specified
types. The best known example of such expansions is that
generally called after Fourier, in which an arbitrary periodic

$s i e Sat 3r AR B r‘ oy ;193-‘;7‘Y;. »
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function is resolved into a series of harmonics, whose periods
arc submultiples of that of the given function. It is well known
that the difficulty of the question is confined to the proof of the
posstbility of the expansion ; if this be assumed, the determination
of the cocfficients is casy cnongh, What I wish now to draw
attention to is, that in this, and an immense varicty of similar
cases, the possibility of the expansion may be inferred from
physical considerations.

To fix our ideas, let us comsider the small vibrations of a
uniform string stretched between fixed points,.  We know from
the general theory that the whole motion, whatever it may
be, can be analysed into a serics of component motions, each
represented by a harmonic function of the time, and capable
of existing Dby itsclf. If we can discover these normal types,
we shall be in a position to represent the most general vibration
possible by combining them, assigning to cach an arbitrary
amplitude and phase,

Assuming that a moétion is harmonic with respeet to time,
we get to determine the type an equation of the form

d’
T+ By =0,
whenee it appears that the normal functions are
y=sin7—rliv, y=sin%’?, y:sin%ﬁv, &e.

We infer that the most general position which the string can
assume is capable of representation by a series of the form

4, sin Il— + 4, sm2~’r;£+ 4,sin "'—;l;f +oiieen
which is a particular case of Fouricr's theorem. There would

be no difficulty in proving the theorem in its most general form.

So far the string has been supposed uniform. But we have
only to introduce a variable density, or cven a single load at
any point of the string, in order to alter completely the ex-
pansion whose possibility may be inferred from the dynamical
theory. It is unnccessary to dwell herc on this subject, as
we shall have further examples in the chapters on the vibrations

of particular systems, such as bars, membranes, and confined
masses of air.
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93. The determination of the cocfficients to suit arbitrary
initial conditions may always be readily effected by the funda-
mental property of the normal functions, and it may be convenient
to sketch the process here for systems like strings, bars, mem- f

branes, plates, &c. in which there is only one dependent variable #!
¢ to be considered, If %, %,... be the normal functions, and
¢,5 ¢, .-. the corresponding co-ordinates, ~ ;%
E=ut, + pt,+ oty + ............. crereres (1).
The equations of free motion are ‘

. ) , t

b+ n’h, =0, ¢, +n,=0,&e ..oo........ 2), !
of which the solutions are

¢,= A, sinnt+ D cosnt

b =A,sinnt+ Bcosnty ............... 3). 1
.............................. {

The initial values of & and ¢ are therefore

B

b= DB, + Ba,+ B, + ... (4)

b=ndu +n,du+n Ay + .. [ " !

and the problem is to determine A, 4,,...B, B,... 50 as to 4
correspond with arbitrary values of £, and £, ;

If pdwz be the mass of the element d, we have from 1) ;

T=f}fp§"dw

= ‘} 4’;'_[/) uxﬂdx + % 4.’92'[/3 u:dz +ot 4;1¢;afp ux'u'zd‘c +...

But the expression for T'in terms of é,» ¢,, &e. cannot contain

the products of the normal generalized velocities, and therefore
cvery integral of the form

R A At it Dt ettt e

f pundr=0......cc.cuneon...... (5).

Hence to determinc B, we have only to multiply the first

of cquations (4) by pu, and integrate over the system, We thus
obtain

: | B fp 0 = f pULds ... eeeeees (6)-
Similarly,

nd, f pulde= / putdz ..., (7).
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The process is just the same whether the element dx be a line,
area, or volume,

The conjugate property, expressed by (5), depends upon the
fact that the functions » are normal. As soon as this is known
by the solution of a differential equation or otherwise, we may
infer the conjugate property without further proof, but the pro-
perty itsclf is most intimately connected with the fundamental
variational equation of motion § 94.

94. If V be the potential cnergy of deformation, ¢ the
displacement, and p the density of the (line, areca, or volume)
clement dz, the equation of virtual velocities gives immediately

3V+fpf8gdx= 0 eerrereereeerereeeen. (1).

In this cquation 87V is a symmetrical function of ¢ and &8¢,
as may be readily proved from the cxpression for ¥ in terms
of generalized co-ordinates. In fact if

V=%Cu‘!’x2 +oet cm‘l’x‘l’n T

8V= Cu""x&pl + 02.1‘\ll‘28 ‘l’n +oee
+ 0y (‘P\S‘"a + ‘#28\1’1) + ..

Suppose now that { refers to the motion corresponding to
a normal function w, so that &-+22¢=0, while 8¢ is identified
with another normal function u, ; then

8V=n? f puude,

Agnin, if we suppose, as we are cqually entitled to do, that &
varics as %, and 8¢ as u,, we get for the same quantity 8V,

8V=n} f puuds;
and thercfore
(n,’—n,’)fpu,u,dx=0 e v (2),

from which the conjugate property follows, if the motions re-
presented respectively by w, and w, have different periods.

A good example of the connection of the two methods of
treatment will be found in the chapter on the transverse vibrations
of bars, '
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95. Professor Stokes' has drawn attention to a very general
law connecting thos: parts of the frce wmolion which depend
on the initial displacements of a system not subject to frictional
forces, with those which depend on the initial wvelocities. If
a velocity of any type be communicated to a system at rest,
and then after a small interval of time the opposite velocity
be communicated, the effect in the limit will be to start the
system without velocity, but with a displacement of the corre-
sponding type. We may readily prove from this that in order
to deduce the motion depending on initial displacements from
that depending on the initial velocities, it is only necessary to
differentiate with respect to the time, and to replace the arbitrary
constants (or functions) which cxpress the initial velocitics by
those which express the corresponding initial displacements.

Thus, if ¢ be any normal co-ordinate satisfying the equation

¢ +n'p =0,
the solution in terms of the initial valucs of ¢ and ¢ is

= p,cos nt+%¢;o Sinnfu.iiiiivinininnn, (1),

of which the first term may be obtained from the second by
Stokes' rule,

! Dynamical Theory of Diffraction, Cambridge Trans. Vol, IX,



CHAPTER V.

VIBRATING SYSTEMS IN GENERAL
CONTINUED.

96. WHEN dissipative forces act upon a system, the character
of the motion is in general more complicated. If two only of the
functions 7' F, and V be finite, we may by a suitable lincar trans-
formation rid oursclves of the products of the co-ordinates, and
obtain the normal types of motion. In the preceding chapter we
have considered the case of F'=0, The same theory with obvious
modifications will apply when 7'=0, or V=0, but these cases
though of importance in other parts of Physics, such as Heat and
Klectricity, scarcely belong to our present subject.

The presence of friction will not interfece with the reduction of
T and V to sums of squares; but the transformation proper for
them will not in gencral suit also the requirements of I The
general equation can then only be reduced to the form

ald;l +bn‘£1 + blu(f;z + o +cl¢l = (I)U &coeiirann (1)’
and not to the simpler form applicable to a system of onc degree
of frecdom, viz,

ad,+bd, +cp, =P, &c i e (2).
We may, however, choose which pair of functions we shall
reduce, though in Acoustics the choice would almost always fall on

Tand V.

97. There is, however, a not unimportant class of cases in
which the reduction of all three functions may be effected ; and
the theory then assumes an exceptional simplicity. Under this head
the most important are probably those when s of the same form
as Tor V. The first case occurs frequently, in books at any rate,
when the motion of cach part of the system is resisted by a re-
tarding force, proportional both to the mass and velocity of the

R. : 7
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part. The same exceptional reduction is possible when F is a

lincar functi-n of 7 and ¥, or when 7' is itself of the same form as-

V. Inany of these cases, the equations of motion are of the same
form as for a system of one degree of freedom, and the theory
possesses certain peculiarities which make it worthy of scparate
consideration,

The equations of motion are obtained at once from 7, F
and Vi—

b, + 0.8, +ob, =
a¢z+b;4’a+c¢n (]) } (l)'

in which the co-ordinates are separated.

For the free vibrations we have only to put ®, =0, &e., and
the solution is of the form

d’ — -“t{(,bosnl n't <cognt+ 2—- gin nt)} teenes (2),
where K= b w=2, =y =} )
a’ a’ '

and ¢, and ¢, arc the initial valucs of ¢ and 6.

The whole motion may therefore be analysed into component
motions, each of which corresponds to the variation of but one
normal co-ordinate at a time. And the vibration in each of these
modes is altogether similar to that of a system with only one
degree of liberty. After a certain time, greater or less according
1o the amount of dissipation, the free vibrations become insignifi-
cant, and the system returns sensibly to rest.

Simultancously with the free vibrations, but in perfect inde-
pendence of them, there may exist forced vibrations depending on
the quantities ®.  Preciscly as in the case of one degree of frec-
dom, the solution of

ad +bp+ep=Durrrevrviiiniinennn... (8),
may be written

¢——J’ O g (= ) DAt e (4),
where as above
k=b+a w=c+a n=4n-31)

To obtain the complete expression for ¢ we must add to the
right-hand member of (4), which makes the initial values of ¢
and ¢ vanish, the terms given in (2) which represent the residue

.
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ab time ¢ of the initial values ¢, and @, If there be no friction,
the vujee of ¢ lu (F) reduce. to

1
¢=3

¢
fsiun(t—t') 7 () 8

0

98. The complete independence of the normal co-ordinates
leads to an intercsting theorem concerning the relation of the
subsequent motion to the initial disturbance, For if the forces
which act upon the system be of such a character that they do no
work on the displacement indicated by 8¢, then ®,=0. Nosuch
forces, however long continued, can produce any cffect on the
motion ¢,. If it cxist, they canuot destroy it; if it do not cxist,
they caunot gencrate it.  The most important application of the
theorem is when the forces applied to the system act at a node of
the normal component ¢,, that is, at a point which the component
vibration in question does not tend to sct in motion. Two extreme
cases of such forces may be specially noted, (1) when the force is
an impulse, starting the system from rest, (2) when it has acted so
long that the system is again at rest under its influence in a dis-
turbed position. So soon as the force ceases, natural vibrations
set in, and in the absence of friction would continue for an in-
definite time. We infer that whatever in other respects their
character may be, they contain no component of the type ¢,. This
conclusion is limited to cases where 7' F, V admit of simultaneous
reduction, including of course the casc of no friction,

99.  The formule quoted in § 97 are applicable to any kind of
force, but it will often happen that we have to deal on ly with the
effects of impressed forces of the harmonic type, and we may then
advantageously employ the more special formule applicable to such
forces, Inusing normal co-ordinates, we have first to caleulate the
forces @, ®,, &c. corresponding to each period, and thence deduce
the values of the co-ordinates themselves, IFf among the natural
periods (caleulated without allowance for friction) there be any
nearly agrecing in magnitude with the period of an impressed
force, the corresponding component vibrations will be abnormally
large, unless indeed the foree itself be greatly attenuated in the
preliminary resolution.  Suppose, for example, that a transverse
force of harmonic type and given period acts at a single point of
a stretched string.  All the normal modes of vibration will, in
general, be excited, not however in their own proper periods, but

7—2
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in the period of the impressed foree; but any normal component,
which Les o node al the point of application will nob be excited.
The magnitude of cach component thus depends on two things:
(1) on the situation of its nodes with respect to the point at which
the force is applied, and (2) on the degree of agreement between
its own proper period and that of the force, It is important to
remember that in respousce to a simple harmonic foree, the system
will vibrate in general in all its modes, although in particular
cases it may somctimes be sufficient to attend to only one of them
as being of paramount importance.

100.  When the periods of the forces operating are very long
relatively to the free periods of the system, an equilibrium theory
18 sometimes adequate, but in such a case the solution could
generally be found more easily without the use of the normal
co-ordinates. Bernoulli’s theory of the Tides is of this class, and
proceeds on the assumption that the free periods of the masses of

water found on the globe are small relatively to the periods of the .

operative forces, in which case the inertin of the water might be
left out of account, As a matter of fact this supposition is only
very roughly and partially applicable, and we are consequently
still in the dark on many important points relating to the tides.
The principal forces have a semi-diurnal period, which is not suffi-
ciently long in relation to the natural periods concerned, to allow
of the incrtia of the water being neglected.  But if the rotation of
the carth had been much slower, the equilibrium theory of the
tides might have been adequate.

A corrected equilibrium theory is sometimes useful, when the
period of the impressed force is sufficiently long in comparison
with most of the natural periods of a system, but not so in the
case of onc or two of them. Tt will be sufficient to take the case
where there is no friction.  In the equation

. i e, 1
n¢> + c¢ = (I), or 95 + 7‘-4’ = (_L (I),
suppose that the impressed force varies as cos pt. Then

=P +a(@~p°) . (1)

The equilibrium theory neglects p* in comparison with 2%
and takes
d=Dant....eiin i (2).
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Suppose now that this conrse is justifiable, exeept in rogpect
of the single normal co-ordinate ¢.  We have then only to add
to the result of the equilibrium theory, the difference between
the true and the there assumed value of ¢,, viz,

2
¢, = (‘,;'(‘j,; D'_*i -o =t B vvennn(3).
=27 e oS-t

The other extreme case ought also to be noticed. If the
forced vibrations be extremely rapid, they may become mnearly
independent of the potential energy of the system. Instead
of neglecting p* in comparison with 7% we have then to neglect
n* in comparison with 9%, which gives

d=—D+ap’n. oo (4).

It there be one or two co-ordinates to which this treatment
is not applicable, we may supplement the result, calculated on
the hypothesis that 17 is altogether negligible, with corrcctions
for these particular co-ordinates,

101. Before passing on to the gencral theory of the vibrations
of systems subject to dissipation, it may be well to point out
some peeuliaritics of the free vibrations of continuous systems,
started by a force applied at a single point.  On the suppositions
and notations of § 93, the configuration at any time is deter-
mined by

§=¢1ux+¢>zua+¢uun +""""“ """" ""(1),

where the normal co-ordinates satisfy equations of the form

ad, +ed. =D (2.

Suppose now that the system is held at rest by a force applied
at the point Q. The value of &, is determined by the considera-
tion that ® 8¢, represents the work done upon the system by the
impressed forces during a hypothetical displacement 8&= 8¢, «,,
that is

3¢, f Zu de
thus
®, = fz wdz=1,(Q) de.z ,
so that initially by (2)
e = u, (0) fztzx ..................... 3).
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If the system be let go from this cunficuration at ¢=0, we
have at any subsequuat time ¢,

w. (Q) |72
¢, = cosnt

u,(Q) [7de
== COS 71, s L (4),

n’ f pu’dx

and at the point P
u, (P) (@) [ 72
¢ =3 cosnat Cerrere veeen (B).
n’ f pu’dx

At particular points » (I’) and u, (@) vanish, but on the
whole

u (P)u, (Q)~+ / pu'ds

neither converges, nor diverges, with . The series for § thercfore
converges with n ™

Again, suppose that the system is started by an impulse
from the configuration of equilibrium. In this case initially

o b= [0dt =1, () [Zds,

whence at time ¢
sinn ¢
8,="00L 1 (Q). [Zda

Tooan,
_ St (D7 g, (6).
n, f pu,’
This gives
w, (P, (0) [Zds
{=2 sinngt veorineennnnen (7),
n, f pudz

shewing that in this case the series converges with =™, that
is more slowly than in the previous casc,

ke 0
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In bhoth cases it may be ohserved that the value of ¢ is
symmetrical with respect to 22 and ¢, proving that the displace-
ment at time ¢ for the point I° when the force or impulse is ap--
plicd at @), is the same as it would be at @ if the force or impulse
had been applied at P, This is an example of a very general
reciprocal theorem, which we shall consider at length presently.

As a third case we may suppose the body to start from rest
as deformed by a forece wuniformly distributed, over its length,
arca, or volume. We readily find

u (P).Z. |uda

e

The series for ¢ will he more convergent than when the force
1s concentrated in a single point.

In exactly the same way we may treat the case of a con-
tinuous body whose motion is subject to dissipation, provided
that the three functions 7, F, V be simultancously reducible,
but it is not necessary to write down the formule,

..... e (8),

¢=Zcosnt

102, If the three mechanical functions 7, F and V of any
system be not simultancously reducible, the natural vibrations
(as has already been observed) are more complicated in their
character, When, howcver, the dissipation is small, the method
of reduction is still uscful; and this class of cases besides being
of gome importance in itself will form a good introduction to
the more gencral theory, We suppose then that 7" and V oare
expressed as sums of squares

T=é al(j;xg’*'%“ud;;'*' "‘} , (1)
Velod?+hods+...J e b

while 77 still appears in the more general form

=3 byl + bl + o A Db Put (2.
The cquations of motion are accordingly

0, + by + b+ it o+ o =0
;4’; + bn‘l’; + bz»"l) + bz a¢w +oot CA(PJ =0

--------------------------------------------------

in which the cocfficicnts b, b,,, &. are to be treated as small.
If there were no friction, the above system of equations would
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be satisfied by supposing one co-ordinate ¢, to vary suitably,
while the other co-ordinates vanish, In the actual case thero
will be a corresponding solution in which the value of any other
co-ordinate ¢, will be small relatively to ¢

Hence, if we omit terms of the second order, the o cquation
becomes,

A, +0,0,+ 6B, =0uiiirininnnn (),

from which we infer that ¢ varies approximatcly as if there
were no change due to friction in the type of vibration, If o,
vary as e™, we obtain to determine p

ap’+o.p+e.=0 ... (B)

The roots of this cquation are complex, but the real part
is small in comparison with the imaginary part.

From the s" cquation, if we introduce the supposition that
all the co-ordinates vary as ™', we got

, m—
(pr «, + Cn) ¢- + Z)r~7)1'¢r - O’
terms of the second order being omitted ; whence

b= il 6.
" pea,te, a, (p’—p)

This equation determines approximately the altered type
of vibration. Since the chief put of p, is imaginary, we sce
that the co-ordinates ¢, are approximately in the same phase,
but that that phase differs by « quarter period Srom the phase
of ¢.. Henee when the function I7 does not reduce to a sum
of squares, the character of the clementary modes of vibration
15 less simple than otherwise, and the various parts of the system
are no longer simultancously in the same phase.

We proved above that, when the friction is small, the value
of p. may be caleulated approximatcely without allowance for
the change of type; but by means of (6) we may obtain a still
closer approximation, in which the squarces of the small quantities
are retained.  The »* equation (3) gives

ap’+ec. + b 5 Pl =0 7
1)+ e, :"p,—i-‘.,aa(%,_]-)?;— N ()}

The leading part of the terms included under 3 being real,
the correetion has no cffect on the real part of p, on which
the rate of decay depends.

i i B S T e —
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103. We¢ now returr: te the consideration of the gencral
equations of § 84.
If +,, ¥, &c. be the co-ordinates and W, W,, &e. the forces,
we have
ell"pl +612'\p2+ tee =\.[rl } (1)
a?l‘Pl+ez2'\P“l+"'=\I’l2 &C' e ’

where ,=a. P+b Dtc .cccoviiiriininninnnn(2),

For the free vibrations ¥,, &ec. vanish, If y be the de-
terminant
Chyy Coyr oo

V =18 Cuyoer |evriiiivininininnn (3),

srieet s

the result of climivating from (1) all the co-ordinates but one, is

Since y now containg odd powers of D, the 2m roots of the
cquation =0 no longer oceur in equal positive and negative
pairs, but contain a real as well as an imaginary part. The
complete integral may however still be written

V= dont + A'ew't  Dert + Legnit 4 ...l (5),

where the pairs of conjugate roots are p,, p; p,, p,'; &e. Corre-
sponding to each root, there is a particular solution such as

Yo=demt, A, =det, A=A e &e,

in which the ratios A, : 4, : 4,... arc determined by the equa-
tions of motion, and ouly the absolute value remains arbitrary.
In the present case however (where v contains odd powers of D)
these ratios are not in general real, and therefore the variations
of the co-ordinates ¥, Y, &e. are not synchronous i phase. If
we put u =a +18,, u' =a —18,, &c, we sce that none of the
quantities « can be positive, since in that case the energy of
the motion would increase with the time, as we know it cannot
do.

Enough has now been said on the subject of the free vibra-
tions of a system in general. Any farther illustration that it
may require will be afforded by the discussion of the case of two
degrees of freedom, § 112, and by the vibrations of strings and other
special bodies with which we shall soon be oceupicd.  We resume
the cquations (1) with the view of investigating further the
nature of forced wibrations.
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104 In order to ecliminate from the cquations all the co-
ordinates but one (yr,), operate on them in succession with the
minor determinants

dy dy dy

ey =i, , &,

de,’ de,' de, '
and add the results together; and in like manner for the other
co-ordinates. We thus obtain as the equivalent of the original
system of equations

_dv dy dy ]
V= oy Vi o, Vot g Yot

V\P‘,=£Z—V\I’|+_;\pﬂ+€lv \Pa+...‘ e (1),

de,, de,, de,,
OV 8V L4y
V"Pn = (ZG—_; \Irl + (len v 3 + (l@:., \I,s + o

SesNItitts v t1ees s tol.l.ooolln.oltlntl.c_]

in which the differentiations of ¢ are to be made without re-
cognition of the equality subsisting between e, and e,

The forces ¥,, ¥,, &c. arc any whatever, subject, of course,
to the condition of not producing so great a displacement or
motion that the squares of the small quantities become sensible.
If, as is often the case, the forces operating be made up of two
parts, one constant with respeet to time, and the other periodie,
it is convenient to scparate in imagination the two classes of
cffects produced. The effect due to the constant forces is exactly
the same as if they acted alone, and is found by the solution
of a statical problem. It will therefore gencrally be sufficient
to suppose the forces periodic, the effects of any constant forces,
such as gravity, being mercly to alter the configuration about
which the vibrations proper are exceuted. We may thus without
any real loss of generality confine oursclves to periodic, and
therefore by Fourier's theorem to harmonie forces.

We might therefore assume as expressions for T, &e. circular
functions of the time; but, as we shall have frequent occasion
to recognise in the course of this work, it is usually more con-
venient to employ an imaginary exponential function, such as
L ¢*, where ' is a constant which may be complex. When the
corresponding  symbolical solution is obtained, its Teal and
imaginary parts may be separated, and belong respectively to
the real and imaginary parts of the data. In this way the
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snalysis gains considerably in brevity, inasmuch as differentiations
and alterations of phase are expressed by merely modifying
the complex coefficient without changing the form of the function,
We therefore write
ipt {
Y =Fc, V,=Eg" &e

The minor determinants of the type g—ey— arc rational integral

re

functions of the symbol D, and operate on ¥, &c. according to

the law
SD)Ye™" =f(ip)e™iniiviniinnnnn.n, . (2).
Our equations thercfore assume the form

v, =4.6% v, = Ag", &e.iiinnnn (8),

where 4,, 4,, &c. are certain complex constants, And the sym-
bolical solutious are
¥, = AIV“'G"'» &e,
or by (2),
G(pl

LT PR (4),
where v (ip) denotes the result of substituting /p for D in y.

Consider first the case of a system exempt from friction, v
and its differential cocflicients are then even functions of D,
so that v (i) is real. Throwing away the imaginary part of
the solution, writing L2 ¢ for 4, &c. we have

— Rl 4 \
‘\P‘l —6(‘2;) Cos (])t-i- 01): dec. tesvenisian (5)
If we suppose that the forces P, &e. (in the case of more
than one gencralized component) have all the same phase, they
may be expressed by
E cos (pt+a), E,cos(pt+a), & ;

and then, as is casily scen, the co-ordinates themsclves agree
in phase with the forces:

I,
=22 COS (PE4a) viveeriirniiannins (6).
V= s 008 (e +) ©

The amplitudes of the vibrations depend among other things
on the magnitude of y(¢p). Now, if the period of the forces
be the same as one of those belonging to the free vibrations,
v (p)=0, and the amplitude becomes infinite, This is, of
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course, just the case in which it is essential to introduce the
consideration of frietion, from which no natural system is really
cxempt.

If there be friction, ¥ (ip) is complex ; but it may be divided
into two parts—one real and the other purcly imaginary, of which
the latter depends entirely on the friction. Thus, if we put

V (ip)=V, @)+ V,ED) i (7),

V. v, are even functions of 2p, and therefore real, If as before
A, = 1 ¢", our solution takes the form

v = R, g eiveint
Cvi@ @)
or, on throwing away the imaginary part,

B cos (pt+ 6, + 1)

Y= e L, (),
(v, Gp) [+ 'V, (5p) '}
where
PV,
tan y = i lip) (9).

We have said that y,(Zp) depends entirely on the friction ; but
it is not true, on the other hand, that ¢,(ip) is exactly the same,
as if there had been no friction. However, this is approximately
the case, if the friction be small; because any part of y(ip), which
depends on the first power of the coefficients of friction, is neces-
sarily imaginary. Whenever there is a coincidence hetween the
period of the force and that of one of the free vibratious, v, (@p)

vanishes, and we have tanqy = — o0, and therefore
LB sin(pt+86)
=l A, 10 y
LA ey (10)

indicating u vibration of large amplitude, only limited by the
friction.

On the hypothesis of small friction, 8 is in general small, and
so also is 7, except in case of approximate cquality of periads,
With certain exceptions, therefore, the motion has necarly the
same (or opposite) phasc with the force that excites it.

Wlen a force expressed by a harmonic term acts on a system,
the resulting motion is everywhere harmonie, and retains the
original period, provided always that the squares of the displace-
ments and velocities may be neglected.  This important principle
was cnunciated by Laplace and applied by him to the theory of
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the tides. Its, great gencrality was also recognised by Sir John
Herschel, to whom we owe a formal demonstration of its truth’.

If the foree be not a harmonie function of the time, the types
of vibration in different parts of the system are in general different
from cach other and from that of the forcc. The harmonic
functions are thus the only ones which preserve their type un-
changed, which, as was remarked in the Introduction, is a strong
reason for anticipating that they correspond to simple tones.

105. We now turn to a somewhat different kind of forced
vibration, where, instead of given forces as hitherto, given inexora-
ble motions are prescribed,

If we suppose that the co-ordinates 4, ¥, ... ¥, are given
functions of the time, while the forces of the remaining types
Y, V., ... P, vanish, the equations of motion divide them-
sclves into two groups, viz.

6" 1pl + Gm'\!l',‘ + ..+ elm‘\lrﬂl = \I,l
€y ‘lf\ + 022‘\’"2 +oo+ 92,,,‘1’". = \1,2

N R N NN R RN IR R Y

(5”\!/" + e"u‘l’:‘. + o + erm‘i’m = \],r J
and
Criin ‘\h + e”.;,.z‘\l/‘.,. T (ar+l""'\’,m =0

€ Yiten, Yt towm ¥, =0

In cach of the m — 7 equations of the latter group, the first »
terms arc known cxplicit functions of the time, and have the same
ctfect as known forces acting on the system. The cquations of
this group arc thercfore suflicient to determine the unknown
quantities ; after whicl, if required, the forces necessary to main-
tain the preseribed motion may be determined from the first
group, It is obvious that there is no essential difference between
the two classes of problems of forced vibrations.

106. The motion of a system devoid of friction and executing
simple harmonic vibrations in consequence of preseribed variations
of some of the coordinates, possesses a peculiarity parallel to those
considered in §§ 74, 79. Let

A=A, cospt, ,=4,cospt, &e.
in which the quantitics 4 ,...4_ are regarded as given, while the

! Encye, Metrap, art, 323, Also Outlines of Astronomy, § 650.
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remaining ones are arbitrary,  We have from the expressions for
Zand ¥, § 82,
2 (T + V) = i (C” + 2)2(611) ‘/112 +ot (cxa+p2a12)A1Az +

+ 3y~ pla )4} + ... + (Ca—pay) d, 4+ ...} cos 2pt,
from which we sec that the cquations of motion express the con-
dition that %, the variable part of 7'+ V, which is proportional to

.1: (Cn - Z)Qau) 'sz’*' vee (cm —paalz)“"llAz oo ol (1):
shall be stationary in value, for all variations of the quantitics
Ay, oo A, Let p™ be the value of p* natural to the system when

vibrating under the restraint defined by the ratios
A, 4,..4_ Ay A4,

then

P'={Fe, 42+ ... + e d A+ ...} + (Ja,d+... + a,d,4,+ ...},
so that
L= ~p) ba, A2+ ...+ a, 44,4+ ..} ....... (2).
From this we see that if P be certainly loss than »*; that is,

if the prescribed period be greater than any of those natural to
the system under the partial constraint represented by

A o A,

then Z is necessarily positive, and the stationary value—there can
be but one—is an absolute minimam, For a similar reason, if the
prescribed period be less than an y of those natural to the partially
constrained system, & is an absolute maximum algebraically, but
arithmetically an absolute minimum. But when p? lies within the
range of possible valucs of p* & may be positive or negative, and
the actual value is not the greatest or least possible,  Whenever g
natural vibration is consistent with the Imposed conditions, that
will be the vibration assumed. The variable part of 7'+ V is then
zcro.

For convenience of treatment we have considered apart the
two great clusses of forced vibrations and free vibrations; but there
1s, of course, nothing to prevent their coexistence,  After the lapse
of a safficient interval of time, the free vibrations always dis-
appear, however small the frietion may be. The case of abso.
lutely no frietion is purely ideal,

. |

1 2

There is one caution, however, which may not be superfluous
in respect to the case where given motions are forced on the

q

oo
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system. Suppose, as before, that the co-ordinates r,, Y, .., are
givoi,  Then the froe vibrations, whose oxistence or non-existonceo
is a matter of indifference so far as the forced niotion is concerned,
must be understood to be such as the system is capable of, when
the co-ordinates ... are not allowed to vary from zero. In
order to prevent their varying, forces of the corresponding types
must be introduced; so that from one point of view the motion in
question may be regarded as forced. But the applied forces are
mercly of the nature of a constraint; and their cffect is the same
as a limitation on the freedom of the motion.

107, Very remarkable reciprocal relations exist between the
forces and motions of different types, which may be regarded as
extensions of the corresponding theorems for systems in which
only Vor 1" has to be considered (§ 72 and §§ 77, 78). If we sup-
pose that all the component forces, except two—W, and ¥,—are
zero, we obtain from § 104,

v\h = ﬂ v+ £ZV \ya

—de,, ! dezl ”“,,,.......-un(l)'

Wy LAV

V¥, = de,, Vit de, s

We now consider two cases of motion for the same system ; first

when W, vanishes, and secondly (with dashed letters) when W/
vanishes, If ¥, =0

22

. d
‘\ll'ﬂ-'-_-VlJez"I’l--.---nnnno-4--|un- (2)0
12
Similarly, if ¥'=0, .
W=V LW e (3)

de,,

In these equations y and its differential coefficients arc rational
integral functions of the symbol D; and since in cvery case
e,,=e,, v is a symmetrical determinant, and therefore

dy _dy )
de.. = de e . .

‘ar

Hence we see that if a force W, act on the system, the co-
ordinate Y, is rclated to it in the same way as the co-ordinate -’
is related to the force W)/, when this latter force is supposed to act
alone.

In addition to the motion here contemplated, there may be
frec vibrations dependent on a disturbance already existing at the
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moment subsequent to which all new sources of disturbance are
included in ¥; but these vibrations arc themselves the effoct of
foreos which acted previously, However small the dissipation
may be, there must be an interval of time after which free vibra-
tions die out, and beyond which it is unnecessary to go in taking
account of the forces which have acted on a system. If thereforo
we include under ¥ forces of sufficient remoteness, there are no
independent vibrations to be considered, and in this way the
theorem may be extended to cases which would not at first sight
appear to come within its scope. Suppose, for example, that the
system is at rest in its position of equilibrium, and then begins to
be acted on by a force of the first type, gradually increasing in
magnitude from zero to a finite value W, at which point it ccases
to increase. If now at a given epoch of time the force be sud-
denly destroyed and remain zero ever afterwards, free vibrations of
the system will set in, and continue until destroyed by friction.
At any time ¢ subscquent to the given cpoch, the co-ordinate
has a value dependent upon ¢ proportional to W,. The theorem
allows us to assert that this value ¥, bears the same relation to ¥,
as yr,” would at the same moment have borne to W, if the original
causc of the vibrations had been a foree of the second type in-
creasing gradually from zero to W, and then suddenly vanishing
at the given epoch of time. We have already had an example of
this in § 101, and a like result obtuins when the cause of the
original disturbance is an impulse, or, as in the problem of the
pranoforte-string, a variable force of finite though short duration,
In these applications of our theorem we obtain results relating to
free vibrations, considercd as the residual offect of forces whose
actual operation may have been long before,

108.  In an important class of cases the forces W, and V. are
harmonic, and of the same period. Weo may represent them by
A,e™, A,/¢", where A, and 4, may be assumed to be reul, if the
forces be in the same phase at the moments compared, The
results may then be written

v,=A 218V (D) .

! de,, &
Y =d  log v (ip) ot ’
b de

2
where #p is written for D, Thus,
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Since the ratio 4, : A, is by hypothesis rcal, the same is
true of the ratio 4/ : 4, ; which signifies that the motions
represented by those symbeols are in the same phase. Passing
to rcal quantities we iuay state the theorem thus:—

If a force W,= A cospt, acting on the system give rise to
the motion r,=6A, cos (pt—e); then will ¢ force ¥, = A, cos pt
produce the motion yr,'= 6 A’ cos (pt — ).

If there be no friction, e will be zero,

If A4,=4,, then /=4, DBut it must be remembered that
the forces ¥, and ¥, are not nccessarily comparable, any more
than the co-ordinates of corresponding types, one of which for
cxample may represent a lincar and another an angular dis-
placement,

The reciprocal thecorem may be stated in several ways, but
before proceeding to these we will give another investigation,
not requiring a knowledge of determinants,

If W, ¥, ¥y, Yoo and W/, WA/, A, De two sets
of forces and corresponding displaccments, the equations of
motion, § 103, give

\],I‘Pl’ + \I’::'\Pl-z’ +oo= \I’x' (011‘1’1 + am‘!’a'*" 613"’2 +. ")
t \!’z, (821‘1’1 + e-z-."‘h+ e-.-.n"ps + "') UERD
Now, if all the forces vary as ¢*, the cffect of a symbolic
operator such as e, on any of the quantitics ¢ is merely to
multiply that quantity by the constant found by substituting
ip for D in e,. Supposing this substitution made, and having
regard to the relations ¢, =¢,, we may write

\Ill\l,l’ + \P'A‘){’z, t...= eu‘l’!‘hl + 8221I1‘2\P‘u' +..

+e, (‘#1’1}'2 + ‘1"2"\1",) F oot i (3)
Hence by the symmetry
Vol + T, + o= Y (4),

which is the expression of the reciprocal relation.

109. In the applications that we arc about to make it
will be supposed throughout that the forces of all types but
two (which we may as well take as the first and second) are
zero,  Thus

VoA + W) =T + T, s (1),
R. 8
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The consequences of this equation may be exhibited in three

different ways. In the first we suppose that

v,=0, ¥'=0,
whence

Yo W= oW (2),
shewing, as before, that the relation of 4, to ¥, in the first
case when W,=0 is the same as the rclation of ¥, to v, in
the sccond case, when W/ =0, the identity of relationship ex-
tending to phase as well as amplitude.

A few examples may promote the comprehension of a law,
whose extreme gencrality is not unlikely to convey an impression
of vaguencss,

If P and Q be two points of a horizontal bar supported in
any manner (e.g. with one end clamped and the other free), a
given harmonic transverse force applicd at > will give at any
moment the same vertical deflection at @ as would have been
found at P, had the force acted at Q.

If we take angular instead of lincar displacements, the
theorem will run :—A given harmonic couple at P will give the
same 7otation at @ as the couple at Q would give at P,

Or if one displacement be linear and the other angular, the
result may be stated thus:—Suppose for the first case that a
harmonic couple acts at P, and for the second that a vertical
force of the same period and phase acts at @, then the linear
displacement at @ in the first case has at every moment the
same phase as the rotatory displacement at P in the second,
and the amplitudes of the two displacements are so related that
the maximum couple at P would do the same work in acting
over the maximum rotation at P due to the force at @, as the
maximum force at @ would do in acting through the maximum
displacement at @ due to the couple at I. In this case the
statement is more complicated, as the forces, being of different
kinds, cannot be taken equal,

If we suppose the period of the forces to be excessively long,
the momentary position of the system tends to coincide with
that in which it would be maintained at rest by the then acting
forces, and the equilibrium theory becomes applicable.  Our
theorem then reduces to the statical one proved in § 72,

As a second example, suppose that in a space occupied by
air, and cither wholly, or partly, confined by solid boundaries,
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there arc two spheres 4 and B, whose centres have one degree
of freedom. Then a periodic force acting on A will produeo
the same motion in B, as if the parts were interchanged ; and
this, whatever membranes, strings, forks on resonance cases, or
other bodies capable of being set into vibration, may be present in
their neighbourhood.

Or, if 4 and B denote two points of a solid elastic body
of any shape, a force parallel to X, acting at 4, will produce
the same motion of the point B parallel to O Y as an equal force
parallel to OY acting at B would produce in the point A,
parallel to OX.

Or again, lct 4 and B be two points of a space occupied by
air, between which are situated obstacles of any kind. Then a
sound originating at 4 is perceived at B with the same intensity
as that with which an equal sound originating at B would be per-
ceived at 4.' The obstacle, for instance, might consist of a rigid
wall picrced with one or more holes. This example corresponds
to the optical law that if by any combination of reflecting or re-
fracting surfaces one point can be seen from a second, the second
can also be secen from the first. In Acoustics the sound shadows
are usually only partial in consequence of the not insignificant
value of the wave-length in comparison with the dimensions of
ordinary obstacles : and the reciprocal relation is of considerable
interest.

A further example may be taken from clectricity. Let there
be two circuits of insulated wire A and B, and in their neigh-
bourhood any combination of wire-circuits or solid conductors
in communication with condensers. A periodic clectro-motive
force in the circuit 4 will give rise to the same current in B
as would be excited in A if the electro-motive foree operated
in B.

Our last example will be taken from the theory of conduction
and radiation of heat, Newton's law of cooling being assumed
as a basis.  The temperature at any point 4 of a conducting and
radiating system due to a steady (or harmonic) source of heat
at B is the same as the temperature at B due to an cqual source
at 4. Moreover, if at any time the source at B be removed, the
whole subsequent course of temperature at A will be the same
as it would be at B if the parts of B and 4 were interchanged.

! Helmholtz, Crelle, Bd, v, Tho sounds must be such as in the absence of

obstacles would diffuse themselvos equally in all directions.
8—2
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110, The sccond way of stating the reciprocal theorem is

arrived at by taking in (1) of § 109,

f=0, ¥/=0;
whence W =W, o veeennenn(1),
or Voo, =W ) e . (2),
shewing that the relation of W, to 4, in the first case, when =0,
is the same as the relation of W, to 4, in the second casc,
when /=0,

Thus in the example of the rod, if the point P be held at
rest while a given vibration is imposed upon @ (by a force there
applicd), the reaction at I’ is the same both in amplitude and
phase as it would be at @ if that point were held at rest and
the given vibration were imposed upon I,

So if 4 and B be two clectric circuits in the neighbourhood
of any number of others, €, D, ... whether closed or terminating
in condensers, and a given periodic current be excited in 4 by
the nceessary electro-motive force, the induced electro-motive
force in B is the same as it would be in 4, if the parts of A
and B were interchanged,

The third form of statement is obtained by putting in (1)
of § 109,

W, =0, ¥,/ =0;
whence WA, AW, =0 (3),
or VoY== s W (),
proving that the ratio of 4, to 4, in the first ease, when W, acts
alone, is the negative of the ratio of W, to W in the second
case, when the forces arc so related as to keep ¥, equal to zero,

Thus if the point P of the rod be held at rest while a
periodic force acts at @, the reaction at I” bears the same numeri-
cal ratio to the force at Q as the displacement at @ would bear
to the displacement at P, if the rod were caused to vibrate by
a force applied at I’

111, The reciprocal theorem bas been proved for all systems
in which the frictional forces can be represented by the function F,
but it is susceptible of a further and an important generalization.
We have indeed proved the existence of the function F for
a large class of cases where the motion is resisted by forees
proportional to the absolute or relative velocities, but there are
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other sources of dissipation not to be brought under this head,
whose effects it is equally important to include; for example, the
dissipation due to the conduction or radiation of heat. Now
although it be true that the forces in these cases are not for all
possible motions in a constant ratio to the velocitics or displace-
ments, yet in any actual case of periodic motion (r) they arc
necessarily periodic, and thercfore, whatever their phase, ex-
pressible by a sum of two terms, one proportional to the dis-
placement (absolute or relative) and the other proportional to the
velocity of the part of the system affected. If the coeflicients
be the same, not necessarily for all motions whatever, but for all
motions of the perivd 7, the function F exists in the only scnse
required for our present purpose. In fact since it is exclusively
with motions of period 7 that the theorem is concerned, it is
plainly a matter of inditference whether the functions 70 F, ¥V
are dependent upon 7 or not. Thus eoxtended, the theorem is
perhaps sufliciently general to cover the whole ficld of dissipative
forces. ’

It is important to remember that the Principle of Reciprocity
is limited to systems which vibrate about a configuration of equi-
lebrium, and is therefore not to be applied without reservation to
such a problem as that presented by the transmission of sonorous
waves through the atmosphere when disturbed by wind. The
vibrations must also be of such a character that the squarc of the
motion can be neglected throughout; otherwise our demonstra-
tion would not hold good. Other apparcnt exceptions depend on
a misunderstanding of the principle itself, Care must be taken
to observe a proper correspondence between the forces and dis-
placements, the rule being that the action of the force over the
displacement is to represent work done. Thus couples correspond
to rofutions, pressures to increments of volume, and so on.

112. In Chapter III. we considered the vibrations of a
system with onc degrec of freedom. The remainder of the pre-
sent Chapter will be devoted to some details of the case where the
degrees of freedom are two,

If @ aud y denote the two co-ordinates, the expressions for 7
and V are of the form
2T = L + 2iy 4+ Nop
2V= A4’ + 2Bay + Cy? o
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so that, in the absence of friction, the equations of motion are
L+ Mj+ Az + By=X 5
ﬂ[j+AY:})+Bw+ 0y= 27 ..................... (-)a

When there are no impressed forees, we have for the natural
vibrations '

(LD*+ A)x+ (UMD + By =0 o)
(MD*+ Byaw + (ND*+ C)y=0 ) "7 o
D being the symbol of differentiation with respect to time,

If a solution of (3) Lo & =1¢" y=me", A\? is one of the
roots of '

(IN+ A) (NN + C) = (AN +DB)*=0............... OF
or

M(LN = M)+ N (LC+ NA - 2MB) + AC— B*=0......(5).

The constants L, M, N; A, B, C, arc not entircly arbitrary.
Since 1" and V arc essentially positive, the following inequalitics
must be satisfied:—

LIN> M, AC>D% i, (6).

Morcover, L, N, 4, C must themsclves be positive,

We proceed to examine the effect of these restrictions on the
roots of (3).

In the first place the threc coefficients in the equation are
positive.  For the first and third, this is obvious from (6). The
cocfiicient of A?

= (JLO-JNA)? + 2 /LNAC - 2B,
in which, as is seen from (6), JINAC is necessarily greater than
AB. We conclude that the values of A2 if real, are both negative.

It remains to prove that the roots are in fact real. The con-
dition to be satisfied is that the following quantity be not nega-
tive i—

(LC+ NA =2MDB)* —4(LN ~ ") (4C - B),
After reduction this may be brought into the form
4WLN.B-JAC. 2y
+ (JLC - JNAP {(VLC - JNAY + 4(JINAC - 1B},

which shews that the condition is satisfied, since ~/LNLIC— MB
is positive. This is the analytical proof that the values of A* are
both real and negative; a fact that might have been anticipated
without any analysis from the physical constitution of the system,
whose vibrations they scrve to express.
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The two valucs of A? are different, unless both
JL]\—rB-— J;m M=0 }
JLC-JNi=0]"

which require that

L:M:N=4:B: Covrerererrereren, (7).

The common spherical pendulum is an example of this case.
)

By means of a suitable force 1™ the co-ordinate ¥ may be pre-
vented from varying. The system then loses one degree of free-
dom, and the period corresponding to the remaining onc is in
general different from cither of those possible before the introdue-
tion of Y. Suppose that the types of the motions obtained by
thus preventing in turn the variation of y and @ are respectively
e“?, ¢4, Then p’, w,? arc the roots of the equation

(LA? + A) (NN + C) =0,
being that obtained from (4) by suppressing M and B. Hence
(4) may itself be put into the form
LNN —pf’) (M —p?) = @I+ D) ...........(8),
which shews at once that neither of the roots of A can be inter-
mediate in value between p? and g% A little further examina-
tion will prove that one of the roots is greater than both the quan-
tities p,*, .,k and the other less than both,  For if we put
SO = LN = ) (W0 = ) = (M2 + B,

we see that when A* is very small, f is positive (4C — B*); when
A? decreases (algebraically) to w?, f changes sign and becomes
negative.  Between 0 and p* there is therefore a root; and also
by similar reasoning between g, and — . We conclude that the
tones obtained by subjecting the system to the two kinds of con-
straint in question are both intermediate in pitch between the
tones given by the natural vibrations of the system, In particular
cases p’ ', may be equal, and then
_~J7327#2iB_LJTUi B (9

JLNF M JLNFM TS

This proposition may be gencralized. Any kind of constraint
which leaves the system still in possession of one degree of free-
dom may be regarded as the imposition of a forced rclation
between the co-ordinates, such as

ar+ By=0....... RN ¢ (D) R

2
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Now if az + By, and any other homogeneous linear func-
tion of @ and gy, ko taken as new varinbles, the same argument
proves that the single period possible to the system after the
introduction of the constraint, is intermediate in value between
those two in which the natural vibrations were previously per-
tformed.  Conversely, the two periods which become possible
when a constraint is removed, lic one on each side of the original
period.

If the values of A* be equal, which can only happen when
L:M:N=4:D:C

the introduction of a constraint has no effect on the period; for
instance, the limitation of a spherical pendulum 1o one vertical
planc.

113. As a simple example of a system with two degrees of
freedom, we may take a stretched string of length , itself with-
out inertia, but carrying two cqual masscs m at distances a and
b from onc end (Fig. 17), Tension = 7',

Tig. 17.

If @ and y denote the displacements,

2T =m (i* + j°),

AT G ) )

OV =T 15 L&Y Y

! {a T T

Since T"and V are not of the same form, it fullows that the
two periods of vibration arc in every ease uncqual,

If the loads be symmetrically attached, the character of the
two component vibrations is evident. In the first, which will have
the longer period, the two weights move together, so that  and g
remain cqual throughout the vibration. In the second 2 and y are
numerically equal, but opposed in sign. The middle point of the
string then remains at rest, and the two masses arc always to
be found on a straight line passing through it. In the first case
2—y=0, and in the second 2 +y=0; so that z~y, and 2 +y
are the new variables which must be assumed in order to reducc
the functions 7"and ¥ simultancously to a sum of squares.
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For cxample, if the masses be so attached as to divide the
string into three equal parts,

o1'=3 {(&+9) + (¢~ 9))
...... .........(1))
3T . 2
2V="5 (o +y) + 3@~ ) |

from which we obtain as the complete solution,

e T,
a+y—zlcos(\/m.t+a)1
Y
.L——y—-Bco.s<\/lm ,t+B)}

where, as usual, the constants A, @, B, 8 are to be determined by
the initial circumstances.

114, When the two natural periods of a system are nearly
equal, the phienomenon of intermittent vibration sometimes pre-
sents itself in a very curious manner. In order to illustrate this,
we may recur to the string loaded, we will now suppose, with two
equal masses at distances from its ends equal to one-fourth of the
length. If the middle point of the string were absolutely fixed,
the two similar systems on cither side of it would be completely
independent, or, if the whole be considered as one system, the two
periods of vibration would be equal. 'We now suppose that
instead of being absolutely fixed, the middle point is attached to
springs, or other machinery, destitute of inertia, so that it is
capable of yiclding slightly. The rescrvation as to inertia is to
avoid the introduction of a third degree of froedom.

From the symmetry it is evident that the fundamental vibra-
tions of the system arc those represented by z+y and z—y.
Their periods are slightly different, because, on account of the
yiclding of the centre, the potential cnergy of a displacement
when 2 and y are cqual, is less than that of a displacement
when z and y arc opposite; whereas the kinelic cnergies are
the same for the two kinds of vibration. In the solution

a+y=A cos(nt+a) 1

z—-y=D cos(ve2t+;8)} """"" AR (1),
we are thercfore to regard », and 2, as nearly, but not quite, equal.
Now let us suppose that initially @ and & vanish. The condi-

tions are
Acosa+ DBcosf=0)

n, A sina+nBsinB=0]"
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which give approximately
A+B=0, a=p

. N,—n oo+,
Thus z=4 sin ¥ L sin < byt t+a)
- -

. cenenn(2).
n,—n 4
y=dcos-2; "1t cos (-" ~2~~-=t+a>

The value of the co-ordinate = is here approximately ex-
pressed by a harmonic term, whose amplitude, being proportional

Ik . . . .
to sin—~*5-—1¢, is a slowly varying harmonic function of the time.
-

The vibrations of the co-ordinates are therefore intermittent, and
8o adjusted that each amplitude vanishes at the moment that the
other is at its maximum.

This phenomenon may be pretiily shewn by a tuning fork of
very low pitch, heavily weighted at the ends, and firmly held by
screwing the stalk into a massive support. When the fork vibrates
in the normal manner, the rigidity, or want of rigidity, of the
stalk does not come into play; but if the displacements of the two
prongs be in the same direction, the slight yiclding of the stalk
entails a small change of period. If the fork be excited by striking
oue prong, the vibrations are intermittent, and appear to transfer
themselves backwards and forwards between the prongs. Unless,
however, the support be very firm, the abnormal vibration, whicl,
involves a motion of the centre of inertia, is soon dissipated ; and
then, of course, the vibration appears to become steady. If the
fork be merely held in the hand, the phenomenon of intermittence
cannot be obtained at all,

115. The stretched string with two attached masscs may he
used to illustrate some general principles. For example, the period
of the vibration whicl remains possible when one mass is held
at rest, is intermediate between the two free periods.  Any in-
crease in cither load depresses the pitch of both the natural
vibrations, and conversely, If the new load be situated at a point
of the string not coinciding with the places where the other loads
are attached, nor with the node of one of the two previously
possible free vibrations (the other has no node), the effect is still
to prolung both the periods already present.,  'With regard to the
third finite period, which becomes possible for the first time after
the addition of the new load, it must be regarded as derived from
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one of infinitcly small magnitude, of which an indefinite number
may be supposed to form part of the system. It is instructive
to trace the effect of the introduction of a new load and its gradual
increase from zero to infinity, but for this purpose it will be
simpler to take the case where there is but one other. At the
commencement there is one finite period 7, and another of in-
finitesimal magnitude 7,. As the load increases T, becomes finite,
and both 7, and 7, continually increase. Let us now consider
what happens when the load becomes very great. One of the
periods is necessarily large and capable of growing beyond all
limit. The other must approach a fixed finite limit. The first
belongs to a motion in which the larger mass vibrates nearly as
if the other were absent ; the sccond is the period of the vibration
of the smaller mass, taking place much as if the larger were fixed.
Now since 7, and 7, can never be equal, 7, must be always the
greater; and we infer, that as the load becomes continually larger,
it is 7, that increases indefinitely, and 7, that approaches a finite
limit,

We now pass to the consideration of forced vibrations.

116. The general equations for a system of two degrees of
freedom including friction are
(LD +aD+A)ya+ (MD'+BD + B)y=4 1
(ML 4 BD + B) w4 (NI + yD + C) y= v | = ()
In what follows we shall suppose that }'=0, and that X=e",
The solution for y is

y=- (A =p"L +tap) (C=p*N+1inp) — (B-p*M+iBp)

If the conncetion between x and y be of a loose character, the
constants A, B, B are small, so that the term (B - p*M +<8p)*
in the denominator may in gencral be neglected. When this
is permissible, the co-ordinate y is the same as if  had been pre-
vented from varying, and a force Y had been introduced whose
magnitude is independent of N, v, and C. But if, in consequence
of an approximate isochronism between the force and onc of the
motions which become possible when @ or g is constrained to be
gero, cither A —p*L+zap, or C—p’N+dyp be small, then the
term in the denominator containing the coeflicients of mutual
influence must be retained, being no longer relatively unimportant ;
and the solution is accordingly of a morc complicated character.

2} ey ipt
(B—-p"M +ifp)e o (2).
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sk

Symmetry shews that if we lLad assumed & =0, V=¢" g
should have found the same valuo for 2 us now obtains for y. This
is the Reciprocal Theorem of § 108 applied to a system capable
of two independent motions, The string and two loads may again
be referred to as an example,

I17. So fur for an imposed foree, 'We shall next suppose
that it is a motion of one co-ordinate (z = ¢") that is prescribed,
while Y'=0; and for greater simplicity we shall confine ourselyus
to the case where 8=0. The value of y is

(B — Mp*) ™ 1
Yy =—(J"_—N,j—)_f—*:-z'ﬁ; ..................... ( )

Let us now inquire into the reaction of this motion on

We have

: = (B Mpy 2
(MD'+ D) y= U N gy reeee s (2).

If the real and imaginary parts of the coefficient of ¢" be re-
spectively A and L%p, we may put

(MDP+B)y=Aetdi .o (3),
. (e B M (O MY
and A=Y ((/"—J\T[})’T"W .............. ' (4:),
- 2\2
e A (5).

(O NPy
It appears that the effect of the reaction of Y (over and above
what would be cauged by holding y = 0) is represented by changing
A into 4 + A, and a into a+d, where A' and «' huve the above
. values, and is therefore equivalent to the cffect of an alteration in
the cocfficients of spring and friction, These alterations, however,
are not constants, dut functions of the period of the motion con-
templated, whose character we how proceed to consider.,
Let 7 be the value of D corresponding to the natural frictionless
period of y (4 being maintained at 2cro) 5 so that ¢'— 2V =0,
Then

N(p*—n®)
[ ) — [92)? —_— R U,
A= (B MP ) Z\r'z(llw ')1.2)2 2[)2 ‘

/ 2\ Y
=(B—-Mpy i Y
( ) N? @ —=n') + o2
In most cases witl, which we are practically concerned v is
small, and interest contres mainly on values of P not much differ-
g from n, We ghull accordingly leave out of account the
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variations of the positive factor (B — Mp?)’, and in the small term
y'p? substitute for p its approximate value 2. When p is not
ncarly equal to n, the term in question is of no importance.

As might be anticipated from the general principle of work,
¢ i always positive, Its maximum value occurs when p=n

ncarly, and is then proportional to el which varies inversely with
n

v. This might not have been expected on a superficial view of the
matter, for it scems rather a paradox that, the greater the friction,
the less should be its result, But it must be remembered that
is only the coeflicient of friction, and that when ¢ is small the
maximum motion is so much inereased that the whole work spent
against friction is greater than if o were more considerable.

But the point of most interest is the dependence of 4’ on p.
If pbe less than 2, A’ is negative.  As p passes through the valuc
n, A’ vanishes, and changes sign.  'When 4’ is negative, the in-
fluence of i is to diminish the recovering power of the vibration z,
and we sce that this happens when the forced vibration is slower
than that natural to y. The tendency of the vibration y is thus
to retard the vibration a, if the latter be already the slower, but to
accelerate it, if it be already the more rapid, only vanishing in the
critical case of perfect isochronism, The attempt to make =
vibrate at the rate determined by n is beset with a peculiar
difficulty, analogous to that met with in balancing a heavy
body with the centre of gravity above the support. On which-
ever side a slight departure from preeision of adjustment may
occur the influence of the dependent vibration is always to inercase
the error.  Examples of the instability of pitch accompanying a
strong resonance will come across us hercafter; but undoubtedly
the most interesting application of the results of this scction is to
the explanation of the anomalous refraction, by substances possess-
ing a very marked sclective absorption, of the two kinds of light
situated (in a normal spectrum) immediately on cither side of the
absorption band'. It was observed by Christiansen and Kundt,
the discoverers of this remarkable phenomenon, that media of the
kind in question (for example, fuchsine in alcoholic solution) refract
the ray immediately below the absorption-band abnormally 4n
excess, and that above it in defect. If we supposc, as on other
grounds it would be natural to do, that the intense absorption is

v Phil, Mayg., May, 1872, Also Scllmeier, Pogg. Ann. t. exliii. p. 272,
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the result of an agreement. between the vibrations of the kind of
light affected, and some vibration proper to the molecules of the
absorbing agent, our theory would indicate that for light of some-
what greater period the effect must be the same as a relaxation of
the natural clasticity of the cther, manifusting itself by a slower
propagation and increased refraction, On the other side of the
absorption-band its influcuce must be in the opposite direction,

In order to trace the law of connection between A’ and p, take,
for brevity, yn = a, N (p*— n®) =, so that

x
A o gy,
o U

When the sign of & is changed, 4’ is reversed with it, but pre-

serves 1ts numerical value, When =0, or + 9, 4’ vanishes.
Fig. 18,

3

Hence the origin is on the representative curve (Fig. 18), and the
axis of @ is an asymptote. The maximum and minimum values of
A" oceur when @ is respectively equal to 4 @, or —a; and then

@ 1

= e
'+ dt ~ 2a
The corresponding values of p arc given by
n
ﬁ:ﬁi%“mmmmmmmm¢n
Hence, the smaller the value of @ or v, the greater will be the
maximum alteration of 4, and the corresponding value of p will
approach nearer and nearer to n. It may be well to repeat, that in
the optical application a diminished # is attended by an increased
maximum absorption, When the adjustment of periods is such as
to favour 4’ as much as possible, the corresponding value of &' is
one half of #fs maxirmum,



CHAPTER VI
TRANSVERSE VIBRATIONS OF STRINGS.

118. AmoxG vibrating bodies there are none that occupy a
more prominent position than Stretched Strings. From the
carliest times they have been employed for musical purposes,
and in the present day they still form the essential parts of such
important instruments as the pianoforte and the violin. To the
mathematician they must always possess a peculiar interest as the
battle-ficld on which were fought out the controversics of D’Alem-
bert, Kuler, Bernoulli and Lagrange, relating to the nature of the
solutions of partial differential equations. To the student of
Acoustics they are doubly important. In consequence of the com-
parative simplicity of their theory, they are the ground on which
difficult or doubtful questions, such as those relating to the nature
of simple tones, can be most advantageously faced; while in the
form of a Monochord or Sonometer, they afford the most genc-
rally available means for the comparison of pitch.

The “string’ of Acousties is a perfectly uniform and flexible
filament of solid matter stretched between two fixed points—in
fact an ideal body, never actually realized in practice, though
closely approximated to by most of the strings employed in musie.
We shall afterwards sce how to take account of any small devia-
tions from complete flexibility and uniformity.

The vibrations of a string may be divided into two distinct
classes, which are practically independent of one another, if the
amplitudes do not exceed certain limits. In the first class the
displacements and motions of the particles are longitudinal, so
that the string always rctains its straightness. The potential
energy of a displacement depends, not on the whole tension, but
on the changes of tension which occur in the various parts of the
string, due to the increased or diminished extension. In order to
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calculate it we must know the relation between the extension of
a string and the stretching force. The approximate law (given by
Hooke) may be expressed by saying that the cxtension varics
as the tension, so that if I and 7 denote the natural and the
stretched lengths of a string, and 7'the tension,

! ”
where £ is o constant, depending on the material and the section,
which muy be interpreted to moan the tension that would be
neeessary to stretch the string to twice its natural length, if the
law applicd to so great extensions, which, in general, it is far
from doing,

119. The vibrations of the second kind are transverse; that is
to say, the particles of the string move sensibly in planes perpen-
dicular to the line of the string.  In this case the potential cnergy
of a displacement depends upon the general tension, and the
small variations of tension accompanying the additional stretching
duc to the displacement may be left out of account. It is here
assumed that the stretching due to the motion may be neglected
in comparison with that to which the string is already subject in
its position of equilibrium. Once assured of the fulfilment of this
condition, we do not, in the investigation of transverse vibrations,
require to know anything further of the law of extension,

The most general vibration of the transverse, or lateral, kind
may be resolved, as we shall Presently prove, into two sets of com-
ponent normal vibrations, exccuted in perpendicular planes,
Sincz it is only in the initial circumstances that there can be any
distinztion, pertinent to the question, between one plane and
another, it is sufficient for most purposes to regard the motion as
entirely confined to a single planc passing through the line of the
string,

In treating of the theory of strings it is usual to commence
with two particular solutions of tlie partial differential equation,
representing the transmission of waves in the positive and nega-
tive directions, and to combine these in such a manner as to suit
the case of a finite string, whose ends are maintained at rest ;
neither of the solutions taken by itself being consistent with the
existence of nodes, or places of permanent rest.  This aspeet of the
question is very important, and we shall fully consider it; but it
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seems scarcely desirable to found the solution in the first instance
on a property so peenliar to a uniform string as the undisturbod
transmission of waves. We will procced by the more gencral
method of assuming (in conformity with what was proved in the
last chapter) that the motion may be resolved into normal com-
ponents of the harmonic type, and determining their periods and
character by the special conditions of the system.

Towards carrying out this design the first step would naturally
be the investigation of the partial differential equation, to which
the motion of a continuous string is subject. But in order to
throw light on a point, which it is most important to understand
clearly,—the connection between finite and infinite freedom, and
the passage corresponding thereto betwcen arbitrary constants
and arbitrary functions, wo will commence by following a some-
what different course.

120. In Chapter 111 it was pointed out that the fundamental
vibration of a string would not be entircly altered in character,
if the mass were concentrated at the middle point, Following
out this idea, we see that if the whole string were divided into a
number of small parts and the mass of cach concentrated at its
centre, we might by sufficiently multiplying the number of parts
arrive at a system, still of finite freedom, but capable of represent-
ing the continuous string with any desired accuracy, so far at
least as the lower component vibrations are concerned. If the
analytical solution for any number of divisions can be obtained,
its limit will give the result corresponding to a uniform string.
This is the method followed by Lagrange.

Lot I be the length, pl the whole mass of the string, so that
p denotes the mass per unit length, 7', the tension,

Fig. 19,

The length of the string is divided into m+1 equal parts (@),
50 that

R. 9
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At the m points of division cqual masses (u) are supposed con-
centrated, which arc the representatives of the mass of the por-
tions (@) of the string, which they soverally biscet. The mass of
each terminal portion of length } @ is supposed to be concentrated
at the final points, On this understanding, we have

We proceed to investigate the vibrations of a string, itsclf
devoid of inertia, but loaded at cach of m points cquidistant
(@) from themselves and from the ends, with a mass .

If o, P, o, V. denote the lntoral displacements of the
loaded points, including the initial aud final points, we have the
following expressions for 7’ and V,

L= p [0 e 4 Y e (3),

V= 27; (T =)'+ (=) o+ Vs = Vo)) -0 (4),

with the conditions that ¥, and . vanish, These give by
Lagrange’s Method the m cquations of motion,

B+ Ay, +By, =0
Byt Ay, + By, =0
B\P:s + 'A\Pd + ]}\P‘-” =04 (5),

.................................

.l))\[’m + A.\Pnrﬂ + I))‘lr"' e = O

2T
where Ad=pD*+ _a._r ,

Supposing now that the vibration under consideration is ong
of normal type, we assume that ¥ ¥, & are all proportional to
cos (nt — ¢), where » remains to be determined. 4 and B may
then be regarded as constants, with o substitution of —#? for 22

If for the sake of brevity we put

the determinantal cquation, which gives the values of »* assumes
the form
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c, 1, 0, 0, O...... | m rows

0,1, C Lowour | =0, .(8).

........................

From this equation the values of the roots might be found,
It may be proved that, if C'= 2 cos 6, the determinant is equivalent
to sin (m + 1) @+ sin §; but we shall attain our object with greater
easc dircetly from (5) by acting on a hint derived from the known
results rclating to a continuous string, and assuming for trial a
particular type of vibration, Thus lct a solution be

Y=L sin(r—1)B cos(nt—¢€)...c....... w9,
a form which sccures that 4, =0. In order that 4, may
vanish,
(Mm+1)B=sTuiiviiieniiiarnennnan.(10),

where s is an integer. Substituting the assumed values of 4 in the
cquations (5), we find that they are satisfied, provided that

2Bcos B+ A =0......cceenuns veennns (11);

so that the value of » in terms of B3 is

B \/77
=28In54A/ - 2).
n sin g s (12)

A normal vibration is thus represented by

P, =P, sin (%;—_%_lis-lr cos (Nt —€) .vienn. (13),
5 [T, . s
where n,= 2\/;‘—(—‘ sin SoegD T (14),

and P, ¢, denote arbitrary constants independent of the general
constitution of the system. The m admissible values of 2 are
found from (14) by ascribing to s in succession the values 1, 2,
3...0m, and are all different. If we take s=m+ 1, ¥, vanishes,
so that this docs not correspond to a possible vibration.  Greater
valucs of s give only the same periods over again, If m+1 be

cven, one of the values of n—that, namely, corresponding to
9—2
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8 =1} (m + 1),—is the same as would be found in the casc of only
a single load (m =1). The interpretation is obvious. In the kind
of vibration considered cvery alternate particle remains at resi, so
that the intermediate oncs really move as though they were
attached to the centres of strings of length 2¢, fastencd at
the ends.

The most general solution is found by putting together all the
possible particular solutions of normal type

s=m ( -1 ) ST

= 2 ]’ sin cos (nt—¢€)..... e (15),

and, by ascribing suitable values to the arbitrary constants, can be
identified with the vibration resulting from arbitrary initial cir-
cumstances,

Let ¢ denote the distance of the particle » from the end of the
string, so that (r —1)a=2a; then by substituting for p and @
from (1) and (2), our solution may he written,

Y (z)= P, sms’—m- cos (Nt~ €)evrvriinnnnn. (16),

2(m+l 1’ . 8T

In order to pass to the case of a continuous string, we have
only to put m infinite.  The first cquation retains its form, amd
specifies the displacement at any point @, The limiting form of
the second is simply

whence for the periodic time,

_277 zzx/”' .
=T = i e, (19).

The periods of the component tones are thus aliguot parts of
that of the gravest of the series, found by putting s=1. The

whole motion is in all cases periodic; and the period is 27 \/1'07

This statement, however, must not be understood as excluding
a shorter period; for in particular cases any number of the
lower components may be absent. All that is asserted is that the

—

[ s
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above-mentioned interval of time is sufficient to bring about a com-
plete recurrenze, We defer for the present any further discussion
of the important formula (19), but it is interesting to observe the
approach to a limit in (17), as m is made successively greater and
greater.  For this purpoese it will be sufficient, to take the gravest
tone for which s=1, and accordingly to trace the variation of
2mtl)
2(m+1)°

The following are a serics of simultancous values of the fune-

tion and variable :(—

m L T B N O C B
D} T
2mtl) o T '-9003 9549 -9745(-0836/9959(-0990/-9997
™ .’4(m+l)| | I

It will be scen that for very moderate values of m the limit is
closcly approached, Since = is the number of (moveable) loads,
the case m =1 corresponds to the problem investigated in Chap-
ter 111, but in comparing the results we must remember that we
there supposed the whole mass of the string to be concentrated at the
centre, In the presenticase the load at'the centre is only half as
great; the remainder being supposed concentrated at the ends,
where it is without cffect,

From the fact that our solution is general, it fullows that any
initial form of the striug can be represented by

G . T
Y (x)y=2% (P cose), sins TP eeeeeeeees (20).
§=1

And, since any form possible for the string at all may be
regarded as initial, we infer that any finite single valued funetion
of , which vanishes at o= 0 and @=/{, can be expanded within

e . ' . me . ' .

those limits in a series of sines of ol and its multiples,—which
is a casc of Fouricer's theorem,  We shall presently shew how the
more general form can be deduced.

121. 'We might now determine the constants for a continuous
string by integration as in § 93, but it is instructive to solve the
problem first in the general case (m finite), and afterwards to
proceed to the limit.  The initial conditions are
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ma
7

) =4 sin'[,g + A, sin 9 Td + A, sin -
! ‘ ? i {

Y (20¢) =4, sin 2 7’;@ + 4, sin4 W; + ... +.d4, sin2m 71;,

Cesevressrerrenaesa e vesenare Ges st esress et ettt le i onss RO

L . T : T
Yr(ma) =4, sin m- , t A, sin 2m~l~ 4.+ 4, sinmm ok

where, for brevity, A4, =P, cos e, and ¥ (1), ¥ (2a) ...... Yr(ma)

arc the initial displaccments of the m particles.

To determine any constant A,, multiply the first equation by
sin sv_r;’ the sccond by sin 2s z’-’; , &ec., and add the results.  Then,
by Trigonometry, the cocfficients of all the constants, except 4,,
vanish, while that of 4, =3 (m +1)'. Hence

2 . e
=~ X ra) $in 78 =i .u.u.. veenneenand (1)
4, E T L Ya) sinrs i (1)

We need not stay here to write down the values of 13, (equal
to I’,sin ¢) as depending on the initial velocities.  When @ becomes
infinitcly small, re under the sign of summation ranges by infi-
«

m+1- 1’

nitesimal steps from zero to 4. At the same time

so that writing r¢ = 2, @ = dw, we have ultimately

4,= ?f:\{r(.v) sin (ff.;f)da, PRI ¢:) B

expressing 4, in terms of the initial displacements,

122, We will now investigate independently the partial differen-
tial equation governing the transverse motion of a perfeetly Hexible
string, on the suppositions (1) that the magnitude of the tension
may be considered constant, (2) that the square of the inclination
of any part of the string to its initial dircction may be neglected.
As before, p denotes the linear density at any point, and 7 is the
constant tension,  Let rectangular co-ordinates be taken parallel,
and perpendicular to the string, so that @ gives the equilibrium
and @, y, z the displaced position of any particle at time 2. The
forces acting on the clement dz are the tensions at its two cuds,
and any impressed forces Ypdw, Zpde. By D'Alembert’'s Prin-

1 Todhunter's Int, Cule., p. 267.
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cipln these form an equlhbmtmg system with the reactions
L
v '/ i Z
~P7 dt“ - P de’
ponents of tension are

against acccleration, At the point @ the com.

dy dz

T‘d{b’ Tld’

dy dz
da’ dz

on the clement de arising out of the tension arc

d (dy d 1z
ﬂﬂﬁ“7%®w

ITence for the equations of motion,

ay_ T dy

if the squares of be neglected ; so that the forces acting

ar = antY 0
B ,
i’ p dus? t

from which it appears that the dependent variables y and z arc
altogether independent of one another.

The student should compare these equations with the corre-
sponding equations of finite differences in § 120,  The latter may
be written

& T
V) = o) + (@ + @) - 24 ().

Now in the limit, when @ becomes infinitely small,

V(@ =) + ¥ (@ + @) = 2(e) = ¥ () o
while p = pa; and the cquation assumes ultimately the form
a T a
d ‘!’(x) = 'pl' dt ‘l"(‘”):

agreeing with (1).

In like manner the limiting forms of (3) and (4) of § 120 arc

7= J;f ("J F @),
V=41, (:lL’i)dJ, ........................... 3),

which may also be proved direetly.
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The first is obvious from the definition of 7. To prove the
sccond, it is sufficient fo notice that the potential energy in any
configuration is the work required to produce the necessary
stretching against the tension 7. Reckoning from the configura-
tion of equilibrium, we have

m [rds g
If:jl,/‘(a;’;?—j.)dw,

and, so far as the third power of %Z,
ds _ 1 (AY\?
&= 1=HZ):

123. In most of the applications that we shall have to make,
the density p is constant, there are no impressed forces, and the
motion may be supposed to take place in one plane. We may
then conveniently write

T
Y 1),
5 (1)
and the differential equation is expressed by
dy _dy
TGt = dad e e (2)e

If we now assume that y varics as cosmat, our cquation

hecomes
7

I
TLb iy =0 e (3),
of which the most general solution is

y = (A sinmz+ Ccosmz) cos mat .....c.....ovennn.(4).

This, however, is not the most general harmonic motion of
the period in question. In order to obtain the latter, we must
assume

y =9y, cosmat + Y, SinMat oooviiiiiiiiiiinn (3),

whero 9,, 7, arc functions of @, not necessarily the same. On
substitution in (2) it appears that y, and 7, are subject to equa~
tions of the form (3), so that finally
y = (< sin mx + C cos ma) cos mat
+ (83 sin mz + D cos mx) sin mat

an expression containing four arbitrary constants. For any con-
tinuous length of string satisfying without interruption the differ-

o]
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cntial oquaticn, this is the most general solution possible, under
the condition that the motion at every point shall be simple har-
monic. But whenever the string forms part of a system vibrating
freely and without dissipation, we know from former chapters
that all parts arc simultancously in the same phase, which
requires that

A:DB=0C:D......... e (7))
and then the most general vibration of simple harmonic type is

y = {asin ma + B cos ma} cos (mat—e) ... . (8).

124. The most simple as well as the most important problem
conneeted with our present subject is the investigation of the free
vibrations of a finite string of length ! held fast at both its ends
If we tuke the origin of @ at onc end, the terminal conditions are
that when =0, and when z=1[, ¥ vanishes for all vaiues of 2.
The first requires that in (G) of § 123

0=0, D=0..ccccrmririiariirn, (1);

and the sccond that
sinml=0................ e (2),

or that ml=sm, where sis an integer. We learn that the only
harmonie vibrations possible are such as make

M= s 3),
and then
¥ =sin ‘f—?’" (A cos‘?{—b—t + DBsin 'Ezr;—lé> ......... o (4).

Now we know « priord that whatever the motion may be, it
can be represented as a sum of simple harmonic vibrations, and
we therefore conclude that the most general solution for a string,
fixed at 0 and /, is

y= 7_).“ sin 8—7—29 (A, cos ﬂr{—L—t + I}, sin s—?-t> ......... (3).
»>=1

The slowest vibration is that corrcsponding to s=1. Its

pcriod (r,) is given by
l—-—( - TIT * v st rrerecrs veanirarras .

The other components have periods which are aliquot parts
of 7, i —




138 TRANSVERSE VIBRATIONS OF STRINGS. [124.

so that, as has been already stated, the whole motion is under all
circumstances periodie in the time 7, The sound cmitted con-
stitutes in general a musical note, according to our definition of
that term, whose pitch is fixed by =, the period of its gravest
component, It may happen, however, in special cases that the
gravest vibration is absent, and yet that the whole motion is not
periodic in any shorter time. This condition of things occurs, if
AF+DB* vanish, while, for example, 47+ B and 4.+ B} are
finite. In such cases the sound could hardly he called a note;
but it usnally happens in practice that, when the gravest tone is
absent, some other takes its place in the character of fundamental,
and the sound still constitutes a note in the ordinary sense,
though, of course, of elevated pitch. A simple case is when all
the odd components beginning with the first are missing. The
whole motion is then periodic in the time 47, and if the second
component be present, the sound presents nothing unusual.

The pitch of the note yiclded by a string (6), and the character
of the fundamental vibration, were first investigated on mechanical
principles by Brook Taylor in 1715 ; but it is to Danicl Bernoulli
(1755) that we owe the general solution contained in (5). He
obtained it, as we have done, by the synthesis of particular solu-
tions, permissible in accordance with his Principle of the Co-
existence of Small Motions. In his time the generality of the
result so arrived at was open to question; in fact, it was the
opinion of Kuler, and also, strangely cnough, of Lagrange!, that
the scrics of sines in (53) was not capable of representing an
arbitrary function; and Bernoulli’s argument on the other side,
drawn from the infinite number of the disposable constants,

was certainly inadequate®,

Most of the laws embodied in Taylor’s formula (G) had been
discovered experimentally long before (1636) by Mersenne.  They
may be stated thus i —

! Seo Riemann's Partielle Differential Gleichungen, § 8.

? Dr Young, in his memoir of 1800, scoms to have understood this matter quite
correctly,  Ho says, ¢ At the same time, ns M. Bernoulli has justly observed, sinco
overy figare may be infinitely approximated, by considering its ordinates as
composed of the ordinates of an infinite number of trochoids of different magni-
tudes, it may be demonstrated that nll these constituent curves would revert to
their initial stato, in the same time that a similar chord bent into a trochoidal
curve would perform a single vibration; and this is in some respects a convenient
and compendious mothod of considering the problem.”
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(1) For a given string and a given tension, the time varies as
the length,

This is the fundamental principle of the monochord, and ap-
pears to have been understood by the ancients®,

(2) When the length of the string is given, the time varics
inverscly as the square root of the tension,

(3) Strings of the same length and tension vibrate in times,
which are proportional to the square roots of the lincar density.

Thesc important results may all be obtained by the method of
dimensions, if it be assumed that 7 depends only on I, p, and 7',

For, if the units of length, time and mass be denoted re-
spectively by [L], [Z}], [44], the dimensions of these symbols are
given by

t=[L), p=[ML"], T ,=[MLT7,
and thus (see § 52) the only combination of them capable of re-
presenting a time is )% p*. . The only thing left undetermined
is the numerical factor.

125, Mersennc’s laws are exemplified in all stringed instru-
ments. In playing the violin different notes are obtained from
the same string by shortening its cfficicnt length., In tuning the
violin or the pianoforte, an adjustment of pitch is cffected with
a constant length by varying the tension; but it must be re-
membered that p 1s not quite invariable.

To secure a prescribed pitch with a string of given material, it is
requisite that one relation only be satisfied between the length, the
thickness, and the tension; but in practice there is usually no great
latitude. The length is often limited by considerations of con-
veniencee, and its curtailment cannot always be compensated by
an increasc of thickness, because, if the tension be not increased
proportionally to the section, there is a loss of flexibility,
while if the tension be so increased, nothing is cffected towards
lowering the pitch. The difficulty is avoided in the lower strings
of the pianoforte and violin by the addition of a coil of fine wire,
whose cfteet is to impart inertia- without too much impairing
flexibility.

b Aristotle ¢“knew that a pipe or a chord of donble lIength produced a sound of
which the vibrations eccupiced a double time; and that the proporties of concords

depended on the proportions of the times oceupied by the vibrations of the
soparate sounds.”—Youug's Lectures on Nutural Philosophy, Vol, 1. p, 404,
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For quantitative investigations into the laws of strings, the
sonometer is cmployed., By means of a weight hanging over a
pulley, a catgut, or a metallic wire, is stretched across two bridges
mounted on a resonance case. A moveable bridge, whose position
is estimated by a scale ruuning parallel to the wire, gives the
means of shortening the cfficient portion of the wire to any
desired extent. The vibrations may be excited by plucking, as
in the harp, or with a bow (well supplied with rosin), as in the
violin,

If the moveable bridge be placed half-way between the fixed
ones, the note is raised an octave; when the string is reduced to
one-third, the note obtained is the twelfth.

By means of the law of lengths, Mersenne determined for the
first time the frequencies of known musical notes.  He adjusted the
length of a string until its note was one of assured position in the
musical scale, and then prolonged it under the same tension until
the vibrations were slow enough to be counted.

For experimental purposes it is convenient to have two, or
more, strings mounted side by side, and to vary in turn their
lengths, their masses, and the tensions to which they are subjected,
Thus in order that two strings of equal length may yicld the in-
terval of the octave, their tensions must be in the ratio of 1 : 4,
if the masses be the same; or, if the tensions be the same, the
masses must be in the reciprocal ratio,

The sonometer is very useful for the numerical determination
of pitch. By varying the tension, the string is tuned to unison
with a fork, or other standard of known frequency, and then by
adjustment of the moveable bridge, the length of the string is
determined, which vibrates in unison with any note proposed for
measurement.  The law of lengths then gives the means of
effecting the desired comparison of frequencics.

Another application by Scheibler to the determination of
absolute pitch is important. The principle is the same as that
explained in Chapter 111, and the method depends on deducing
the absolute pitch of two notes frum a knowledge of both the
ratio and the difference of their frequencies, The lengths of the
sonometerstring when in unison with a fork, and when giving with
it four beats per sccond, are carcfully measured,  The ratio of the
lengths is the inverse ratio of the frequencics, and the difference
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of the frequencies is fonr. From these data the absolute piteh of
the fork can be calculated, '

The pitch of a string may be caleulated also by Taylor’s for-
mula from the mechanical elements of the system, but great pre-
cautions are necessary to sceure accuracy. The tension is produced
by a weight, whose mass (expressed with the same unit as p) may be
called P; sothat 7T, = g P, where g =822, if the units of length and
time be the foot and the second. In order to securc that the whole
tension acts on the vibrating segment, no bridge must be inter-
posed, a condition only to be satisfied by suspending the string
vertically.  After the weight is attached, a portion of the string
is isolated by clamping it firmly at two points, and the length is
measured. The mass of the unit of length p refers to the stretched
state of the string, and may be found indirectly by observing the
clongation due to a tension of the same order of magnitude as 7',
and caleulating what would be produced by T according to
Hooke's law, and by weighing a known length of the string in its
normal state. After the clamps have been seccured great carc
is required to avoid tluctuations of temperature, which would
seriously influence the tension, In this way Scebeck obtained very
accurate results.

126. When a string vibrates in its gravest normal mode, the

' . . .ome .
excursion is at any moment proportional to sin 77+ increasing

numerically from cither end towards the centre ; no intermediate
point of the string remains permanently at rest.  But it is othor-
wise in the case of the higher normal components, Thus, if the
vibration be of the mode exprossed by

Trud swat

y =sin '?Z? (A ,CO8 il_ + D3, sin ——l—-) ,

. . . ST . ,
the excursion is proportional to sin - which vanishes at s —1

points, dividing the string into s equal parts. These points of no
motion are called nodes, and may cvidently be touched or held
fast without in any way disturbing the vibration. The produe-
tion of ‘ harmonics’ by lightly touching the string at the poiuts of
aliquot division is a well-known resource of the violinist. All
component modes are excluded which have not a node at the
point touched ; so that, as regards pitch, the cffeet is the same as
if tho string were securely fastened there.
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127. The constants, which occur in the general value of 3, § 124,
depend on the special cireumstances of 1. vihiation, and mey be
expressed in terms of the initial values of y and g.

Putting ¢ = 0, we find

T g0

Yo=27 dgsin 877 5o Y=g 2. L sD,sin l'c ...... (1).

Multiplying by sin %ﬁz, and integrating from 0 to [, we obtain

! 9 !
A, = -?f A §in i”;—f dr 5 Bs = w:zs/. A sin 87;'.-13 da..... (2).
0 0

These results exemplify Stokes’ law, § 95; for that part of y, which
depends on the initial velocities, is
2 . smx . swat (1. . smx
8= . 0 . 2! . g 1w
y==, st n - ,Josin dz,

and from this the part depending on initial displacements may be
inferred, by differentiating with respect to the time, and sub-
stituting g, for y,,

When the condition of the string at some one moment is
thoroughly known, these formulwm allow us to caleulate the
motion for all subsequent time. For example, let the string be
initially at rest, and so displaced that it forms two sides of a
triangle. Then B, =0; and

Fig, 20,
pr
A A B
4= QT,Y {/: %Csin s_’%—w da +f: g;—zc sin 8_7;_"1_’@}
o L (3),

= w17 " 7
on integration,
We see that A, vanishes, if sin S?:O, that is, if there be a

node of the component in question situated at . A more com-
prehensive view of the subjeet will be afforded by another mode

of solution to be given presently.
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. . . s
128. In the expression for y the coefficients of sin — are

the normal co-ordinates of Chapiers 1v. and v. We will de-
note them therefore by ¢, so that the configuration and motion
of the system at any instant are defined by the values of ¢, and
¢4 according to the equations

T 2 T

Y= ¢, sin-+ ¢, sin x+»--+§bssin$~ + ..
l l ; (1)

Y= qﬂlsinz?—i-f];asin 2727?-}- oty sills?ﬁc+

We proceed to form the expressions for 2"and ¥, and thenco
to deduce the normal equations of vibration.

For the kinctic energy,
14 ! ww o+, s)?
T= %pf yda = %p/; {52;1 ¢, 8in i”;f} dix
0
¢ .
=tp [ 30747 sin* T2
0

the product of every pair of terms vanishing by the general
property of normal co-ordinates. Hence

T=1}1pl E:if Ds i, (2).
In like manner,

Lrdy\? m [t (om0, ST smwr)?
V=3T, fo (d.{:) de= 47T, fo {Ehl P, 7 eos ~-} da
2.2
=378 B (3).

These expressions do not presuppose any particular motion, either
natural, or otherwise ; but we may apply them to calculate the
whole energy of a string vibrating naturally, as follows:—If A7
be the whole mass of the string (pl), and its cquivalent (a’p) be
substituted for T';, we find for the sum of the cuergies,

e_2 2
24V =H 2l g ),

or, in terms of 4, and By of § 12,

cw 2 2
T4Vl Sy 4t D ),

Ts
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If the motion be not confined to the plane of xy, we have
merely to add the energy of the vibrations in the perpendienlar
plane,

Lagrange’s method gives immediately the equation of motion

. ! 2 9
b + (“’Zi‘) b= Pavvrernise . (6),

which has been already considered in § 66, If ¢, and ¢, be the
initial values of ¢ and ¢, the general solution is
¢ =, sn;Lnt + ¢, cus nt

)

-t t . ’ [ r
+Z/»_)~)—JO sinn(E~E)YPdt .o, 7),

. . sra
where n is written for =

By definition @ is such that d, 8¢, represents the work done
Ly the impressed forees on the displicement 8¢, Hence, if the
force acting at time ¢ ou an clement of the string p dz be p Ydz,

! ,
P, =f pY sin ‘37;‘7' AT overeiniiiiiineniinns (8).
0

In these equations ¢, is a linear quantity, as we see from (1); and
&, is therefore a force of the ordinary kind.

129. In the applications that we have to make, the only
impressed force will be supposed to act in the immediate neigh-
bourhood of one point & =>, and may usually be reckoned as

a whole, so that

P, = sin 7 fp Y. crvvreoee oo, (1),

If the point of application of the force coincide with a node of
the mode (s), ®,=0, and we learn that the force is altogether
without influence on the component in question. This prineiple
is of great importance; it shews, for example, that if a string be
at rest in its position of equilibrium, no force applied at its centre,
whether in the form of plucking, striking, or bowing, can generate
any of the even normal components®. If after the operation of
the force, its point of application be damped, as by touching it

! The observation that a harmonic is not generated, when one of its nodal
points is plucked, is duc to Young.
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with the finger, all motion must forthwith cease; for those com-
ponents which have not a node at ti« point i question are
stopped by the damping, and those which have, are absent from
the beginuing'. More generally, by damping any point of a
sounding string, we stop all the component vibrations which have
not, and leave entirely unaffected those which have a node at the
point touched.

The case of o string pulled aside at one point and afterwards
let go from rest may be regarded as included in the preceding
statements. The complete solution may be obtained thus, Let
the motion commence at the time ¢=0; from which moment
®,=0. The value of ¢, at time ¢ is

¢, = (), cos nt + 7% (B0 SIDRbecsivisiieinnnnnnn(D),

where (¢), (¢,), denote the initial values of the quantities
affected with the suffix s. Now in the problem in hand (¢,),= 0,
and (¢,), is determined by

n2 (¢l)0 =lgpq)‘=l%) IﬂSin s—’;l‘)......,..............(3),

if ¥"denote the force with which the string is held aside at the
point b. Henee at time ¢

2 & . s
¢, = l—p.ﬁ" Y'sin T COSNluveesereraniirnrananes (4‘),
and by (1) of §128
_ 2 i=e . Swh . swx cosnt .
y= le'z‘=‘ S0 —= 80 5= (5),

where n=sra : I,

The symmetry of the expression (5) in z and  is an example
of the principle of § 107,

The problem of determining the subsequent motion of a string
set into vibration by an impulse acting at the point b, may be
treated in a similar manner, Integrating (G) of § 128 over the
duration of the impulse, we find ultimately, with the same nota-

tion as before,

; 2 . smwh,
(¢.)o= ZTJ sin '7{’ 1 1

! A like result ensues when the point which is damped is at the same distanco
from one end of the string as the point of oxeitation is from the other ond,

R, 10
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if [ Y"dt be denoted by ¥,. At the same time (¢,), = 0, so that by

(2) at time ¢
2Y, (ew . s7h ., smx sinat
1 . oAs )

- SIN = ST - 5= == iiereneen 6).
lp znnl l l 7 ( )
The series of component vibrations is less convergent for a struck
than for a plucked string, as the preceding expressions shew.
The reason is that in the latter case the initial value of y is

continuous, and only :—% discontinuous, while in the former it is
y itself that makes a sudden spring.  Sece §§ 32, 101.

The problem of a string sct in motion by an impulse may also
be solved by the gencral formula (7) and (8) of § 128. The force
finds the string at rest at ¢=0, and acts for an finitely short
time from £=0 to t=7. Thus ($,), and (¢,), vanish, and (7)
of § 128 reduces to

2 v )
¢, = Ion sin fntfo D dt,
while by (8) of § 128

/ ’ O dt = sin i”ljé f "Y't = sin f’[b Y.
0 [4]
Hence, as beforo,
9
¢, = Zp:fz Y, sin gzlr_b SINNL. v, (7).

Hitherto we have supposed the disturbing force to be con-
centrated at a single point.  If it be distributed over a distance 8
on either side of b, we have only to integrate the expressions (6)
and (7) with respect to b, substituting, for example, in (7) in

. smh
place of ¥ sin slll,
b+
[ rvsin T,
b-8 l

If ¥/ be constant between the limits, this reduces to

8-72@ Bin ”‘rb ........................ (8).

The principal effect of the distribution of the force is to render
the series for ¥ more convergent.

Y/ 2t sin
s
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130. The problem which will next engage our attention is
that of tho pioncforte wire. The cause of the vibration is here
the blow of a hammer, which is projected against the string, and
after the impact rebounds. But we should not be justified in
assuming, as in the last seetion, that the mutual action occupies
so short a time that its duration may be neglected.  Measured by
the standards of ordinary life the duration of the contact is indeed
very small, but here the proper comparison is with the natural
periods of the string.  Now the hammers used to strike the wires
of a pianofortc arc covered with several layers of cloth for the
express purpose of making them more yielding, with the cffect of
prolonging the contact. The rigorous treatment of the problem
would be difficult, and the solution, when obtained, probably too
complicated to be of use; but by introducing a certain simplifica~
tion Helmholtz has obtained a solution representing all the
essential features of the case. He remarks that since the actual
yiclding of the string must be slight in comparison with that of
the covering of the hammer, the law of the force called into play
during the contact must be nearly the same as if the string were
absolutely fixed, in which case the force would vary very ncarly as
a circular function. We shall therefore suppose that at the time
¢ =0, when there are neither velocitics nor displacements, a force
Fsin pt begins to act on the string at o =17, and continues through
half a period of the circular function, that is, until £ = 7 + p, after
which the string is once more free. The magnitude of p will
depend on the mass and clasticity of the hammer, but not to any
great extent on the velocity with which it strikes the string,

The required solution is at once obtained by substituting for
®, in the gencral formula (7) of § 128 its value given by

@, = I sin §7er) SINP. v, o (1),

the range of the integration being from 0 to % We find

.2
21; .

S7rb I!; 3 ] . 2 '
¢, = Inp sin - - /0 sinn (t—¢) sinpt’ dt

4p cos padd
=——2—21.;_.Fsin ‘?Wb_sin n (t—?zz) ............ (2),
lon (p* — n®) l 2p
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and the final solution for y becomes, if we substitute for n and p
their values,
PR oS S;T Q{IL sin S;rb
4anlPl e Onl . ST . sTaf T
y= _'r_ryTl E: 1 s (T"}ﬁ"' — Sutmr) Sl s 'El'—kt B 521)) - (3).

We see that all components vanish which have a node at the
point of excitement, but this conclusion does not depend on any
particular law of force. The interest of the present solution lies
in the information that may be elicited from it as to the depend-
ence of the resulting vibrations on the duration of contact. If
we denote the ratio of this quantity to the fundamental period of
the string by », so that » =7a : 2pl, the expression for the ampli-
tude of the component s is

BEL wcos (smv) . swh
;:-"Tl - 46 sin —l—(4«)

We fall back on the case of an impulse by putting » =0,
and

T 9
I::f” Fsinptdt= iF
0 p

When v is finite, those components disappear, whose periods
arc §, ¥, #,...of the duration of contact; and when s is very
great, the scries converges with s Some allowance must also
be made for the finite breadth of the hammer, the effeet of which
will also be to favour the convergence of the series,

The laws of the vibration of strings may be verified, at least
in their main features, by optical methods of observation—cither
with the vibration-microscope, or by a tracing point recording the
character of the vibration on a revolving drum, This character
depends on two things,—the mode of excitement, and the point
whose motion is selected for observation. Those components do
not appear which have nodes either at the point of excitement, or
at the point of observation. The former are not genecrated, and
the latter do not manifest themselves. Thus the simplest motion
is obtained by plucking the string at the centre, and observing
one of the points of triscction, or vice versa. In this case the
first. harmonic which contaminates the purity of the principal
vibration is the fifth cornponent, whose intensity is usually in-
sufficient to produce much disturbance. In a future chapter we
shall compare the results of the dynamical theory with aural

2 Y S mmas o rEns
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observation, but rather with the view of discovering and testing i
the laws of Learing, than of confirming the theory itself.

131. The case of a periodic force is included in the gencral
solution of § 128, but we prefer to follow a somewhat different
method, in order to make an extension in another direction. We
have hitherto taken no aceount of dissipative forces, but we will
now suppose that the motion of each element of the string is resisted
by a force proportional to its velocity, The partial differential i
cquation becomes

(]
ggwg’tf-.—.wgu Yeorrivronrarenn. (1),
by means of which the subject may be treated. But it is still
simpler to avail ourselves of the results of the last chapter, re-
marking that in the present case the friction-function F is of
the same form as 7% In fact

1'1-'—— i‘/{l. E'”” ¢Eu2.......-o.n-.-o---ou--'u(2))

#:al

where ¢, ¢,... are the normal co-ordinates, by means of which
T and V are reduced to sums of squares. The equativns of
motion are therefore simply

¢, + xd, + 1’ = %d’u (3),

of the same form as obtains for systems with but one degree of
freedom. It is only nceessary to add to what was said in Chap-
ter 1L, that since & is independent of s, the natural vibrations
subside in such a manner that the amplitudes maintain their rela-
tive valucs,

If a periodic force F'cospt nct at a single point, we have

&P, = Fsin 97) COSPlevriiirnianiiinininenn(4),

and § 46
2Fsine . swh -
b, = lope sin - cos (PE=€)eeniiiiinninnn (),

where

If among the natural vibrations there be any onc ncarly
isochronous with cospt, then a large vibration of that type will
be foreed, unless indeed the point of excitement should happen to
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fall near a node. 1In the case of exact coincidence, the component
vibratioi o queetion venishes; for no foree applicd at 2 node can
generate it, under the present law of friction, which however, it
may be remarked, is very special in character. If there be no
friction, # = 0, and

2F . swh
lpp,= nt— g SID —= €OS Pbuvvviiiriniiinie, (7),

which would make the vibration infinite, in the case of perfect
. . . smh
1sochronism, unless sin - =0.

The value of y is Lere, as usual,

y=¢,sin Z;E + ¢, sin gzlr_x+ ¢, sin g;-rf F o, (8).

132. The preceding solution is an example of the use of
normal co-ordinates in a problem of forced vibrations, It is of
course to free vibrations that they are more especially applicable,
and they may generally Lo used with advantage throughout,
whenever the system after the opcration of various forces is
ultimately left to itsclf. Of this application we have already had
examples,

In the case of vibrations due to periodic forces, one advantage
of the use of normal co-ordinates is the facility of comparison with
the equilibrium theory, which it will be remembered is the theory
of the motion on the supposition that the inertia of the system
may be left out of account. If the value of the normal co-or-
dinate ¢, on the cquilibrium theory be 4, cos pt, then the actual
value will be given by the equation

so that, when the result of the equilibrium theory is known and
can readily be expressed in terms of the normal co-ordinates, the
true solution with the effects of inertia included can at once be
written down,

In the present instance, if a force Fcos pt of very long period
act at the point b of the string, the result of the cquilibrium
theory, in accordance with which the string would at any moment
consist of two straight portions, will be

lp, = %Irp sin 8—7—;& COSPE vevvreiririirnienn, (2),
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from which the actual result for all values of p is derived by simply
writing »* — p* in place of »’.

The value of y in this and similar cases may however be
expressed in finite terms, and the difficulty of obtaining the
finite expression is usually no greater than that of finding the
form of the normal functions when the system is free. Thus in
the equation of motion

&y _ &y

=gt o
suppose that 1™ varics as cos mat. The forced vibration will then
satisfy

?

i’/ Fmly =~ :— ) SO NS (3).

If =0, the investigation of the normal functions requires the
solution of

2
;—L‘z +mPy =0,

and a subsequent determination of m to suit the houndary con-
ditions. In the problem of forced vibrations e is given, and we
have only to supplement any particular solution of (3) with' the
complementary function containing two arbitrary constants. This
function, apart from the value of m and the ratio of tho constants,
is of the same form as the normal functions; and all that remains to
be effected is the determination of the two constants in accordance
with the preseribed boundary conditions which the complete
solution must satisfy. Similar considerations apply in the case
of any continuous system,

133. 1If a periodic force be applied at a single point, there are
two distinct problems to be considered; the first, when at the
point =1, a given periodic force acts; the second, when it is the
actual motion of the point b that is obligatory. But it will be
convenient to treat them together.

The usual differential equation

dy  dy 2 4%y
Zi?'*‘ltc'z—t = Cl.'L"‘ ..... P eerecentriotenera, (1),

1s satisfied over both the parts into which the string is divided at
b, but is violated in crossing from one to the other.
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In order to allow for a change in the arbitrary constants, we
must therefore assume distinet expressions for 3, and afterwards
introduce the two conditions which must be satisfied at the point
of junction. These are

(1) That there is no discontinuous change in the value of y;

(2) That the resultant of the tensions acting at b balances the
impressed force.

Thus, if F cos pt be the force, the second condition gives

d
T A (Zi%) FFCOSPE=0.0vivverinnnnrininnns (2),

du du
in crossing the point =1 in the positive dircction.

where A(Elfy-> denotes the alteration in the value of (1'7/- incurred

We shall, however, find it advantagcous to replace cos pt by
the complex exponential ¢, and finally discard the imaginary
part, when the symbolical solution is completed. On the assump-
tion that y varies as ", the differential equation becomes

d’
E;é—{-k"y:O..nn........................(3);
where A’ is the complex constant,
1 .
k’:zbi(p’-—sz).... .................. . (4).

The most general solution of (3) consists of two terms, pro-
portional respectively to sin Az, and cos Az; but the condition to
be satisfied at @ =0, shews that the second does not occur here,
Hence if oy ¢™ be the value of 5 at 2 =2,

sinAz .
y mb cC™ e (O),

is the solution applying to the first part of the string from 2= 0
to@=0>, In like manner it is evident that for the second part we
shall have

—_ Sin .A’ (Z_ -'17) U] v
y=v .STII X(l -:ﬂb) 5 (())

If o be given, these equations eonstitute the symbolical solution
of the problem; but if it be the force that be given, we require
further to know the relation between it and +.
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Differentiation of (5) and (6) and substitution in the cquation
analogous to (2) gives
_ Fsin\ sin(l -10)
= _/[vl TTTRNsina T verimiiivas veereis (M.
Thus

. _ I sin\e sin\(I-D) ]
V=7, "Txsion ©
. fromz=0toax=">
_ Fsinn(l—a) sinnd ot
.7/—111 Asin Al ¢
fromz=btox=1 |

b (8)

These equations exemplify the general law of reciprocity
proved in the last chapter; for it appears that the motion at x
duc to the force at b is the same as would have been found at b,
had the force acted at .

In discussing the solution we will take first the case in which
there is no friction, The coefficient « is then zero; while A is
real, and equalto p+a. The real part of the solution, correspond-
ing to the force Fcos pt, is found by simply putting cos pt for ¢
in (8), but it seems scarcely necessary to write the equations again
for the sake of so small a change. The same remark applics to
the forced motion given in terms of .

It appears that the motion becomes infinite in case the force
is isochronous with one of the natural vibrations of the entire
string, unless the point of application be a node; but in practice
it is not easy to arrange that a string shall be subject to a force
of given magnitude. Perhaps the best method would be to attach
a small mass of iron, attracted periodically by an electro-magnuet,
whose coils are traversed by an intermittent current. But unless
some means of compensation were devised, the mass would have to
be very small in order to avoid its inertin introducing a new com-
plication,

A better approximation may be obtained to the imposition of
an obligatory motion. A massive fork of low pitch, excited by
a bow or sustained in permanent operation by electro-magnetism,
exceutes its vibrations in approximate independence of the re-
actions of any light bodies which may be connected with it. In
order therefore to subject any point of a string to an obligatory

' Donkin’a Acoustics, p. 121,




154 TRANSVERSE VIBRATIONS OF STRINGS.  [133.

transverse motion, it is only necessary to attach it to the extremity
of one prong of such a fork, whose plane of vibration is perpendicular
to the length of the string. This method of exhibiting the forced
vibrations of a string appears to have been first used by Melde.

Another arrangement, better adapted for aural observation,
has been employed by Helmholtz, The end of the stalk of a
powerful tuning-fork, set into vibration with g bow, or otherwise,
is pressed against the string, It is advisable to file the surface,
which comes into contact with the string, into a suitable (saddle-
shaped) form, the better to prevent slipping and jarring.

Referring to (5) we see that, if sin Ab vanished, the motion
(according to this equation) would hecome infinite, which may be
taken to prove that in the case contemplated, the motion would
rcally become great,—so great that corrections, previously insigni-
ficant, rise into importance. Now sin A\ vanishes, when the force
is isochronous with one of the natural vibrations of the first part
of the string, supposed to bo held fixed at 0 and b,

When a fork is placed on the string of a monochord, or other
instrument properly provided with a sound-board, it is casy to
find by trial the places of maximum resonance, A very slight
displacement on either side entails g, considerable falling off in the
volume of the sound, The points thus determined divide tho
string into a number of equal parts, of such length that the
natural note of any one of them (when fixed at both ends) is
the same as the note of the fork, ag may readily be verified. The
important applications of resonance which Helmholtz has made to
purify a simple tone from extraneous accompaniment will occupy
our attention later,

134.  Returning now to the general case where A is complex,
we have to extract the real parts from (5), (6), (8) of § 183. Tor
this purpose the sines which occur as factors, must be reduced to
the form Re's, Thys let

SINAT =R €. .eouniiii (1),

with a like notation for the others, From (5) § 138 we shall thus
obtain

R,
3/='YE COS (PE+ € —€)urinnnennrnnnnnnn.., (2),

froma=0toa=1D,




1 34.] FRICTION PROPORTIONAL TO VELOCITY. 155

and from (6) § 133
Rl—z
3/ = 'Y R‘_b

s (Pt + e~ €),
from =10 to =1,
corresponding to the obligatory motion z =+ cos pt at .
By a similar process from (8) § 133, if

A=a+28 i, (3),
we should obtain

F R..R;_, ]
:l/:,—t —(;-;+B2'RLCOS(pt+E + € b—-ez—tan aB>

fromoe=0toxz="b (4)

2 F Bi-y. By coq<)t+e + t ”8) o
y= «/a A R i 1~z + € — € — tan Z
fromz=0 tox=1 |

corresponding to the impressed forco Fcos pt at b, It remains to
obtain the forms of B, €, &c.

The values of a and 8 are determined by
! 3
o’ - =1ai: 208 = —]lf;‘ ..................... (%),

and  sin Az =sin ax cos ¢ + cos ax sin 1Bz

eﬂx + e—B.v eﬂ.r —_ e—ﬂ.v

= $in ax —g -+ 2 cos ax —
so that .
. - —Br\2 . B _ ,—Br\2
B2 =sin’ ax (e +26 )—i—cos' ax <€-—£——) e (6),
2
ot — g
tan €, = 55;:6—55 COLAD 1vvnvrviienirieenineanes (7),
while
Nad + B = ,Jp +p/c ........................ (8)

This completes the solution.

If the friction be very small, the expressions may be simpli-
fied. For instance, in this case, to a sufficient approximation,

=P =% TP
a—a, - 2@, 4/0“”‘,8‘—0‘

o it 1 efr — ¢—B* KT
Te T T T Ty
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so that correspanding to the obligatory motion at b y =y cos pt the
amplitude of vl tuotivn bebween o= 0 and @ = b is, upproximaicly
2,2
. ML KA nx 4
|rsm”1---v +. 7, cos‘?-a 1,
1 aa
'y 1, " 08I IBiIvIRIBIOe 9
sin® o + wl ¢ |} O '
a  dat

: . : b
which becumes great, but not infinite, when sin ]d =0, or the

0

70
ost 12
7

point of application is a node.

If the imposed foree, or motion, be not cxpressed by a singlo
harmonic term, it must first be resolved into such. The preceding
solution may then be applied to each component separately, and
theresults added together, The extension to the case of more than
one point of application of the impressed forces is also obvious.
To obtain the most general solution satisfying the conditions, the
expression for the natural vibrations must also be added; but
these become reduced to insignificance after the motion las been
in progress for a sufficient time,

The law of friction assumed in the preceding investigation is
the only one whose vesults can be casily followed deductively, and
it is sufficient to give a general idea of the cffects of dissipative
forces on the motion of a string. But in other respects the con-
clusions drawn from it possess a fictitious simplicity, depending on
the fact that I'—the friction function—is similar in form to T
which makes the normal co-ordinates independent of cach other,
In almost any other case (for example, when but a single point of
the string is retarded by friction) there are no normal co-ordinates
properly so called. There exist indeed clementary types of vibra-
tion into which the motion may be resolved, and which are
perfectly independent, but these are essentially different in cha-
racter from those with which we have been concerned hitherto, for
the various parts of the system (as affected by one clementary
vibration) are not simultancously in the same phase. Special cases
excepted, no linear transformation of the co-ordinates (with real
cocfficients) can reduce 77, F, and V together to a sum of squares,

If we suppose that the string has no inertia, so that 7'= 0,
£ and ¥ may then be reduced to sums of squares. This problem
is of no acoustical importance, but it is interesting as being
mathematically analogous to that of the conduction and radiation
of heat in a bar whose ends are maintained at a constant temn-

perature,
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135. Thus far we have supposed that at two fixed points,
z =0 and v = [, the string is held at rest. Since absolute fixity
cannot be attained in practice, it is not without interest to inquire
in what manner the vibrations of a string are liable to be modified
by a yielding of the points of attachment; and the problem
will furnish oceasion for one or two remarks of importance.
For the sake of simplicity we shall suppose that the system 13
symmetrical with reference to the centre of the string, and that
cach extremity is attached to a mass A7 (treated as unextended in
space), and is urged by a spring (u) towards the position of equi-
librium. If no frictional forces act, the motion is nccessarily
resolvable into normal vibrations,  Assumne

9 = {z sin mz -+ B cos mx} cos (mat ~ ¢).........(1).

The conditions at the ends are that

when 2=0, My+py= T, g:/, 1

when =l Mj+py=-T1 {%3/J

Ve
which give
a Btanml—a p-— Me*n®
B=m= "",)'nTx~- Cevvrinens .(3),

two equations, sufficient to determine m, and the ratio of 8 to a.
Eliminating the latter ratio, we find

tan ml=i2_yu2 B (4),
p = Man?
m1,

1

if for brevity we write v for

Equation (3) has an infinite number of roots, which may be
found by writing tan € for v,so that tan ml = tan 26, and the result
of adding together all the corresponding particular solutions, cach
with its two arbitrary constants « and €, is necessarily the most
general solution of which the problem is capable, and is therefore
adequate to represent the motion due to an arbitrary initial dis-
tribution of displacement and velocity. We infer that any function
of & may be expanded between =0 and @ =1{ in a scries of terms

¢, (v,sinm + cosm @) + ¢, (v, sin m,z+ cos ma) +...... (5),

my, m, &ec. being the roots of (3) and »,, »,, &c. the corresponding
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values of ».  The quantities b1 B, &c. are the normal co-ordinates
of the system.

From the symmetry of the system it follows that in each
normal vibration the value of y is numerically the same at points
equally distant from the middle of the string, for cxample, at the
two ends, where v =0 and z =1, Henee v,sinml+ cosm,l=+1,
as may be proved also from (4).

The kinctic encrgy 7T of the whole motion is made up of the
energy of the string, and that of the masses M. Thus
! .
T=1} pf {2 ¢ (vsin max+ cos m))® dw
0

+IM (b, + ¢, + S 3 (b, (v, sin nl+cosm,l) + ...J%
But by the characteristic property of normal co-ordinates, terms
containing their products cannot be really preseut in the expres-
sion for 7" so that

l .
P f (v, sinm x + cos m ) (v, sinm,2 + cos m 2) da
0
+ M+ M (v, sin m,l+cosm,l) (v, sin ml4cosml)=0Q..,.,, (6),

if  and ¢ be different,

This theorem suggests how to determine the arbitrary con-
stants, so that the serics (5) may represent an arbitrary function
7. Take the expression

!
pf y (v,sin m, &+ cos mx) da+ MM, o+ My, (v, sin ml+cos m l). (7),
0

and substitute in it the series (5) expressing y. The result is a
series of terms of the type

!
P /; ¢, (v, sin m,2 + cos m ) (v, sinm, + cos m ) du

+ M, + M, (v, sin m ] + cos m,0) (v, sin m,l + cos m. 1),
all of which vanish by (6), except the onc for which » =, Hence
¢, is equal to the expression (7), divided by
l
p f (v, sin mx + cosm x)* dw + M + Af (v, sin m7 + cos m,2)%,..(8),
0

and thus the coefficients of the series are determined. If Af =),
even although x be finite, the process is of course much simpler,
but the unrestricted problem is instructive. So much stress is
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often laid on special proofs of Fourier’s and Laplace's series, that
the stndent s apt to acquire ton rontracted a view of the naturc
of thosc important results of analysis.

We shall now shew how Fourier’s theorem in its general form
can be deduced from our present investigation, Let M =0; then
if w=, theends of the string arc fast, and the cquation de-
termining m becomes tan ml =0, or ml = s7, as we know it must
be.  In this case the series for y becomes

. T . 2ma . 3T
3/=Alsm-~z+A2s1n—l -+Assm'—T+ e (9),
which must be general enough to represent any arbitrary functions
of , vanishing at 0 and 7, between those limits, But now suppose

that u is zero, A/ still vanishing. The ends of the string may be
supposed capable of sliding on two smooth rails perpendicular to

. . ce . 1 dy
its length, and the terminal condition is the vanishing of (—l:—i

The cquation in m is the same as before; and we learn that any
function ' whose rates of variation vanish at 2 =0 and z=1, can
be expanded in a serics

3

+B,cos%l£‘:c+ B, cos-—zE + eeene (10).

s

y' =B, cos ]

'This series remains unaffected when the sign of z is changed,
and the first series merely changes sign without altering its
numerical magnitude. If therefore 3 be an even function of «,
(10) represents it from —Zto +1.  And in the same way, if y be
an odd function of @, (9) represents it between the same limits,

Now, whatever function of & ¢ (x) may be, it can be divided
into two parts, onc of which is even, and the other odd, thus:

¢ (z) = ¢ (z) +2¢ (~ =) + ¢ (z) “24’ (—=)

)

so that, if ¢ (x) be suchthat ¢ (= 1) =¢{(+ 1) and ¢'(~=1) =¢' (+ {),
it can be represented between the limits + 7 by the mixed series

4,502+ B,eos T 4 4,50 04 Beos T 4 ... (10)

This series is periodic, with the period 21, If therefore ¢ ()
possess the same property, no matter what in other respects its
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character may be, the serics is its complete equivalent., This is
Fourier's theorem?,

We now proceed to examine the cffects of a slight yielding of
the supports, in the ease of a string whose ends are approximately
fixed. The quantity v may be great, cither through g or through
M. We shall confine oursclves to the two principal cases, (1)
when w is great and A vanishes, (2) when w vanishes and M is
great.
=.F_

Im’

and the equation in m is approximately

In the first case v

Assume ml =s7m +x, where « is small; then

2T, . sm .
z=tang=— /‘L 7~ approximately,

o
and ml=sm (1 _ 2

L) (12)
To this order of approximation the tones do not cease to form

a harmonic scale, but the pitch of the whole is slightly lowered.

The effect of the yielding is in fact the same as that of an increuse

14

in the length of the string in the ratio 1:1 +2—“'[£‘, as might

have been anticipated.

The result is otherwise if u vanish, while M is great. Here
MPm

V== i,
'11
oT .
and tanml = )l]c?ki approximately.
Hence

a7l

Cal e, e 13).
Md* . s (13)
The effect is thus equivalent to a decrease in  in the ratio

o
L2y
A[(LQ , 3277-2 )
! The best ‘system’ for proving Fourier's theorem from dynamieal considera.

tions is an ondless chain strotched round a smooth eylinder (§ 189), or a thin
re-cntraut column of air enclosed in a ring-shaped tube,

ml = g7+

1:1-—
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and consequently there is a rise in piteh, the rise being the
greater the lower the component tone, It night be thought
that any kind of yiclding would depress the pitch of the string,
but the preceding investigation shews that this is not the case,
Whether the piteh will be raised or lowered, depends on the
sign of », and this again depends on whether the natural note of
the mass A urged by the spring p i3 lower or higher than that of
the component vibration in question.

136. The problem of an otherwise uniform string carrying
a finite load M at 2= b can he solved by the formulw investigated
in § 183, Yor, if the foree 27 cos pt be due to the reaction against
acccleration of the mass M,

F=qpd ..., Cererenes v (1),

which combined with equation (7) of § 133 gives, to determine the
possible values of X (o1 p : a),
@MAsin b sinh (I ~D)= T,sin M............(2).
The value of y for any normal vibration corresponding to A is
y=2DLsin Az sink (I - b) cos (ert = ¢)
frome=0toax=h 3)
y=Dsin N (l —a) sin b cos (urt - €) , A e
froma=htoa=l ]

where P and € are arbitrary constants.

It does not require analysis to prove that any normal com-
ponents which have a node at the point of attachment are un-
affected by the presence of the load, For instance, if a string be
weighted at the centre, its component vibrations of even orders
remain unchanged, while all the odd components are depressed in
pitch. Advantage may sometimes he taken of this effect of a
load, when it is desired for any purpose to disturb the harmonic
relation of the component tones,

IF I be very great, the gravest component is widely sepa-
rated in pitch from all the others, We will take the ease when
the load is at the ceutre, so that b=1~ )= 44 The equation in
A then heeomes

sin {D—t—lmng—%}—ﬂ .......... D (4),

where pl : 3/, denoting the ratio of the masses of the string and
the load, is a small quantity which may be called «  The first,
R, 11
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root corresponding to the tone of lowest pitch occurs when §alis
small, and such that

A2 {1 + § 3 M)*} =d® nearly,
IN=u(l -}a),

and the periodic time is given by

Ml l
T=9T 7‘,‘ (1'*"('?51).....................(«')).

The sccond term constitutes a correction to the rough value
oblained in a previous chapter (§ 52), by neglecting the inertia of
the siring altogether.  That it would be additive might have
been expected, and indeed the formula as it stands may be ob-
tained from the consideration that in the actual vibration the two
parts of the string are nearly straight, and 1mnay be assumed to e
exactly so in computing the kinctic and potential energics, with-
out entailing any appreciable error in the ealeulated period.  On
this supposition the retention of the inertia of the string increases
the kinetic energy corresponding to a given velocity of the load in
the mtio of M : M+ 3 pl, which leads to the above result.  'I'his
method has indeed the advantage in one respeet, as it might be
applicd when p is not uniform, or nearly uniform,  All that is
neeessary is that the load Al should be sufficiently predominant,

whence

TFig, 21,

ERESe
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There is no other root of (4), until sin Al =0, which gives
the second component of the string—~—a vibration independent of
the load. The roots after the first occur in closely contiguous
pairs; for one set is given by §Al=sw, and the other approxi-

mately by 4l =s'rr+;§1-l]-i, in which the sccond term is small.

The two types of vibration for s =1 arc shewn in the figure.

The general formula (2) may also be applied to find the effect
of a small load on the pitch of the various components.

137. Actual strings and wires arc not perfectly flexible,
They oppose a certain resistance to bending, which may be divided
into two parts, producing two distinct effects. The first is called
viscosity, and shews itself by damping the vibrations, This part
produces no sensible cffect on the periods. The sccond is con-
servative in its character, and contributes to the potential energy
of the system, with the effect of shortening the periods, A com-
plete investigation cannot conveniently be given here, but the
case which is most interesting in its application to musical instru-
ments, admits of a sufficiently sinple trecatment.

When rigidity is taken into account, something more must be
specified with respect to the terminal conditions than that y
vanishes. I'wo cases may be particularly noted :(—

(1)  When the ends are clamped, so that Z;{: 0 at the ends.

(2) When the terminal directions are perfectly free, in which
[2
case ;9 =0,
ot
It is the latter which we propose now to consider,
If there were no rigidity, the type of vibration would be
y £ sin '-Q—?F—:, satisfying the second condition,

The effect of the rigidity might be slightly to disturb the type;
but whetber such a result occur or not, the period caleulated
from the potential and kinctic encrgics on the supposition that
the type remains unaltered is necessarily correet as far as the first
order of small quantities (§ 88).

Now the potential energy due to the stiffness is expressed by

Pl 32,2
8[':-‘},fc’ <(~l-'1/> AT iviiiniiieieiiines M,

Jo \d&?
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where # is a quantity depending on the nature of the material
and on the form of the section in a meaner that wo are nol now
prepared to caanine, The furm of 877 is evident, beenuse the force
required to bend any element ds is proportional to ds, and to the
amount of bending already effected, that is to ds-+p. 'The whole
work which must be done to produce a curvature 1 +p in ds
is therefore proportional to ds-+p*; while to the approximation to
which we work ds = da, and Ly Jzz
p dd&
s

Thus, if y =4 siuT ,

st x s"'rr"')
]

T=pl ' V=}T L= ¢* (1 topp

and the period of ¢ is given by

P o
r=1, (1 -7, T)()
if 7, denote what the period would become if the string were
endowed with perfect flexibility. It appears that the cffect of the
stiffness increasces rapidly with the order of the component vibra-
tions, which cease to belong to a harmonic scale, However, in the
strings employed in musie, the tension is usually sufficient to
reduce the influence of rigidity to insignificance.

The method of this section cannot he applied without modifi-
cation to the other case of terminal condition, namely, when the
ends are clamped.  Tn their immediate neighbourhood the type of
vibration must differ from that assumed by a perfectly flexille
string by a quantity, which is no longer small, and whose square
therefore cannot be neglected. We shall return to this subject,
when treating of the transverse vibrations of rods,

138. There is one problem relating to the vibrations of strings
which we have not yot considered, but which is of some practical
interest, namely, the character of the motion of a violin (or cello)
string under the action of the bow, In this problem the modus
operandi of the bow is not sufliciently understood to allow us to
follow exclusively the « priori method @ the indications of theory
must be supplemented by special observation. By a dexterous
combination of evidence drawn from Loth sonrces Holmholtz has
succeeded in determining the principal features of the case, but
some of the details are still obscure,
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Since the note of a good instrument, well handled, is musical,
we infer that the vibrations are strictly periodic, or at least that
strict periodicity is the ideal.  Morcover—and this is very import-
ant—the note clicited by the bow has nearly, or quite, the same
pitch as the natural note of the string. The vibrations, although
forced, are thus in some sense free. They are wholly dependent
for their maintenance on the energy drawn from the bow, and yet
the bow docs not determine, or even sensibly modify, their periods.
We are reminded of the self-acting electrical interrupter, whose
motion is indecd foreed in the technical sense, but has that kind
of freedom which consists in determining (wholly, or in part) under
what influences it shall come.

But it docs not at once follow from the fuct that the string .

vibrates with its natural periods, that it conforms to its natural
types. If the coefficients of the Fourier expansion

.
3/=¢15i“77‘;+¢a sinﬂlr'—l+

be taken as the independent co-ordinates by which the configura-
tion of the system i at any moment defined, we know that when
there is no friction, or friction such that & « 7' the natural vibra-
tions are expressed by making each co-ordinate a simple harmonic
(or quasi-harmonic) function of the time; while, for all that has
hitherto appeared to the contrary, each co-ordinate in the present
case might be any function of the time periodic in time'r. But a
little examination will shew that the vibrations must be sensibly
natural in their types as well as in their periods,

The force exercised by the bow at its point of application may
be expressed by

- 2rore
Y=34,cos (—T—- - e,) ;

so that the equation of motion for the co-ordinate ¢, is

. . 2 g g 2 . 9%
¢,+x¢5+‘i—7£2ﬁ. ¢, = l-/;sm sJ—Z—”.EA,cos (—%’rt—e,),

b being the point of application. Each of the component parts of
@, will give a corresponding term of its own peried in the solu-
tion, but the onc whose period is the same as the natural period
of ¢, will rise enormously in relative importance. Practicaily then,
if the damping be small, we nced only retain that part of ¢,
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, ¢ Donrt .
whick depends on 4, eun \ e eﬂ>, that is to say, wo iy regurd

the vibrations as natural in their types.

Another material fact, supported by evidence drawn both from
theory and aural observation, is this. All component vibrations
are absent which have a node at the point of excitation. “In
order, however, to extinguish these tones, it is neeessary that the
coincidence of the point of application of the bow with the node
should be very ezect. A very small deviation reproduces the
missing tones with considerable strength!”

The remainder of the evidence on which Helmholtz’ theory
rests, was derived from dircet observation with the vibration-
microscope.  As explained in Chapter 11, this instrument affords
a view of the curve representing the motion of the point under
observation, as it would be seen traced on the surface of a trans-
parent cylinder.  In order to deduce the representative curve in
its ordinary form, the imaginary cylinder must be conceived to
be unrolled, or developed, into a planc.

The simplest results are obtained when the bow is applied at a
node of one of the higher components, and the point observed is
one of the other nodes of the same system. If the bow works
fairly so as to draw out the fundamental tono clearly and strongly,
the representative curve is that shewn in figure 22; where the
abscissic correspond to the time (AB being a complete period),
and the ordinates represent the displacement. The remarkable

Fig. 22,

A _E/]\\ G n R
7

H

fact is disclosed that the whole period = may be divided into two
parts 7, and 7~ 7, during each of which the velocity of the ob-
served point is constant; but the velocities to and fro are in
general unequal,

We have now to represent this curve by a scries of harmonic
terms.  If the origin of time correspond to the point 4, and

! Donkin's Acowstics, p. 131.
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A= JF!=«, Fouricr's theorem gives

2y a1 gy, . Dsw LA
= -y Y e} —TT o I T Jeere s 1 .
Y ', (T —T1,) Z R (t 2) (1)
With respect to the value of 7, we know that all thosc com-
ponents of y must vanish for which sin 8——7237°= 0 (z, being the
point of observation), because under the circumstances of the case
the bow cannot generate them. There is therefore reason to
suppose that 7,:7=a,:{; and in fact observation proves that
AC: OB (in the figure) is equal to the ratio of the two parts into
which the string is divided by the point of observation.
Now the free vibrations of the string arc represented in
general by
=Q . > 2 )
g =37 sin 2 {A, cos 28, B, sin 2smt } ;
l T T
and this at the point &=z, must agree with (1). For convenicnce
of comparison, we may write
287t .
A4, cos =Ty B sin Zsmt _ C, cos 26m (t - ;,")
. 2smr T
+D,5in =T (1 %)
and it then appears that C, = 0.
We find also to determine D,
2¢7* 1 . smwz,

. 8me,
sm——l—‘-’.D,= 3 asin —=,
T (T —T,) 8

whence

. sma
unless sin _l_0= 0.

In the case reserved, the comparison leaves D, undetermined,
but we know on other grounds that D, then vanishes, IHowever,
for the sake of simplicity, we shall suppose for the present that
D, is always given by (2). If the point of application of the bow
do not coincide with a node of any of the lower components, the
cerror committed will be of no great consequence.

Ou this understanding the complete solution of the problem is

AL ) 2)

2yT =o 1 . sma . 28 T
Yy=——7"— S8in -0 sin = (E=2) o (),
Y= r =) Zoi ! T 2 (3

4
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The amplitudes of the components are therefore proportional to s,
In Abe eow of o placked string we found for e correrpondting

S g . STh C . .
function s sin T which is somewhat similar.  If the string

be plucked at the middle, the cven components vanish, but the
odd ones follow the same law as obtains for a violin string, The
cquation (3) indicates that the string is always in the form of two
straight lines meeting at an angle. In order more conveniently
to shew this, let us change the origin of the time, and the constant
multiplier, so that

y=§71:.‘.',é-,sin—-—l— ST Sl (4),

will be the equation expressing the form of the stri ng at any time,

Now we know (§ 127) that the cquation of the pair of lines
proceeding from the fixed ends of the string, and meeting at a
point whose co-ordinates arc a, B, is

2R12 1 ST s

rel ‘( ‘- D ‘u .
Y=—g—— & 38in == sin =",
Y= (e~ &

l {

Thus at the time ¢, (4) represents such a puir of lines, mecting at
the point whose co-ordinates are given by
r
B L
a(l—u)
. ST . 2t
SN —— =+ 51—~
l T
These equations indicate that the projection on the axis of 2
of the point of intersection moves uniformly backwards and
forwards between 2= 0 and =2, and that the point of inter-
seetion itsclf is situated on one or other of Lwo parabolic arcs,
of which the cquilibrium position of the string is a commion
chord.

Since the motion of the string as thus defined by that of the
point of intersection of its two straight parts, has no especial
relation to @, (the point of ohservation), it follows that, according
to these cquations, the same kind of motion might be observed at
any other point.  And this is approximately true.  But the theo-
retical result, it will be remembered, was only obtained by as-
suming the presence in certain proportions of component vibrations
having nodes at @, though in fact their absence is required by
mechanical Taws,  The presence or absence of these components is
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a mattor of indifference when a node is the point of observation,
but not in any other ease  When the nodn is doparted from, the
vibration curve shews a serics of ripples, due to the absence of
the components in question,  Some further details will be found
in Helmholtz and Donkin,

The sustaining power of the bow depends upon the fact that
solid friction is less at moderate than at small veloeities, so that
when the part of the string acted upon is moving with the bow
(not improbably at the same velocity), the mutual action is greater
than when the string is moving in the opposite direetion with
a greater relative veloeity. The accelerating effect in the first
part of the motion is thus not entirely ncutralised by the sub-
scquent retardation, and an outstanding acceleration remains
capable of maintaining the vibration in spite of other losses of
energy. A curious effect of the same peculiarity of solid friction
has been observed by Mr I'roude, who found that the vibrations
of a pendulum swinging from a shaft might be maintained or
even increased by causing the shaft to rotate.

139. A string stretched on a smooth curved surface will in
equilibrium lie along a geodesic line, and, subject to certain con-
ditions of stability, will vibrate about this configuration, if dis-
placed. The simplest case that can be proposed is when the
surface is a cylinder of any form, and the cquilibrium position
of the string is perpendicular to the generating lines.  The student
will casily prove that the motion is independent of the curvature
of the cylinder, and that the vibrations are in all essential respects
the same as if the surface were developed into a plane.  The case
of an cndless string, forming a necklace round the cylinder, is
worthy of notice,

In order to illustrate the characteristic features of this class of
problems, we will take the comparatively simple example of a
string stretclied on the surface of a smooth sphere, and lying,
when in cquilibrium, along a great circle.  The co-ordinates to
which it will be most couvenient to refer the systemn are the
Jatitude @ measured from the great circle as equator, and the
inngitude ¢ measured along it.  If the radius of the sphere be a,

we have

Il s) 3
7= l)fp(wy-u dp = [l 1),
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The extension of the string is denoted by

J(cls—adcﬁ) -—(Lj( dg 1>(lgb

Now
= (a d0)* + (¢ cos 0 d¢)?;
8o that
ds _ {rd6\' AL _1lrdo\» 6
tZ(l({i ~1= {(d¢> + cos 6‘} ~1= 5((@) g approximutely.
Thus
V=jal, /{ ‘w) 92}(143 ..................... (@)
and
d*0
SV=al., 39[(195] “wa(dqy”) .

If the ends be fixed,
do
| 350

and the equation of virtual velocities is

@ f:é 80 4~ a7, ['59 ((5 ;, +0)dp=0,

whence, since 6 is arbitrary,

o= T(¢

This is the cquation of motion,

If we assume 8 o cos pt, we get
d’6 «
l#+0+ PPO=0 oo (4),

of which the solution, SlleOCt to the condition that 6 vanishes
with ¢, is

6=4sin {(,j—,lpp’ + 1}'?;5 CCOSPE eviiiiinianins, (5).

The remaining condition to be satisfied is that 6 vanishes when
ap=lord=ua,ifa=1+q.
This gives
P = T, (77l7r~1)=_77<7)t’n;__17> ) (©)
o 0 VA 2 freiiece, )
wlere m is an integer,
1 Cambridge Mathematical Tripos Examination, 1876.
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The normal functions arc thus of ‘he same form as for a
straight string, viz,

0 = 4 sin "ﬁgf COS Pt vervnerene e ),

but the serics of periods is different. The effect of the curvature
is to make each tone graver than the corresponding tonc of a
straight string. If a>mr, onc at least of the values of p* is nega-
tive, indicating that the corresponding modes are unstable. 1f
a=r, P, is zero, the string being of the same length in the dis-
placed position, as when 6=0.

A similar method might be applied to calculate the motion of
a string stretched round the equator of any surface of revolu-
tion.

140. The approximate solution of the problem for a vibrating
string of nearly but not quite uniform longitudinal density has been
fully considered in Chapter 1v. § 91, as a convenient example of
the general theory of approximately simple systems, It will be
sufficient here to repeat the result. If the density be p,+ 8p, the
period 7, of the 7 component vibration is given by

40 2 (8p . rmz
2 = — ~o .- — 2 —_— )
Ty 111 {1 + i fo o, sin I } ............ (1).

If the irregularity take the form of a small load of massm
at the point = b, the formula may be written

2 :
7= 42-—{% {1 + QZLn sin® "—W—b} .................. (2).
1 Po !

These values of 7% arc correct as far as the first power of the
small quantitics 8p and m, and give the means of calculating a cor-
rection for such slight departures from uniformity as must always
occur in practice.

As might be expected, the cffect of a small load vanishes ab
nodes, and rises to a maximum at the points midway between
consecutive nodes. When it is desired merely to make a rough
estimate of the cffective density of a nearly uniform string, the
formula indicates that attention is to be given to the neighbour-
hLood of loops rather than to that of nodes.

141. The differential cquation determining the motion of a
string, whose longitudinal density p is variable, is
&’y d*y
Poaa =Ty g (1),
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from whicl, if we assume Y cosnf, we obtain to determine th..
nermal funetions

Ty

TETVPY =00, (2),

it

where »* is written for »° + T'. This equation is of the second
order and linear, but has not hitherto been solved in finite terms,
Considered as defining the curve assumad by the string in the
normal mode under consideration, it determines the curvalinre at
any point, and accordingly embodies a rule by which the curve
can be constructed graphically,  Thus in the application to a
string fixed at both ends, if we start from cither end at an arbitrary
inclination, and with zero curvature, we are always directed by the
equation with what curvature to proceed, and in this way we
may trace out the entire curve,

If the assamed value of »* b right, the curve will cross
the axis of & at the required distance, and the law of vibration
will be completely determined,  If 2 be not known, different
alues may be tried until the curve ends rightly; a sufficient
approximation to the value of »* may usually be arrived at by a
calculation founded on an assumed type (§§ 88, 90).

Whether the longitudinal density be uniform or not, the
periodic time of any simple vibration varies cceteris prribus as the
square root of the density and inversely as the square root of the
tension under which the motion takes place.

The converse problem of determining the density, when the
period and the type of vibration arc given, is always soluble,  For
this purpose it is only neeessary to substitute the given value of ¥
and of its second differential cocfficient in equation (2).  Unless
the density be infinite, the extremiticy of a string are points of
zero curvature,

When a given string is shortened, every component tone is
raised in pitch.  For the new state of things may be regarded as
derived from the old by introduction, at the proposed point of
fixture, of a spring (without inertia), whose stiffuess is gradually
inereased without limit, At cach step of the process the potential
energy of a given deformation is augmented, and therefore (§ 88)
the pitch of every tone is raised. In like manner an addition to
the length of a string depresses the piteh, even though the added
part be destitute of inertia,
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142.  Although a general integration of equation (2) of § 141
fe Loyond ai powars, wo may apply fo the probler some of th
many interestitg properties of the solution of the linear equation
of the second order, which have been demonstrated by MM, Sturm
and Liouville!, It is impossible in this work to give anything
like a complete account of their investigations ; but a sketeh, in
which the leading features are included, may be found interest-
ing, and will throw light on some points connected with the
general theory of the vibrations of continuouns bodies. T lave not
thought it necessary to adhere very closely to the methods adopted
in the original memoirs,

At no point of the curve satisfying the equation

d’ .
El.::/‘+ Voy=0. (1),

di . o -
can both y and d{, vanish together. By successive differentiations

of (1) it is casy to prove that, if y and :5': vanish simultancously,

dy &y
det’ di®’
yanish at the same point, and therefore by Taylor’s theorem tho
curve must coincide with the axis of a.

Whatever value be ascribed to 2% the curve satisfying (1) is
sinuous, being concave throughout towards the axis of a, since

. . . . dy
p is cverywhere positive. If at the origin y vanish, and El:i

all the lLigher differential cocfficients &e. must also

e positive, the ordinate will remain positive for all values of 2
below a certain limit dependent on the value ascribed to »%
If »* be very small, the curvature is slight, and the curve will
remain on the positive side of the axis for a great distance.
We have now to prove that as »* increascs, all the values of @
which satisfy the cquation y =0 gradually diminish in magnitude.

Let 3 be the ordinate of a sccond curve satisfying the equa-
tion
&y o
=y =0 i (2
i’ Py (2),

as well as the condition that 3" vanishes at the orvigin, and lct us
suppose that »* is somewhat greater than »%. Multiplying (2) by y,

1 The memoirs referred to in the text are coutained in the first volume of
Liouville's Juurnal (1886).
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and (1) by z', subtracting, and integrating with respect to
between the limits 0 and @, we obtain, sinee 2 and 2 hoth vanish
with @,
dy dy f"
’ 72 ? !
y =y = (V= yy de ... (3).
Yuy~ V=W =) pyy (3)
If we further suppose that x corresponds to a point at which
y vanishes, and that the difference between »™ and »* is very small,
we get ultimately

I A

The right-hand member of (4) being essentiall ositive,
g 8 Y I

7'(l'1/=81/’f PY A v (B),
0

d ,
we learn that » and l'i are of the same sign, and thercfore that,
( « ;

dy - . ;o .
whether e be positive or negative, y' is already of the same sign

as that to which y is changing, or in other words, the valuc of @
for which g vanishes is less than that for which ¥ vanishes,

If we fix our attention on the portion of the curve lying
between & =0 and &=, the ordinate continucs positive through-
out as the value of »* increases, until a certain value is attained,
which we will call »?  The function y is now identical in form
with the first normal function u, of a string of density p fixed
at 0 and J, and has no root except at those points, As »? again
increases, the first root moves inwards from a={ until, when a
sccond special value v is attained, the curve again crosses the
axis at the point 2=/, and then represents the second normal
function 1,. This function has thus one internal root, and onc
only. In like manner corresponding to a higher value v we
obtain the third normal function %, with two internal roots, and
so on. The n™ function u, has thus exactly 7 — 1 internal roots, and
since its first differential coefficient never vanishes simultancously
with the function, it changes sign cach time a root is passcd.

From cquation (3) it appears that if u, and u_he two different
normal functions, '

!
fpu‘,,'z/.(l.v:() e, e (3).
0

A beantiful theorem has been discovered by Sturm relating
to the number of the roots of a function derived by addition
from a finite number of normal functions.  If u, be the component
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of lowest order, and %, the component of highest order, the function

f(;‘} == Pyt A Py e (G>’:
where ¢, ¢,,,, &c. arc arbitrary coefficients, has at least m~1
internal roots, and «t most n —1 internal roots. The extremitics
at £=0 and at @=1 correspond of course to roots in all cascs.
The following demonstration bears some resemblance to that given
by Liouville, but is considerably simpler, and, I believe, not less
rigorous,

If we supposc that f(z) has exactly w internal roots (any
number of which may be equal), the derived function f*(«) cannot
have less than 4 1 internal roots, since there must be at least
one root of /7(w) between cach pair of conseeutive roots of f(z), and
the whole number of roots of f(z) concerned is w42, Iy like
manner, we sce that there must be at least p roots of f7(z),
besides the extremitics, which themsclves necessarily correspond
to roots; so that in passing from f(2) to f"() it is impossible
that any roots can be lost. Now

f” (-’L‘) = ¢m u’m” + ¢m+l uumﬂ toio d)n ?l:"”
=- P (y"la(ﬁm u’m + vzmh ¢m+l “’mH LTRIED + vn2 (lbn 'll-“) s (7)!

as we sce by (1); and therefore, since p is always positive, we
infer that

2 2 2
Vin d)m 'me +v m+1 ¢m+l umH LRI Voo Putly veenennes (8)1

has at least p roots.

Again, since (8) is an expression of the same form as f(v),
similar reasoning proves that

4 4 4
1"" ¢m um + v i+t ¢>m+l um-ﬂ +.o Vn (I)u ‘uu

has at least g internal roots; and the process may be continued
to any cxtent.  In this way we obtain a series of functions, all
with g internal roots at least, which differ from the original
function f(«) by the continually inecrcasing relative importance of
the components of the higher orders. When the process has been
arried sufficiently far, we shall arrive at a function, whose form
differs as little as we please from .that of the normal function of
highest order, viz, 2, and which has therefore 2. — 1 internal roots.
It follows that, since no roots can Dbe lost in passing down the
series of functions, the number of internal roots of f(x) canmot
exceed n — 1,
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The other half of the theorem is proved in a similar manner
by centivuing the series of functions b Jowards from j{a).  lu
this way we obtain

¢lll ?(lll + ¢Hl+l 11[““‘1 + treere + " '("
v, b, Uy o+ V70 O L v, u,
R T T YO S S v, b1,
arriving at last at a function sensibly coineident in form with the
normal function of lowest order, viz, w,, and having therefore
m — 1 internal roots.  Since 1o roots can be lost i passing up the
series from this function to £ (), it follows that S (x) cannot have
fewer internal roots than m —1; but it must be understood that
any number of the m — 1 roots may be equal.

We will now prove that JS () cannot be identically zero, unless
all the cocfficients ¢ vanish. Supposc  that ¢, is not zero.
Multiply (6) by pu,, and integrate with respeet to 2 between the
limits 0 and & Then by (5)

! !
/Apu,‘f(.lr)(lv=¢,fpur’(l.v R (O

from which, since the integral on the right-hand side is finite, we
sce that /() cannot vanish for all values of 2 included within the
range of integration,

Liouville has made use of Sturm’s theorem to shew how a
series of normal functions may be compounded so as to have an
arbitrary sign at all points lying between 2 =0 and a={ His
method is somewhat as follows,

The values of @ for which the function is to change sign being
@ b, ¢, ..., gquantitics which without loss of generality we may
suppose to be all different, let us consider the series of determi-

nants,
w, (a), u (n) Uy (a), (D), ()
( w, (), u,(w) I ’ (), 1, (D), w, () ('
) l “3( Is &e

)

@), uy(b), u ()

The first is a lincar function of u, () and e (2), and by Sturn’s
theorem has therefore one internal root at most, which root is
cevidently . Morcover the determinant is not identically zero,
since the cocfficient of u,(x), viz. u, («), does not vanish, whatever
be the value of a. We have thus obtained g function, which
changes sign at an arbitrary point @, aud there only internally,
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The second determinant vanishes when « = ¢, and when =1,
and, since it cananot hinve miore than two inteinal 1oots, it chauges
sign, when  passeg through these values, and there only. The
coefficient of u, () is the value assumed by the first determinant
when o =0, and is therefore finite, Ifcence the second determinant
is not identically zero.

Similarly the third determinant in the scries vanishes and
changes sign when @ =@, when 2 =0, and when = ¢, and at these
internal points only, The coefficient of wu,(x) is finite, being the
value of the second determinant when z=c,

It is evident that by continuing this process we can form
functions compounded of the normal functions, which shall vanish
aund change sign for any arbitrary values of x, and not elsewhere
internally; or, in other words, we can form a function whose sign
is arbitrary over the whole range from 2=0 to 2 =.

On this theorem Liouville founds his demonstration of the
possibility of representing an arbitrary function between 2= 0 and
x =1 by a series of normal functions. If we assume the possibility
of the expansion and take

S(@) =, () + g, (2) + b2ty (@) +ooovnn (10),

the necessary values of ¢, ¢,, &e. arc determined by (9), and we
find

S(x)=3 {u., (2) flp u, (x)fla)de + ’- lpur’(w) da } v 11),

If the series on the right be denoted by I'(x), it remains to
establish the identity of f(a) and F(z).

If the right-hand member of (11) be multiplied by pu, (x) and
integrated with respect to z from =0 to z =1, we sce that

f lpur(.n) Flx)dx = f :p w, () f(x)de,
or, as we may ul:o write it,
| f B ) = f )} e, () dz =0 oo (12),
where u_(xz) 13 a:y normal function,  From (12) it follows that
fl[F(:v) —f(@)] {4 @)+ A (@) + A () +. fpde=0...(13),
0

where the coefficients 4, A,, &e. are arbitrary.

R. 1

[ 89
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Now if F(a) —f(x) be not identically zero, it will be possible
80 to chaose the constants A, 4,, & tha IR TR COTE T S P RE S
has throughout the same sign as #'(x) = f(x), in which casc every
element of the integral would be positive, and equation (13) could
not be true. It follows Lhat Fa) = f() cannot differ from zero,
or that the scries of normal functions forming the right-hand
member of (11) is identical with J) for all values of & from &= 0
tow=1

The arguments and results of this section are of course ap-
“plicable to the particular ease of a uniform string for which the
normal functions are circular,

143, When the vibrations of a string arc not confined to onc
plane, it is usually most convenient to resolve them into two sets
executed in perpendicular plancs, which may be treated inde-
pendently.  There is, however, one case of this deseription worth
a passing notice, in which the motion is most casily conceived and
treated without resolution.

Suppose that

= sin 5T cos 2srt
’ b ceeveeeeenie e (1),
. Smr . 2t
2=8Iln —~ gin =—
/A T
Then
g . S
7'=~/j/‘+z”=sm—z- rerreien(2),
28t
and Bry=tan— . (8),
T

shewing that the whole string is at any moment in one plane,
which revolves uniformly, and that cach particle deseribes a cirele

. . . ST . .
with radius sin R In fact, the whole system turns without

relative displacement about, its position of equilibrium, completing
cach revolution in the time =5 The mechunies of this casc is
quite as simple as when the motion is confined to one plane, the
resultant of the tensions aeting at the extremities of any small
portiou of the string’s length being balanced by the centrifugal
force.
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144, The general differential equation for a uniform string,

.
vz,

dly _ &y
Zzt'.j-—a E;L'Q ................ Cesirrrisae ......(1),
may be transformed by a change of variables into
dy _ 9
c?ﬁ(lv_o ....... e, e (2),
vhere u =z —at, v=2+at. The general solution of (2) is
y=f)+F@) =f(z—at)+ Flz +al)......... (3),

Sy I"'being two arbitrary functions,
Let us consider first the case in which F vanishes, When
¢ has any particular value, the equation

y=flz—al)........ Loniaserarsatinnans v (4),

expressing tho relation between @ and y, represents the form of the
string. A change in the value of ¢ is merely cquivalent to an
alteration in the origin of @, so that (4) indicates that a certain
JSform is propagated along the string with uniform velocity « in the
positive dircction,  ‘Whatever the value of y may be at the point
2 and at the time ¢, the same value of  will obtain at the point
z+ a At at the time ¢+ At.

The form thus perpetuated may be any whatever, so long as it
does not violate the restrictions on which (1) depends,

When the motion consists of the propagation of a wave in the
positive direction, a certain relation subsists between the inclipa-
tion and the velocity at any point.  Differentiating (4) we find
dj dy
—_——

LT T Cerereeenes (5).
. dy dy . o .
Initially, U and T, may both be given arbitrarily, but if the
; P
above relation be not satisfied, the motion cannot be represented
by (4).
In a similar manner the cquation
y=Fa+at)......ooooiiiii (6),
denotes the propagation of a wave in the negative dircction, and
. {; { . .
the relation between (d‘z and lez corresponding to (5) is
dy _ dy -
P/l PRIEE e iererresree e e (7).
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In the general case the motion consists of the simultaneous
propagation of two waves with velocity a, the one in the positive,
und the other in the uegative direction; and ihese waves are

. . di d;
entirely independent of one another. In the first »(-1'{= -a 7‘-/, and

4 ac
dy

in the second (g =a. The initial values of E]g and ((5—;1 must be

conceived to be divided into two parts, which satisfy respectively
the relations (5) and (7). The first constitutes the wave which
will advance in the positive direction without change of form ; the
second, the negative wave. Thus, initially,

_dy

1)+ = 2

- 1 L [
f(e) = <'z>——d;,—,[
whence
S ()
F'(x)=

; (:{1/ 1 (lg/)

dv ™« dt

dy 1 (l‘l/) --------------
(d.c a dt

i

equations which determine the functions £ and F” for all values
of the argument from o=~ to & = =, if the initial values of

dy /A
da and i be known.

If the disturbance be originally confined to a finite portion of
the string, the positive and negative waves scparate after the
interval of time required for each to traverse balf the disturbed
portion.

Fig. 23,

— —t

q 7 0 4 P

Suppose, for example, that 4B is the part initially disturbed.

A point P on the positive side remains at rest until the positive

wave has travelled from A to P, is disturbed during the passage

of the wave, and ever after remains at rest. The negative wave

never affects Pat all. Similar statements apply, mutatis mutandis,

to a point @ on the negative side of AB. If the character of the
dy ldy

original disturbance be such that T ad vanishes initially, there




144.] POSITIVE AND NEGATIVE WAVES, 181
is no positive wave, and the point P is never disturbed at all;

: dy
and if e i 7
vanish initially, the positive and the ncgative waves are similar
and equal, and then ncither can vanish, In cases where either
wave vanishes, its evanescence may be considered to be due to the
mutual destruction of two component waves, one depending on
the initial displacements, and the other on the initial velocities,
On the onec side these two waves conspire, and on the other
they destroy one another. This explains the apparent paradox,
that P can fail to Le affected sooner or later after AR has been
disturbed.

The subsequent motion of a string that is initially displaced
without velocity, may be readily traced by graphical methods.
Sinco the positive and the negative waves are equal, it is only
necessary to divide the original disturbance into two equal parts,
to displace these, one to the right, and the other to the left,
through a space equal to at, and then to rccompound them., We
shall presently apply this method to the casc of a plucked string
of finite length.

dy + id'—/ vanish initially, there is no negative wave, If

145. Vibrations are called stutionary, when the motion of each
particle of the system is proportional to some function of the time,

the same for all the particles. If we endcavour to satisfy
dy Ly
([,lu— (lweu.o-cl-.l'l--'!.nlc!-llvllnlovl(l)’
by assuming y = X7} where X denotes a function of = only, and
7' a function of ¢ only, we find
1 &7 _1dX
Td ety Xde

= (a constaut),

so that
T = A cosmat + B sin mat } @

X=C cosme + D sinme
proving that the vibrations must be simple harmonie, though of
arbitrary period.  T'he value of ¥ may be written
y=Pcos (muat — €) cos (mz—a)
=4 Pcos (mat + mx — € — a) + 4 P cos (mat — mx— € +a).....(3),

shewing that the most general kind of stationary vibration may
be regarded as due to the superposition of equal progressive vibra-



182 TRANSVERSE VIBRATIONS OF STRINGS. [145,

tions, whose directions of propagation are opposed. Conversely,
two stationary vibrations may combine into a progressive one,

The solution y=f(z— at) + I'(x + at) applics in the first in-
stance to an infinite string, but may be interpreted so as to
give the solution of the problem for a finite string in certain
cases, Let us suppose, for cxample, that the string terminates
at «=0, and is held fast there, while it extends to infinity in
the positive direction only. Now so long as the point @ = 0
actually remains at rest, it is a matter of indifference whether
the string be prolonged on the negative side or not.  We
arc thus led to regard the given string as forming part of one
doubly infinite, and to scck whether and how the initial displace-
meuts and velocities on the negative side can be taken, so that on
the whole there shall be no displacement at @= 0 throughout the
subscquent motion,  The initial values of y and g on the positive
side determine the corresponding parts of the positive and negative
waves, into which we know that the whole motion can be resolved.
The former has no influence at the poiut z=0. On the negative
side the positive and the negative waves are initially at our disposal,
but with the latter we are not concerncd, The problem is to
determine the positive wave on the ucgative side, so that in
conjunction with the given negative wave on the positive side
of the origin, it shall leave that point undisturbed.

Let OPQRS... be the line (of any form) representing the
wave in OX, which advances in the negative direction, It is
Fig, 24,

Y

074 Q’

evident that the requirements of the case arc met by taking on
the other side of O what may be called the contrary wave, so that
O is the geometrical centre, bisecting every chord (such as PP)
which passes through it, Analytically, if y =f(«) is the cquation
of OPQRS......, ~ y=f(-x) is the cquation of OL'QR'S......

i
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When after a time ¢ the curves are shifted to the left and to
the right respectively through a distance af, the co-ordinates
corresponding to @ =0 are nccessarily cqual and opposite, and
therefore when compounded give zero resultant displacoment,

The effect of the constraint at O may therefore be represented
by supposing that the negative wave moves through undisturbed,
but that a positive wave at the same time emerges from O, This
reflected wave may at any time be found from its parent by the
following rule:

Let APQRS... be the position of the parent wave. Then the
reflected wave is the position which this would assume, if it were

Tig, 25,

Y
/ ’P
o N —F
A 0 T

turncd through two right angles, first about OX as an axis of
rotation, and then through the same angle about OY., In other
words, the rcetwrn wave is the image of APQRS formed by
successive optical reflection in OX and OY, regarded as planc
mirrors.

The same result may also be obtained by a more analytical
process. In the general solution

y=f(x—at)+ F(x+ at),
the functions £(z), F (z) arc determined by the initial circumstances
for all positive values of z.  I'he condition at & =0 requires that

Sf(—at)+ (I (at) =0
for all positive values of ¢, or

f=2)==F2)

for positive values of z. The functions £ and I arc thus de-
termined for all positive values of 2 and ¢,

There is now no difficulty in tracing the course of events when
two points of the string 4 and B are held fast.  The initial dis-
turbance in A divides itself into positive and negative waves,
which are reflected backwards and forwards between the fixed
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points, changing their character from positive to negative, and
vice versd, at each reflection, After an even numhiw of reflec-
tions in each case the original form and motion is completely
recovered. The process is most casily followed in imagination
when the initial disturbance is confined to a small part of the
string, more particularly when its character is such as to give rise
to a wave propagated in one direction only. The Pulse travels with
uniform velocity (a) to and fro along the length of the string, and
after it bas returned @ second time to its starting point the
original condition of things is exactly restored. The period of
the motion is thus the time required for the pulse to traverse
the length of the string twice, or

The same law evidently holds good whatever may be the character
of the original disturbance, only in the general case it may
bappen that the shortest period of recurrence is some aliquot part
of 7.

146.  The method of the last few sections may be advantage-
ously applied to the case of a plucked string. Since the initial
velocity vanishes, half of the displacement belongs to the positive
and half to the negative wave. The manner in which the wave
must be completed so as to produce the same effect as the con-
straint, is shewn in the figure, where the upper curve represents

Fig. 26,
-
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the positive, and the lower the negative wave in their initial
positions.  In order to find the configuration of the string at any
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future time, the two curves must be superposed, after the upper
has been shifted to the right and the lower to the left through a
space equal to at.

The resultant curve, like its components, is made up of straight
pieces. A succession of six at intervals of a twelfth of the period,

shewing the course of the vibration, is given in the figure (Fig. 27),
taken from Helmholtz, From @ the string goes back again to 4
through the same stages’,

It will be observed that the inclination of the string at the
points of support alternates between two constant values,

147. If a small disturbance be made at the time £ at the
point x of an infinite stretched string, the effect will not be felt at
O until after the lapse of the time 2 +a, and will be in all
respects the same as if o like disturbance had been made at
the point & + Az at time ¢ — Az -+ . Suppose that similar disturb-
ances are communicated to the string at intervals of time 7 at
points whose distances from O incrcase cach time by adr, then

1 This method of treating the vibration of a plucked string is duo to Young,
Phil. Trans., 1800. The student is recommended to make himself familiar with it
by actually constructing the forms of Fig. 27.
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it is evident that the result at O will be the same as if the dis-
tirbancos wore all made at the same point, providea thxt the thue-
intervals be increased from 7 to = + 87, This remark contains the
theory of the alteration of pitch due to motion of the source of
disturbance; a subject which will come under our notice again
in connection with acrial vibrations.

148. When one point of an infinite string is subject to a forced
vibration, trains of waves proceed from it in both directions ac-
cording to laws, which are readily Investigated,  We shall suppose
that the origin is the point of excitation, the string being there
subject to the forced motion y=Ac"; and it will be sufficient to
consider the positive side.  If the motion of cach clement ds be
resisted Dy the frictional force xjds, the differential cquation is

dy

dy , dy
?lt2+K;ZZ_(L ;lwauu ..... tereeses -.--.-.(1);
or since y o e,
dy _ (tep _p° 2
aﬁ:(zf—a0y=hy”” ..... e (2),

if for brevity we write A* for the cocficient of Y.
The general solution is
y={Ce My Detrrjgn . .. ... . . (3).

Now since y is supposed to vanish at an infinite distance, D
must vanish, it the real part of A be taken positive, Let

A=a+1B,
where a is positive,
Then the solution is
y=de-Gridawipe . (4),
or, on throwing away the imaginary part,
y=de = cos(pt—La) ..o (3),
corresponding to the forced motion at the origin
y=dcospt.ecoooi.. ceenen{6).

An arbitrary constant may, of course, be added to .

To determine @ and B, we have
2

Ay U mﬁ=$“mm“mmmo)

@
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If we suppose that « is small,

=P =X near
B= 0 “= 5 nearly,
-w P
— i — N (‘
and y = de cos <pt i .u) e (8).

This selution shews that there is propagated along the string
a wave, whose amplitude slowly diminishies on aceount of the
exponential factor, If £=0, this factor disappears, and we have
simply

«

y =4 cos (pt - 2’1’) ....................... (9).

This result stands in contradiction to the general law that,
when there is no friction, the forced vibrations of a system (due
to a single simple harmonic force) must be synchronous in phase
throughout. According to (9), on the contrary, the phase varies
continuously in passing from one point to ancther along the string.
The fact is, that we are not at liberty to suppose €=10 in (8),
inasmuch as that equation was obtaiued on the assumption that
the real part of A in (3) is positive, and not zero.  However long
a finite string may be, the cocfficient of friction may be taken so
small that the vibrations are not damped before reaching the
further end. After this point of smallness, reflected waves begin
to complicate the result, and when the friction is diminished
indefinitely, an infinite scries of such must be taken into account,
and would give a resultant motion of the same phase throughout,

This problem may be solved for a string whose mass is supposed
to be concentrated at equidistant points, by the method of § 120.
The co-ordinate yr, may be supposed to be given (= Ae™), and
it will be found that the system of equations (5) of § 120 may all
be satisfied by taking

-1
1pr = er ‘\Pl 4

where 8 is a complex constant determined by a quadratic equa-
tion. The result for a continuous string may be afterwards de-
duced.



CHAPTER VII.
LONGITUDINAL AND TORSIONAL VIBRATIONS OF BARS,

149, TuEk next system to the string in order of simplicity
is the bar, by which term is usually understood in Acoustics a
mass of matter of uniform substance and clongated cylindrical
form. At the ends the cylinder is cut oftf Ly planes perpendicular
to the generating lines,  The centres of inertia of the transverse
sections lie on a straight line which is called the aazs,

The vibrations of a bar are of three kinds—Ilongitudinal,
torsional, and lateral. Of these the last are the most important,
but at the same time the most difficult in theory, They are
considered by themselves in the nest chapter, and will only be
referred to here so far as is necessary for comparison and contrast,
with the other two kinds of vibrations,

Longitudinal vibrations are those in which the axis remaing
unmoved, while the transverse scetions vibrate to and fro in the
direction perpendicular to their planes.  The moving power is
the resistance offered by the rod to extension or compression,

One peculiarity of this class of vibrations is at once evident,
Since the force necessary to produce a given extension in a bar
is proportional to the arca of the section, while the mass to be
moved is also in the same proportion, it follows that for a bar of
given length and material the periodic times and the modes of
vibration arc independent of the areg and of the form of the
transverse scction. A similar law obtains, as we shall presently
see, in the case of torsional vibrations,

It is otherwise when the vibrations are lateral.  The periodic
times arc indeed independent of the thickuess of the bar in the
direction perpendicular to the plane of flexure, but the motive power



149.] CLASSIFICATION OF VIBRATIONS, 189

in this case, viz. the resistance to bending, increases more rapidly
than the thickness in that plane, and therefore an increase in
thickness 13 accompanied by a rise of pitch.

In the case of longitudinal and lateral vibrations, the mechan-
ical constants concerned are the density of the material and the
value of Young’s modulus. For small extensions (or compressions)
Hooke's law, according to which the tension varies as the extension,
actual length — natural length

natural Iength

be called € we have I'=ge, where ¢ is Young’s modulus, and 7'
is the tension per unit arca nccessary to produce the extension e
Young's modulus may therefore be defined as the force which would
have to be applied to a bar of unit section, in order to double its
length, if Hooke's law continued to hold good for so great exten-
sions ; its dimensions are accordingly those of a force divided by an
arca,

holds good. If the extension, viz,

The torsional vibrations depend also on a sccond clastic con-
stant w, whose interpretation will be considered in the proper
place.

Although in theory the three classes of vibrations, depending
respectively on resistance to extension, to torsion, and to flexure
are quite distinet, and independent of one another so long as the
squares of the strains may be neglected, yet in actual experiments
with bars which are neither uniform in material nor accurately
eylindrical in figure it is often found impossible to excite longi-
tudinal or torsional vibrations without the accompaniment of some
measure of lateral motion. In bars of ordinary dimensions the
gravest lateral motion is far graver than the gravest longitudinal
or torsional motion, and consequently it will generally happen that
the principal tone of either of the latter kinds agrees more or less
perfectly in pitch with some overtone of the former kind. Under
such circumstances the regular modes of vibrations become
unstable, and a small irregularity may produce a great effect. The
difficulty of exciting purely longitudinal vibrations in a bar is
similar to that of getting a string to vibrate in one plane.

With this explanation we may proceed to consider the three
classes of vibrations independently, commencing with longitudinal
vibrations, " which will in fact raise no mathematical questions
heyond those already disposed of in the previous chapters,
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150.  When a rod is stretched by a force parallel to its length,
the stretching is in general accompanied by lateral contraction in
sneh o manner that the e gucutation of vohune s less thau if
the displacement of every particle were parallel to the axis.  In the
case of a short rod and of a particle situated near the eylindrical
boundary, this Iateral motion would be comparable in magnitude
with the longitudinal motion, and could not be overlooked without
risk of considerable error.  But where a rod, whose length is great
in proportion to the lincar dimensions of ity section, is subject to
a stretching of one sign throughout, the longitudinal motion accu-
mulates, and thus in the caso of ordinary rods vibrating longi-
tudinally in the graver modes, the inertin of the lateral motion
may be neglected,  Moreover we shall sce lator how g correction
may be introduced, if necessary.

Let @ be the distance of the layer of particles composing any
section from the equilibrium position of one end, when the rod is
unstretched, cither by permanent tension or as the result of
vibrations, and let £ be the displacement, so that the actual
position is given by a+ £ The equilibrium and actual position

. . . d,
of a ncighbouring layer being o+ 8x, a+ dx+ E+ H&; 8z re-
. .. dE . .
spectively, the elongation is E and thus, if 7 be the tension per
unit area acting across the scction,

Tm g oo (1),

de

Consider now the forces acting on the slice bounded by x
and z + 8x. If the arca of the scetion Le w, the tension at z is

by (1) gw:-ZZE, acting in the negative dircction, and at x+ bz
the tension is
dE &
JFANLD)

acting in the positive direction; and thus the force on the slicc
due to the action of the adjoining parts is on the whole
d’E
w2 6,
7% 4y
The mass of the clement is pw S, if p be the original density,
and therefore if X be the accelerating force acting on it, the equa-
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tion of cquilibrium is
d
X+9% 0, i, e 2),
p ‘

In what follows we shall not require to consider the operation
of an impressed force. To find the equation of motion we have
only to replace X by the reaction against acceleration — £, and
thus if ¢ : p =d’, we have

PE_ Lk .

- Derreerer en sessserasvren sty

e da

This cquation is of the same form as that applicable to the
transverse displacements of a stretehed string, and indicates the
undisturbed propagation of waves of any type in the positive and
negative directions.  The velocity @ is relative to the unstretched
condition of the bar; the apparent velocity with which a disturb-
ance is propagated in space will be greater in the ratio of the
stretched and unstreteched lengths of any portion of the bar. The
distinction is material only in the case of permanent tension,

151, For the actual magnitude of the velocity of propagation,

we have

=q:p=qw:pw,

which is the ratio of the whole tension necessary (according to
Hooke's Iaw) to double the length of the bar and the longitudinal
density. If tho same bar were stretched with total tension 7,
and were flexible, the velocity of propagation of waves along it
would be /(Z': pw). In order then that the. velocity might be
the same in the two cases, 77 must be qo, or, in other words, the
tension would have to be that theovetically necessary in order to
double the length, The tones of longitudinally vibrating rods
are thus very high in comparison with those obtainable from
strings of comparable Iength.

In the case of steel the value of ¢ is about 22 x 10° grammes
weight per square centimetre.  To express this in absolute units
of force on the ¢ . 8! system, we must multiply by 980. In
the sane system the density of steel (identical with its specifie
gravity referred to water) is 78, Hence for stecl

a=p /P30 % 222 M 530,000
78 ’

1 Centimetre, Grammo, Sceond. This system is recommended by a Committeo
of the DBritish Association, Brit. Ass, Report, 1873,
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approximately, which shews that the velocity of sound in steel js
about 530,000 centimetres per second, or about 16 times greater
than the velaeity of sound in gir Tn gl the veloeity 1s wbout
the same as in steel,

It ought to be mentioned that in strictnoss the value of ¢ detor-
mined by statical experiments is not that which ought to be used
here. Asin the case of gases, which will be treated in a subscquent
chapter, the rapid alterations of stato concerned in the propaga-
tion of sound are attended with thermal effects, one result of
which is to increase the effective value of g beyond that obtained
from observations on extension conducted at a constant tempera-
ture.  But the data are not precise cnough to make this correction
of any consequence in the ease of solids,

152, The solution of the geveral equation for the longitudinal

vibrations of an unlimited bar, namely

§=f(w—at)+F(x+at),
being the same as that applicable to a string, need not bhe further
considered here,

When both ends of a bar are free, there is of course no perma-
nent tension, and at the ends themselves there is no temporary
tension. The condition for a free ond is therefore

d

To determine the norma] modes of vibration, we must assume
that £ varies as a harmonic function of the time—cosnat, "Then
as a function of #, £ must satisfy

: e
of which the complete integral is
E= A cos nx+ Bsin AZovriiiiiiiennni (8),
where 4 and B are independent of a,

. d .
Now since 4 vanishes always when 2z = 0, we get B=0: and
div Y )

. d .
agaln since (TE vanishes when @=l—the natural length of the

!

bar, sin nl=0, which shews that » is of the form

n= e, ST (4),

l

t being integral,



152.] BOTH EXTREMITIES FREE. ' 193

Accordingly, the normal modes are given by equations of the
form

£=A4cos EZZE cos ZIZ(Q e (3),

in which of course an arbitrary constant may be added to ¢, if
desired.

The complete solution for a bar with both ends free is thero-
fore expressed by
i=> _imX imrat . tmrat
§=zm cos =7 {A‘ cos —T+ B, sin T} N ()}
where 4, and B, are arbitrary constants, which may be determined
m the usual mawner, when the initial values of £ and £ are
given, .

A zero value of ¢ is admissible ; it gives a term representing a
displacement £ constant with respect both to space and time,
and amounting in fact only to an alteration of the origin.

The period of the gravest component in (6) corresponding to
1=1, is 2]+ @, which is the time occupicd by a disturbance in
travelling twice the length of the rod, The other tones found
by ascribing integral values to 7 form a complete harmonic scale ;
so that according to this theory the note given by a rod in
longitudinal vibration would be in all cases musical.

In the gravest mode the centre of the rod, where 2= 17, is a
place of no motion, or node; but tlhe periodic clongation or com-

dE

pression T 13 there a maximuin,

153. The case of a bar with one end free and the other fixed
may be deduced from the general solution for a bar with both
ends free, and of twice the length, For whatever may be the
initial state of the bar free at £=0 and fixed at « =1, such dis-
placements and velocities may always be aseribed to the sections
of a bar extending from 0 to 2/ and free at both ends as sghall
make the motions of the parts from 0 to I identical in the two
cases, It is only necessary to suppose that from 7 to 27 the dis-
placcments and velocities are initially equal and opposite to those
found in the portion from 0 to I at an equal distance from the
centre @ =10 Under these circumstances the centre must by
the symmetry remain at rest throughout the motion, and then the

R, 13
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portion from 0 to I satisfies all the required conditions, Wo con-
clude that the vibrations of a bar free at one end and fixed at the
other are identical with those of one il of & bar of twice the
length of which both ends arc free, the latter vibrating only in the
uneven modes, obtained by making 7 in succession all odd integers,
The tones of the bar still belong to a harmonic scale, but the
even tones (octave, &e. of the fundamental) are wanting,

The period of the gravest tone is the time occupied by a pulse
in travelling four times the length of tho bar,

154. When both erds of a bar are fixed, the conditions to
be satisfied at the ends are that the value of £is to he invariable,
At =0, we may suppose that E=0, At 2=l £is a small
constant a, which is zero if there be no permancnt tension, Inp-
dependently of the vibrations we have cvidently £ =za+] and
we should obtain our result most simply by assuming this term
at once. But it may be instructive to procced by the gencral
method,

Assuming that as a function of the time £ varies as
Acosnat + Bsin nat,

we sce that ag a function of z it must satisfy

g+ n’E =0,
of which the general solution is
£ =Ccos nz + D sin ng e (1),

But since £ vanishes with 2 for ] values of ¢, C'=0, and thus
Wwe may write -
&= Z sin nw {4 cos nat + Bsin nat}.
The condition at 2 = now gives
2 sinnl {4 cos nat + B sin nat} = a,
from which it follows that for every finite admissible value of »

) T
sinnl=0, or n= T

But for the zero value of n, we get

A, sinnl =g,
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and the corresponding term in £ is

. s1n pia =
E=Asinmr=a —- =g .
sin nl {

The complete value of £ is accordingly

E=af 4505 T {A cos % 4 B, sin Pll‘l‘}...(e).

The scries of tones form a complete harmonic scale (from
which however any of the members may be missing in any
actual case of vibration), and the period of the gravest com-
ponent is the time taken by a pulse to travel twice the Iength
of the rod, the same therefore as if both cnds were free. Tt
must be observed that we have here to do with the wnstretched
length of the rod, and that the period for a given natural length
is independent of the permanent tension,

The solution of the problem of the doubly fixed bar in the
case of no permancnt tension might also be derived from that
of a doubly frecc bar by mere ditferentiation with respect to a.

For in the latter problem iif satisfics the necessary differential

(1) = i ()

inasmuch as £ satisfics

equation, viz,

@E_ , JE
det T 7 dat!

dE

. . dE
and at both ends P vanishes.  Accordingly T

satisfies all the conditions preseribed for £ in the case when
both ends arc fixed. The two series of tones are thus identical.

in this problem

155. The cffect of a small load M attached to any point of
the rod is readily caleulated approximately, as it is suffcient
to assume the type of vibration to be unaltered (§ 88). We
will take the case of a rod fixed at z= 0, and free at @ =1 The
kinctic energy is proportional to

i

1
1-/ peosin® = da + § M sin®
0 2(

i

20

- pel(y 4 200 i)
or to i <1+ nel sin 57 )

13—

to
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Since the potential cnergy is unaltered, we see by the prin-
ciples of Chapter 1v., that the cfiect of the small load M at a
distance @ froin the fixed end is to increasc the period of the
component tones in the ratio

M ., ime
1.1+,—)Z)~lsm 5

The small quantity 37 : pwl is the ratio of the load to the

whole mass of the rod.

If the load be attached at the frec end, sin? %T—l'—v= 1, and the

cffect is to depress the pitch of every tone by the same small
interval, It will be remembered that i here an uneven integer.

If the point of attachment of M be a node of any componcnt,
the pitch of that component remains unaltercd by the addition,

156, Another problem worth notice occurs when the load at
the free end is great in comparison with the mass of the rod,
In this case we may assume as the type of vibration, a condition
of uniform cxtension along the length of the rod. '

If £ be the displacement of the load M, the kinetic encrgy is
. o .
T=%M§’+wf po'pda = 3§ (M + § pol)......... (1).
0

The tension corresponding to the displacement £ is gmg,

aud thus the potential energy of the displacement is

/e

The equation of motion is
A+ 3pu)E+ 72 g,
and if £ o cospt

Pl (M gpal) (3).

The correction due to the inertia of the rod is thus equivalent
to the addition to A of one-third of the mass of the rod,

157, Our mathematical discussion of longitudinal vibrations
may close with an estimate of the error involved in neglecting
the lateral motion of the parts of the rod not situated on the

T e gt Y
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gxis. If the ratio of lateral contraction to longitudinal extension
i deroted by g, the luberal displacement of a particie distant
r from the axis will be ure, in the case of equilibrium, where ¢ is
ihe extension, Although in strictness this relation will be modi-
fied by the inertia of the lateral motion, yet for the present pur-
posc it may be supposed to hold good.

The constant g is a numerical quantity, lying between 0 and }.
If i were negative, a longitudinal tension would produce a lateral
swelling, and if 4 were greater than 3, the lateral contraction
would be great cnough to overbalance the clongation, and cause
a diminution of volume on the whole, The latter state of things
would be inconsistent with stability, and the former can scarcely
be possible in ordinary solids. At one time it was supposed
that u was necessarily equal to }, so that there was ouly one
independent clastic constant, but experiments have since shewn
that w is variable. For glass and brass Wertheim found experi-
mentally g =}

If % denote the lateral displacement of the particle distant »
from the axis, and if the section be circular, the kinetic energy
duc to the lateral motion is

!
8T=7rpf j%’a’w. rdr
0J o
_ pop? [ dgy'
- 4 ) 0 (l(C) dd/'
Thus the whole kinetic energy is

T4 87=F2 f: Edz + ’3”;‘—’” f ’ (‘lf)’ d,

0 dx

In the case of a bar free at both ends, we have

£ cos gt (lfv 'z"rrqin X
L ode T T T

and thus
Pt
T+8T . T=1+'~~§— l‘; .
The cffect of the inertia of the lateral motion is thercfore to
increase the period in the ratio

2.2 2 .2

This correction will be ncarly insensible for the graver modes of
bars of ordinary proportions of length to thickness.
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158. Experiments on longitudinal vibrations may be made
with 1ods of deal or of glass. The vibrations are excited by
friction, with a wet cloth in the case of glass; but for metal or
wooden rods it is necessary to use leather charged with powdered
rosin, “The longitudinal vibrations of a pianoforte string may be
cxcited by gently rubbing it longitudinally with a picee of india
rubber, and those of a violin string by placing the bow obliquely
across the string, and moving it along the string longitudinally,
keeping the sume point of the bow upon the string. The note is
unpleasantly shrill in both cases.”

“If the peg of the violin be turned so as to alter the pitch of
the lateral vibrations very considerably, it will be found that the
piteh of the longitudinal vibrations has altered very slightly,  The
reason of this is that in the case of the lateral vibrations the
change of velocity of wave-transmission depends chiefly on the
change of tension, which is considerable.  But in the case of the
longitudinal vibrations, the change of velocity of wave-transmis-
sion depends upon the change of extension, which is comparatively
slight’.”

In Savart’s experiments on longitudinal vibrations, a peculiar
sound, called by him a “son rauque,” was occasionally observed,
whose pitch was an octave below that of the longitudinal vibra-
tion. According to Terquem?® the cause of this sound is a trans-
verse vibration, whose appearance is duc to an approximate
agrcement between its own period and that of the sub-octave of the
longitudinal vibration. If this view be correet, the phenomenon
would be one of the sccond order, probably referable to the fact
that longitudinal compression of a bar tends to produce curvature,

159. The sccond class of vibrations, called torsional, which
depend on the resistance opposed to twisting, is of very small
importance, A solid or hollow eylindrical rod of circular section
may be twisted by suitable forces, applicd at the cuds, in such a
manner that cach transverse scction remains in its own plane.
But if the section be not circular, the cffcet of a twist is of a
more complicated character, the twist being necessarily attended
by a warping of the layers of matter originally composing the
normal scetions,  Although the cffects of the warping might pro-

! Donkin's Acoustics, p. 154,
¥ dun, de Chimie, Lvi, 129190,

s
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bably be determined in any particular case if it wero worth
while, we slell confine ourselves hore to the Cude Of o ciccular
section, when there is no motion parallel to the axis of the rod,

The force with which twisting is resisted depends upon an
elastic constant different from ¢, called the rigidity. If we de-
note it by n, the relation between g, , and w may be written

shewing that n lies between 37 and 9. In the case of u=14,
n=4q.

Let us now suppose that we have to do with a rod in the form
of a thin tube of radius » and thickness dr, and let 8 denote the
angular displacement of any section, distant 2 from the origin.

The rate of twist at & is represented by fli_z’ and the shear of the
material composing the pipe by 1"%). The opposing force per

. . df . . ’
unit of area is nr I’ and since the area is 2mwrdr, the moment

round the axis is

2nmr® dr i .

dz

Thus the force of restitution acting on the slice dx has the

moment
a6

2nmr’dr de Pl
Now the moment of inertia of the slice under consideration
is 2mrdr. dz.p.7* and therefore the equation of motion assumes
the form
29_ 9
PIE= 7= KECIITLITPID
Since this is independent of #, the same equation applies to a
cylinder of finite thickness or to one solid throughout.

rererererenn e (2).

The velocity of wave propagation is \/ g, and the whole theory

is precisely similar to that of longitudinal vibrations, the condition

! Thomson and Tait, § 683. This, it should be remarked, applies to isotropic
material only,
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for o free cnd being -(;l,g=0, and for a fixed end =0, or, if a
permancent twist be contemplated, 8 = constant,

The velocity of longitudinal vibrations is to that of torsional
vibrations in the ratio 4/g : 4/ or V(24 2u) : 1, The same ratio
applies to the frequencies of vibration for bars of equal length
vibrating in corresponding modes under corresponding terminal
conditions. If u =}, the ratio of frequencies would be

Nq i yn=4/8: /8 =103,
corresponding to an interval rather greater than a fifth.

In any ease the ratio of frequencics must lic between

V2 :1=1414, and ¥3:1=1"732,

Longitudinal and torsional vibrations were first investigated by

Chladui,

|
|




CHAPTER VIIIL
LATERAL VIBRATIONS OF BARS.

160. IN the present chapter we shall consider the lateral
vibrations of thin clastic rods, which in their natural condition arc
straight. Next to those of strings, this class of vibrations is per-
haps the most amenable to theoretical and experimental treatment.
There is difficulty sufficient to bring into prominerce some im-
portant points conneceted with the general theory, which the fami-
liarity of the reader with circular functions may lead him to pass
over too lightly in the application to strings; while at the same
time the difficulties of analysis arc not such as to engross attention
which should be devoted to general mathematical and physical
principles.

Danicl Bernoulli' seems to have been the first who attacked
the problem. Euler, Ricecati, Poisson, Cauchy, and more recently
Strehlke? Lissajous®, and A, Scebeck* are foremost among those
who have advanced our knowledge of it.

161. The problem divides itself into two parts, according to
the presence, or absence, of a permancnt longitudinal tension,
The consideration of permanent tension entails additional compli-
cation, and is of interest only in its application to stretched
strings, whose stiffness, though small, cannot be neglected al-
together.  Our attention will therefore be given principally to the
two extreme cascs, (1) when there is no permanent tension,
(2) when the tension is the chief agent in the vibration,

1 Comment, Acad. Petrap. t. xu1, ? Pogg. Ann, Bd. xxvi1.

3 dnn. d, Chimie (8), xxx. 885,

A Abhandlungen d. Math, I'hys. Classe d. K. Séchs, Gesellschaft d. Wissen-
schaften. Leipuig, 1852,




202 LATERAL VIBRATIONS OF BARS, [161.

With respect to the scction of the rod, we shall suppose that
one principal axis lies in the plane of vibration, so that the bending
at every part takes place in a dircetion of maximum or minimum
(or stationary) flexural rigidity, For cxample, the surface of the
rod may be one of revolution, cach section being circular, though
not necessarily of constant radius,  Under these cireumstances the
potential energy of the bending for each clement of length is pro-
portional to the square of the curvature multiplied by a quantity
depending on the material of the rod, and on the moment of
mertia of the transverse section about an axis through its centre of
incrtia perpendicular to the planc of bending. If w bo the arcu
of the section, &*w its moment of inertia, 7 Young's modulus, ds the
clement of length, and dV the corresponding potential energy for
a curvature 1 <+ 2% of the axis of the rod,

ds
dV=églC'(0]‘-t‘g Crerees s ees rYetresnaas (1)'

This result is readily obtained by considering the extension of
the various filaments of which the bar may be supposed to be
made up. Let 5 be the distance from the axis of the projection
on the plane of bending of a filament of section dw. Then the
length of the filament is altered by the bending in the ratio

1:1+ ]% )
L being the radius of curvature. Thus on the side of the axis for
which 7 is positive, viz. on the outweard side, a filament ig extended,
while on the other side of the axis there is compression, The

force necessary to produce the extension 7’% is ¢ % dw by the defini-
tion of Young's modulus; and thus the whole couple by which the
bending is resisted amounts to

/q}é .. dw=jq£~ w,

if  be the area of the section and & its radius of gyration about
a line through the axis, and perpendicular to the plane of bending.
The angle of bending corresponding to a length of axis ds ig ds+ 1R,
and thus the work required to bend ds to curvature 1 +~ R is
ds
2 —
igke 75,

siuce the mean is half the final value of the couple,
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For a circular section « is onc-half the radius.

That the potential eriergy of the bending would be proportional,
cateris paribus, to the square of the curvature, is evident before-
hand, I we call the coefficient B, we may take
ds
n’
or, in view of the approximate straightness,

V=4 fB (j%{!,)’da; ........................ ),

in which y is the lateral displacement of that point on the axis of
the rod whose abscissa, measured parallel to the undisturbed posi-
tion, is . In the case of a rod whose sections are similar and
similarly situated B3 is a constant, and may be removed from under
the integral sign.

V=i[B

The kinetic energy of the moving rod is derived partly from
the motion of translation, parallel to 7, of the elements composing
it, and partly from the rotation of the same elements about axcs
through their centres of inertia perpendicular to the plane of vibra-
tion, The former part is expressed by

%fpwg]’dm... ...... e erereesninrenne o (3),

if p denote the volume-density. To express the latter part, we have
only to observe that the angular displacement of the clement di is
% ,and therefore its angular velocity Zlczt%
quantity must be multiplied by half the moment of inertia of the

clement, that is, by 4 #’pw do.  'We thus obtain

T=4 f po y'de+4 /x’pw (c(iit %)nda: ......... veeens(4).

The square of this

162. In order to form the equation of motion we may avail
ourselves of the principle of virtual velocities, If for simplicity we
confine oursclves to the case of uniform section, we have

&y &'y
dz* d<*

dx

8V=Bf

_B@'@—B@8y+ﬂfljgi 81/(1»5'-.-00-.'--'(1))

{
T de i dx
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where the terms free from the integral sign arc to be taken between
the limits, This expression includes only the internal forces due
to the bending. In what follows we shall suppose that there are
no forces acting from without, or rather none that do work upon
the system. A force of constraint, such as that necessary to hold
any point of the bar at rest, need not be regarded, as it does no
work and thercfore cannot appear in the equation of virtual volo-
cities.

The virtual moment of the accelerations is

A , @ d 4
fpw ?lt{ Sydx +_/pam IF (c(l.;/c) 8 (:lj) de

dh d'y )
=fpm<ab‘:{— K’Zc-ng) 83/([.1} +pa)/c"' 8]/ Jt"d{; ......... (2).

Thus the variational cquation of motion ig

d'y Ty _ . dy }

Ty s (Ty s 4y Ly
+BZl‘828((T23)+ {PWK Zt',d-c-—.Bd‘;s} 83/:0 ....... (3)’

in which the terms free from the integral sign are to be taken
between the limits. From this we derive as the equation to be
satisfied at all points of the length of the bar

3
Bi"-{+pw(£l’~'7/—x’(d‘!/ )

dx Pt =0,

while at each end
dfy dg/ 2 Ay dy
or, if we introduce the value of B, viz. qi’w, and write g+p=10

§?+ b’x’d‘q 4y

and for each end

2y o (dy d'y oA N
Fahs()+ {(Tm i aé} W=, (5).

In these cquations expresses the velocity of transmission of
longitudinal waves.
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The condition (5) to be satisfied at the ends assumes different
forms according to the circumstances of the case. It is possible to
conceive a constraint of such a nature that the ratio 8 ((5"!) : 8y has

de
a prescribed finite value. The second boundary condition is then
obtained from (53) by introduction of this ratio. But in all the
cases that we shall have to consider, there is either no constraint

or the constraint is such that either & (:—%Z) or 8y vanishes, and

then the boundary conditions take the form

dy o (Y _ &y oyl
ﬂ*s(cﬁ)"o’ {;zm;;"’ “w} By =0, (0)-

We must now distinguish the special cases that may arise. If
an end be free, 8y and 8 (ZZ) are both arbitrary, and the conditions
become » . -

E‘z.i;= , d—(fiz/;“”'zé}‘f: .................. (),
the first of which may be regarded as expressing that no couple
acts at the free end, and the second that no force acts.

If the direction at the end be free, but the end itself be con-
strained to remain at rest by the action of an applied force of the
necessary magnitude, in which case for want of a better word the
rod is said to be supported, the conditions are

d’y _
™

by which (3) is satisfied.

0, By=0..ccoceiiviiniiininnn (8),

A third case arises when an extremity is constrained to main-
tain its direction by an applied couple of the necessary magnitude,
but is free to take any position. We have then

dy\ _ 'y 1
3 ((_&> =0, i b T = 0.venns (9).

Fourthly, the extremity may be constrained both as to
position and dircction, in which case the rod is said to be clumped.
The conditions are plainly
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Of these four cases the first and last are the more important;
the third we shall omit to consider, as there are no experimental
means by which the contemplated constraint could be realized.
Even with this simplification a considerable varicty of problems
remain for discussion, as cither end of the bar may be free,
clamped or supported, but the complication thence arising is not
so great as might have been expected. We shall find that
different cases may be treated together, and that the selution
for onc case may sometimes be derived immediately from that of
another.

In experimenting on the vibrations of bars, the condition
for a clamped end may be realized with the aid of a vice of
massive construction. In the casc of a frec end there is of course
no difficulty so far as the end itself is concerned ; but, when both
ends are free, a question arises as to how the weight of the bar
is to be supported. In order to interfere with the vibration
as little as possible, the supports must be confined to the neigh-
bourhood of the nodal points. It is sometimes sufficicnt merely
to lay the bar on bridges, or to pass a loop of string round the bar
and draw it tight by scrows attached to its ends. For more exact
purposes it would perhaps be preferable to carry the weight of
the bar on a pin traversing a hole drilled through the middle of
the thickness in the planc of vibration,

When an end is to be ‘supported,’ it may be pressed into
contact with a fixed plate whose plane is perpendicular to the
length of the bar.

163. Before proceeding further we shall introduce a sup-
position, which will greatly simplify the analysis, without scriously
interfering with the value of the solution. We shall assume that
the terms depending on the angular motion of the sections of
the bar may be neglected, which amounts to supposing the
tnertte of cach section concentrated at its centre.  We shall
afterwards (§ 186) investigate a correction for the rotatory in-
ertia, and shall prove that under ordinary circumstances it is
small. The cquation of motion now becomes

d*y g2 d'y _
(ZZ.T'"'KZ' (ZD“—O ..................... (1),
and the boundary conditions for a free end
d®y dy
'(i‘x"'z — 0, (sz — () ..................... (2)
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The next step in conformity with the general plan will be
the assumption of the harmonic form of . 'We may conveniently
take

9 =1 COS ('gifm’t) .......... vevennnnnes(3),

where  is the length of the bar, and m is an abstract number,
whose value has to be determined. Substituting in (1), we
obtain

dv  mt

(—i-a—:z = '7' W oveitrvanirsevomiorenroniee (4‘).

"

If u=e ' be a solution, we see that p is one of the fourth
roots of unity, viz. +1, —1, +¢, —<2; so that the complete
solution is

u=Acosm%’+Bsinm%‘+6’e—‘+De- 7

containing four arbitrary constants.

We have still to satisfy the four boundary conditions,—two
for each end. These determino the ratios 4 : B : C: D, and
furnish besides an equation which m must satisfy., Thus a series
of particular values of m are alone admissible, and for cach m
the corresponding w is determined in everything except a constant
multiplier. We shall distinguish the different functions » be-
longing to the same system by suffixes,

The value of y at any time may be expanded in a series of
the functions » (§§ 92, 93). If ¢,, ¢, &c. be the normal co-
ordinates, we have

y=¢l“’1+ ¢92l‘2+ ve tlo-n--'o....u..(5),
and T=1}pwf(<f>ml +u, + ... ) de

=1 pw {cﬁ,’fu,’dx + é,”fu,"'dw + . } ............ (6).

We arc fully justified in asscrting at this stage that cach
integrated product of the functions vanishes, and therefore the
process of the following section meed not be regarded as more
than a wverification. It is however required in order to determine
the valuc of the integrated squarcs.
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164. T.et w,, wu, denote two of the normal functions cor-
responding respcctlvely to e and m'. Then

4

d*n, wm' 'y _me "
- (1);

(Z‘Uf:"li LY it =" 4 Uyt vrvveronrennes

or, if dashes indicate differentiation with respect to m 10
) Z
oy,
w, " =u U = e (2)

m m) " "

If we subtract equations (2) after multiplying them by a
u,, respectively, and then integrate over the length of the bar,

7_n —m f (1 de = [(u @E’!’“— l--v"') dx
A A et T

we have
du (l" du, dhw, du, du,

"

U T T Y s @ T e de o @)
the integrated terms being taken between the limits,

Now whether the end in question be clamped, supported, or
free!, cach term vanishes on account of one or other of its
factors.  'We may therefore conclude that, if w,, u, refer to two
modes of vibration (corresponding of course to the same terminal
conditions) of which a rod is capable, then

fu,,,w,,,d.z:= 0 (),

provided m and m' be different.

The attentive reader will perecive that in the process just
followed, we have in fact retraced the steps by which the funda-
mental differential equation was itsclf proved in § 162, It is the

! Tho roader should observe that tho eases here spocified are particular, and
that the right-hand member of (3) vanishes, provided that
diuy, Ay,
dt “det ?
duy, iy iy, d®u,,
. de " det T ode " ode

Uy, ¢

and

Thesoe conditions inelude, for inslanco, the cnse of a rod whose end is urged
towards its position of equilibrium by a foree proportional to the displacement, as
by n spring withoul inertia.
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original wariational cquation that has the most immediate con-
nection with the conjugate property. If we denote y by w and 8y
by v,
d’u d'v
r=p|e
8V=10 Byl
and the equation in question is

ij l:fg ‘(l‘c—i-pmfu,vch:—() ......... vevenn(D).

Suppose now that u relates to a normal component vibration,
so that @+ n*ie =0, where n is some constant ; then

. _pfdud
n pwfuvd.a _B,[d':z:"' L de .

By similar reasoning, if v be a normal function, and u represent
any displacement possible to the system,

n pwfuv(lw Bf(fli (Z)J

We conelude that if v and » be both normal functions, which
have different periods,

fuvclx:()....................-.-.-----(6);

and this proof is cvidently as direct and general as could be de-
sired.

The reader may investigate the formula corresponding to (6),
when the term representing the rotatory inertia is retained.

By means of (6) we may verify that the admissible values of n*
are real. For if #7 were complex, and u = a + 78 were a normal
function, then a—48, the conjugate of u, would be a normal
function also, corresponding to the conjugate of #’, and then the
product of the two functions, being a sum of squares, would not
vanish, when integrated ',

If in (3) m and m’ be the same, the cquation becomes iden-

tically true, and we cannot at once infer the value of [u,’dz.

1 This method is, I believo, due to Poigson.

R.: 14
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We must take m’ equal to m + 8m, and trace the limiting form of
the equation as &m tends to vanish., In this way we find

4m f 2 Ios

d v dudu dPu dde du d d*

v dndd  dmd? T dldmdz  dedm dd’

the right-hand side being taken between the limits,

dic m duv
Now — =, &e, - W, &e,
dr 1 dm 1
and thus
mm’ 3Smt mix m'x
Tfu,,,’dx = u''+ i w'"— 5 Z
2 ;| ]
m 2m e M,
+7§' ' " + "l; ( ”)"——zg— wun ""'“l.— nuw

1

in which %" =y, so that

4‘;71 (Zx 3u uul + ﬂ_‘;‘?u'l_ ?7_’2_2_: u"l v u'u”"’" l (ul/)i )

between the limits,
Now whether an end be clamped, supported, or free,
ww” =0, wu'=0,

and thus, if we take the origin of z at one end of the rod,
"’ lugdw = {g (ua — 2uruu' + ulln)}
0 4

=311 (W — 20" +u"), L s v (8).

The form of our integral is independent of the terminal condi-
tion at ¢ =0. If the end =1 be free, w” and 4 vanish, and ac-
cordingly

0

/ozu’dx=i P D) ooreererereeeeren o, ),

that is to say, for a rod with one end free the mean value of w* is
one-fourth of the terminal value, and that whether the other end
be clamped, supported, or free.
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Again, if we supposc that the rod is clamped at 2 =1, % and 2/
vanish, and (8) gives

1
f i = 1L (DT
0
Since this must hold good whatever be the terminal condition at

the other end, we sce that for a rod, one end of which is fixed and
the other free,

flu’(l.v= 104 (free end) = 3o (fixed end),
0

shewing that in this case «* at the free end is the same as w” at
the clamped end,

The annexed table gives the values of four times the mean of ?
in the different cascs.

clamnped, free......... 2 (free end), or ™ (clamped end)

free, free .............. | 22 (frec end)

clamped, clamped ... | %" (clamped end)

supported, supported | — 2u'%" (supported end) = 2u"*

supported, free ...... 2* (free end), or — 2u'2¢”" (supported end)
supported, clamped | %™ (clamped end), or — 2e/%" (supported end)

By the introduction of these values the expression for T
agsumes a simpler form. In the case, for example, of a clamped-
free or a free-free rod,

l L2, 3/n {
T= 88“’ D202 O+ 2 (D) + o) cveerrennnn(10),
where the end « =1 is supposed to be free.

165. A similar method may be applied to investigate the
values of f 4"*dx, and f w"*dz. Inthe derivation of equation (7) of the

preceding section nothing was assumed beyond the truth of the
equation «"=u, and since this equation is equally true of any
of the derived functions, we are at liberty to replace « by «’ or u".
Thus

4m [ me ma v, MT

T f wdz = 3u'u T ~2 T wu—u"u" + 5 "

0
mz me

= 3!(16' + -[ -t =y + _l— u’”’,

14—2
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taken between the limits, since the term « " vanishes in all threc
cases.

For a free-free rod

4m

T ’"clz = 3§ (), = B(uw'), + m (u?),

=6 (), 4+ m ()i, (1),

for, as we shall sce, the values of %« must be equal and opposite
at the two ends,  Whether u be positive or negative at =1, v’
is positive,

For a rod which is clamped at =0 and frecat z =1
4‘ , o
znf wdu =3 (uu'),+ mu? + ("),

We have ahcady scen that w” =, and it will appear (§ 173) that

Hl

u)"=—u/, so that

4m [? ,
- l--/o wide =2 () 4 mut o (2),
a result that we shall have occasion to use later.

By applying the same equation to the evaluation of / wdz, we
find

4m ma me max
l //gd‘v = 3'“”/2" l ’Ia— 2 *l‘ u’l’fl(‘,— ’lé u+ 7‘ ll

=m (= 20" + %),
since u'u" and %u’'’ vanish.

Comparing this with (8) § 164, we sce that
f"’(lx—fu oo, ereererennenr(3),

whatever the terminal conditions may be.
The same result may be arrived at more directly by integrating
by parts the cquation

m' d'u
T wW=u- T

—————r - A

i rebeciivn . Failk




166.] NORMAL EQUATIONS. 213

166. We may now form the expression for ¥ in terms of the
normal co-ordinates.

-_Uk’pw u & 2
V=- p/{¢1[(l£'+¢,dlb ...}da:

o |
_(;fbc_f?w {m ‘6! utde+mte, /1( e+ .. } ......... (1).

If the functions % be those proper toa rod free at =1, this expres-
sion reduces to

= I) ;g {ml‘ [“'1(5)]’%2—!-7”,‘ [“.,,(l)]g(ﬁf +.. } ........ (2)

In any case the equations of motion are of the form

2 2
pw fu Uz ¢, + b pm m, fufda: b,=D,..c0une (3),

and, since ® 38, is by definition the work done by the impressed
forces during the displacement 8¢,

D, = f Yt p@d cvevviieneneininn (4),

if Ypwdx be the lateral foree acting on the element of mass podz.
If there be no impressed forees, the equation reduces to

?. 2
b (3 m1 b, =0.ciiniiienaiininni (5),

as we know it ought to do.

167. The significance of the reduction of the integrals
fu’d;z: to dependence on the terminal values of the function and

its derivatives may be placed in a clearer light by the following
line of argument. To fix the ideas, consider the case of a
rod clamped at ©=0, and free at w=1{, vibrating in the normal
mode expressed by w. If a small addition Al be made to the
rod at the free end, the form of » (considered as a function of
«) is changed, but, in accordance with the genceral principle
established in Chapter 1v. (§ 88), we may calcul.ttu the period

R R R e R R T S e e e e S S T i T



214 LATERAL VIBRATIONS OF BARS. [167.

under the altered circumstances without allowance for the change
of type, if we are content to neglect the square of the change,
In consequence of the straightness of the rod at the place where
the addition is made, there is no alteration in the potential
encrgy, and therefore the altoration of period depends entirely
on the variation of 7% This quantity is increased in the ratio

tl . rl+al
j Wiz : j wde,

v 0

wiAl

or 1: 1+ 7
_/ou’a’;v

which is also the ratio in which the square of the period is
augmented.  Now, as we shall sce presently, the actual period
varies as I, and therefore the change in the square of the period

is in the ratio

1Al
1:1+ R

A comparison of the two ratios shews thut
Th fu’cl.z; =40

The above reasoning is not insisted upon as a demonstration,
but it serves at least to explain the reduction of which the in-
tegral is susceptible. Other cases in which such integrals occur
may be treated in a similar mauner, but it would often require
care to predict with certainty what amount of discontinuity in the
varied type might be admitted without passing out of the range
of the principle on which the argument depends. The reader
may, if he pleases, examine the case of a string in the middle
of which a small piece is interpolated.

168. In trcating problems relating to vibrations the usual
course has been to determine in the first place the forms of the
normal functions, viz, the functions representing the normal
types, and afterwards to investigate the integral formula by
means of which the particular solutions may be combined to
suit arbitrary initial circumstances. I have preferred to follow
a different order, the better to bring out the generality of the
method, which does not depend wpon a knowledge of the normal
Junctions.  In pursuance of the same plan, I shall now investigate
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the connection of the arbitrary constants with the initial circum-
stances, and solve one or two problems analogous to those treated
under the head of Strings.

The general value of y may be written

y= (A1 cos KT? m’+ B, sin %mﬂ) u,

+ (A, cos ’;—,b m't + B, sin I—;? m,’t) u,
T TP R PR PRI (1),
so that initially
yo=Au, + Ap, 4.0 P, (2),
Y, = l;?b"[m;”Bﬂ"x +miBu, + ) ceene (3).

If we multiply (2) by », and integrate over the length of the
rod, we get

f yude=A, |uide ..o veen (4,
and similarly from (3)
5—) f Yo, de=m2 D, [ulde oo, (5),

formulase which determine the arbitrary constants 4, B,.

It must be observed that we do not need to prove analytically
the possibility of the expansion expressed by (1). If all the
particular solutions arc included, (1) necessarily represents the
most general vibration possible, and may therefore be adapted
to represent any admissible initial state,

Let us now suppose that the rod is originally at rest, in its
position of cquilibrium, and is set in motion by a blow which
imparts velocity to a small portion of it. Initially, that is, at
the moment when the rod becomes free, 3, =0, and g, differs from
zero only in the necighbourhood of one point (z =¢).

From (4) it appears that the coefficients 4 vanish, and from
(5) that

. r ,
m B, f w dr = oy U (c) f ¥4,
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Calling f Jopw dz, the whole momentum of the blow, ¥, we

have
'y u, (c
P G R
m.? j w'de
and for the final solution
7 oy
Y= 52— {u, (c) 4 (%) sin (bu m,”t) + ..
“ope m,’j u,*de
+ ’l_‘»r‘(c) _uv_' (w) Siﬂ (I';—.?’llbrat> + orreenn }. e “(7)'
m,* f w'de

In adapting this result to the case of a rod free at x=1 we
may replace

/u,’dw by 310w ()P

If the blow be applied at a node of one of the normal com-
ponents, that coniponent is missing in the resulting motion,  The
present caleulation is but a particular case of the investigation
of § 101,

169. As another example we may take the case of a bar,
which is initially at rest but deflected from its natural position
by a lateral force acting at @ =c. Under these circumstances
the cocfficients B vanish, and the others are given by (4), § 168.

Now
t It d,
f o Yot Az = m,! / L de,

and on integrating by parts

d’u, dy, du,

f’ A -
oy" det Yo de®  dr d2®

&y, du, &y, Yy, g
gy et o Tt 1o

in which the terms free from the integral sign are to be taken
between the limits; by the nature of the case y, satisfies the
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same terminal conditions as does #,, and thus all these terms
vanish at Dboth limits, If the external force initially applied
to the clement dz be Ydw, the cquation of equilibrium of the
bar gives

pwn’b"'(—i‘Z}’=Y”... ..... e (1),
and accordingly
! 2 !
f . Yyt de = o f . Yu (x) de.

If we now suppose that the initial displacement is due to
a force applied in the immediate neighbourhood of the point

x =c¢, we have
! e (o
f yu, de = B lo) 4 f Y,
0 P '

wIr3
wr’ b,

and for the complete value of y at time ¢,

3/ = E { ,..,@,_ur (C_) Er_,(‘:li)___ CoS ’.z_g'nlret} fI'tlx sresnirsae (2).
m, kb f pwu,® da

In deriving the above expression we have not hitherto made
any special assumptions as to the conditions ab the ends, but
if we now confine oursclves to the case of a bar which is clamped
at =0 and free at =1/, we may replace

f w*dx by 3w, ()

If we suppose further that the force to which the initial deflection
is due acts at the end, so that ¢=1, we get

y=43 {——,—lj,u,' () cos K—.?mr’l} f Yde ...... (3).
m b pwu,(l) l

When ¢=0, this cquation must represent the initial displace-
ment. In cases of this kind a difficulty may present itsclf as
to liow it is possible for the series, every tern of which satisfics
the - condition ¥ =0, to represent an initial displacement in
which this condition is violated. The fact is, that after triple
differentiation with respeet to «, the series no longer converges
for z=1, and accordingly the valuc of ¥ is not to be arrived
at by making the differentiations first and summing the terms
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afterwards.  The truth of this statement will be apparent if
we consider a point distant dl from the end, and replace
wW(l=dl)y by W (1) —w () dl,
in which 2 (/) is equal to
mt

7"_ U (1)

For the solution of the present problem by normal co-ordinates
the reader is referred to § 101,

170. The forms of the normal functions in the various par-
ticular cases arc to be obtained by determining the ratios of the
four constants in the general solution of

d'v  m
det = 1
If for the sake of brevity a’ be written for o_;z:v’ the solution may

e put into the form
u= A (cos &’ + cosha’) + B (cos 2 ~ cosh )

+ C (sina’ 4 sinh 2’) + D (sin o’ — sinh Z) i (1).
cosh z and sinhz are the hyperbolic cosine and sine of z, defined by
the cquations

coshz=3}(c"+¢™), sinh o= - (/2 PO v (2).

I have followed the usual notation, though the introduction of
a special symbol might very well be dispensed with, since

coshw=cosdz, sinha=-~1sinie.......... (3),

where 2= ,/=T1; and then the connection between the formula of
circular and hyperbolic trigonometry would be more apparent. The
rules for differentiation are expressed in the equations

172 . d .
~—cosh & = sinh z, o sinh @ = cosh

da d
—i—’; cosh & = cosh «, 2 sinh 2 = sinh a,
dr dict

In differentiating (1) any number of times, the same four com-
pound functions as there occur are continually reproduced. The
ouly one of them which does not vanish with &' is cos & + cosh x,
whose value is then 2,
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Let us take first the case in which both ends are free.  Since

d'n d*u . . .
U and o vanish with z, it follows that B =0, D=0, so that

w=A (cos &’ +cosha’) + C (sina’ +sinh a)........ (4).
We have still to satisfy the necessary conditions when @ =1, or
o' =m., These give
A (= cosm + coshm) + € (- sinm + sinh m) =0 } 5
A ( sinm+sinhm)+ O (= cosm +coshm)=0) """ (),
equations whose compatibility requires that
(cosh m — cos m)* = sinh® m — sin’ m,
or in virtue of the relation
cosh®m —sinhPm= 1. o (6),

cosmcoshm= 1., (7).
This is the equation whose roots are the admissible values of m.
If (7) be satisfied, the two ratios of 4 : € given in (5) arc equal,
and ecither of them may be substituted in (4). The constant multi-
plier being omitted, we have for the normal function

. . m.c ma
u = (sin m — sinh m) {cos Tt cosh --l——}
. MT . MT
— (cos m — cosh mz) {sm i sinh i } .......... (8),

or, if we prefer it,

(  mx ma
w = (cos m — cosh m) chos ot cosh T

: , ) '
+ (sinm + sinhn) {sin 7—7;—D + sinh 'mlrr ......... 9);
and the simple harmonic component of this type is expressed by
y = Pucos <,fl£ mit + 6) ------------------ (10).
171. The frequency of the vibration is ‘;‘%% w®, in which b is

a velocity depending only on the material of which the bar is h
formed, and m is an abstract number. Hence for a given material
and mode of vibration the frequency varies directly as x—the :
radius of gyration of the section about an axis perpendicular to the
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plane of bending—and inversely as the square of the length, These
results might have been anticipated by the argument from dimen-
sions, if it were considered that the frequeney is mecessarily
determined by the value of ¢ together with that of «b—the
only quantity depending on space, time and mass, which oceurs in
the ditferential cquation.  If everything concerning a bar be given,
cxcept its absolute magnitude, the frequency varies inversely as
the Jinear dimension,

These laws find an important application in the case of tuning
forks, whosc prongs vibrate as rods, fised at the ends where they
Join the stalk, and free at the other ends, Thusthe period of vibra-
tion of forks of the samc material and shape varies as the linecar
dimension.  The period will be approximately independent of the
thickness perpendicular to the plane of bending, but will vary in-
versely with the thickness in the plane of bending.  When the
thickness is given, the period is as the squarc of the length.

In order to lower the pitch of a fork we may, for temporary
purposes, load the ends of the prongs with soft wax, or file away
the metal near the base, thereby weakening the spring.  To raise
the piteh, the ends of the prongs, which act by incrtia, may be
filed.

The value of b attains its maximum in the case of stecl, for
which it amounts to about 5237 metres per second. For brass
the velocity would be less in about the ratio 1+5 : 1, so that a
tuning fork made of brass would be about a fifth Jower in pitch
than if the material were stecl.

172, The solution for the case when both ends are clamped
may be immediately derived from the preeeding by a double dif-
ferentiation.  Since y satisfics at both ends the terminal con-
ditions

d*y d'y
— = - =)
dar? 0, ds? 0,
it is clear that y” satistics
" dy’
= Yo =)
¥ 0, da 0,

which are the conditions for a clunped end. Morcover the general
differential cquation is also satisfied by y”. Thus we may take,
omitting o constant multiplicr, as hefore,

w= (sin m — sinhm) {cosa’ ~ cosh «'})

— (cosn — cosh m) [sin &'~ sinh 2} ..........0 (1),
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while m is given by the same equation as before, namely,
cosmeoshm=1.........c..oeererennnnn(2)

We conclude that the component tones have the same piteh in the
two cases,

In cach case there are four systems of points determined by
the evanescence of y and its devivatives.  When y vanishes, there
is a node; where ' vanishes, a loop, or place of maximum displace-
ment ; where y” vanishes, a point of inflection ; and where 2"
vanishes,a place of maximum curvature. Where there are in the first
case (free-free) points of inflection and of maximum curvature, there
are in the sccond (clunped-clamped) nodes and loops respectively;
and wice versd, points of inflection and of maximum curvature for
a doubly-clamped rod correspond to nodes and loops of a rod whose
ends are frec.

173. We will now consider the vibrations of a rod clamped at
x=0, and frec at #=1 Reverting to the general integral (1)
§ 170 we sce that 4 and ¢ vanish in virtue of the conditions at
=0, so that

=D (cosa’ —cosha) + D (sinz —sinh ) ..oovvennnnnn (1),

The remaining conditions at z=1 give

B ( cosm + cosh m) 4+ D (sin m + sinh m) = 0
B (—sinm +sinh m) + D (cos m + coshm) =0 }’

whence, omitting the constant multiplier,

. . mx mr
w = (sin m + sinh m) {cos T cosh h

~ (cosm + cosh ) {sin wf—sinh 7-7-;3:} veennnd(2),
or

ma ma:
w = (cos m + cosh m) {cos - cosh T }

+ (sin m — sinh ) «{sin nzw — sinh 712—?} vernenern(3),

whiere m must be a root of
cosmeoshm+1=0......occiivvinennn($).

The periods of the component toncs in the present problem are
thus different from, though, as we shall sce presently, nearly re-
lated to, those of a rod both whose ends are clamped, or free.
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If the value of uin (2) or (3) be differentiated twice, the re-
sult (") satisfies of course the fundamental differential equation,
At o=0, &

di?
The function «'* is therefore applicable to a rod clamped at ! and
free at 0, proving that the points of inflection and of maximum
curvature in the original curve are at the same distances from the
clamped end, as the nodes and loops respectively are from the free
end.

A . d .
w’, -1 vanish, but atae =17 «”and 5 «” vanish.
di dr

174, In defanlt of tables of the hyperbolic cosine or its loga-
rithm, the admissible values of m may be calculated as follows.
Taking first the equation

cosm coshm=T......c.ccoivinnnanini, (1),

we see that m, when large, must approximate in value to
3 (20 + 1), v being an integer. If we assume

m=32i+1)m— (DB . 2,
B will be positive and comparatively small in magnitude,
Substituting in (1), we find
cot§B=c"=¢ dEitDr - (18,

. 2 +1
or, if ¢*™*V" be called g

an equation which may be solved by successive approximation after
expanding tan 38 and e in ascending powers of the small
quantity 8. The result is

_g G 3% _ 4112_ 1
B=o+ (D taat (C1) gt e (4}

which is sufficiently accurate, even when 7 =1.

By calculation
B, = 0179666 — -0003228 + * 0000082 — -0000002 = 0176518,
Bas Bas B,y B, are found still more easily. After B, the first term of

the series gives B correctly as far as six significant figures. The

! This procers is somewhat similar to that adopted by Strehlke,
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table contains the value of B, the angle whose circular measure is
B, and the value of sin 33, which will be required further on.

Free-Free Bar,

8. ﬁlin(i?lll)ll;cé:?i?nt{]s(tlaf.'g;ede:’ sing .
1 107! < '176518 1° 0’ 40”94 1077 x -B8258
2 1072 % 777010 2’ 40”2699 1073 x 38850
3 107* x 335505 6”-92029 107 % 16775
4 107" x 144989 299062 107" x 72494
] 1077 x 626556 ‘0129237 1077 x 31328

The values of m which satisfy (1) are

= 47123890 + B, = 47300408
m, = 78539816 — B, = 78532040
m, = 100055743 + B, = 109956078
m, = 141371669 — B, = 141371655
m, = 172787596 + B, = 172787596

after which m =4(2{ +1) = to seven decimal places,

m

We will now consider the roots of the equation

cosm coshm==~1 ....c.ccoerreiiniinnnn. (5).
Assuming
m=%2=Dmr—(=1) .. (6)

we obtain the same result as before

s (-1
¢e"=cotfu=de ¢ 1),

where however a =N,

From this it appears that the series of values of a is the same
as that of B, though the corresponding suffixes are not the same.
In fact

a;-:Bu (13=Bg,......6l‘“=ﬂ.-l,
so that we have nothing further to calculate than a,, for which
however the series (4) is not sufficiently convergent. The value

1 This connexion between a and B does not appear to have been hitherto
noticed,
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of @, may be obtained by trial and error from the equation
log,,cot 2, — 6821882 — 43420448 a, = 0,
and will be found to be
a, = 3043077.

Another method by which w», may be obtained directly will be
given presently.

The values of m, which satisfy (3), are
m, = 15707963 + o, = 1875104

m, = 47123800 — a, = 4694737

m, = 78539816 + a; = 7854758

3

m, = 100955743 — «, = 10005541

4

my = 141371669 + a, = 14137168
m, = 172787596 — o, = 17:278759,

after which m =3 (2¢ - 1)7 sensibly. The frequencies are propor-
tional to #%, and are therefore for the higher tones nearly in the '
ratio of the squares of the odd numbers, However, in the case of
overtones of very high order, the pitch may be slightly disturbed
by the rotatory inertia, whose effect is here neglected.

175. Since the component vibrations of a system, not subject
to dissipation, arc necessarily of the harmonic type, all the values
of m*, which satisfy

cosmecoshm=141..coviiiiiiiniiinin, (D,

must be real. We see further that, if m be a root, so are also

—m, maf=1, —m /=1, Hence, taking first the lower sign, we
have

1 ) m? m®
5 (cosmeoshm+1)=1— 13 + Torgy ™ e
m' '
=(1- - — e & e 2).
(1 m:) (1 ”;) &G 2)

If we take the logarithms of both sides, expand, and equate co-
cfficients, we get

sdolo sl 1 38 s r(8).

m'~ 19’ mt 12¢ 35

This is for a clamped-free rod.
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From the known value of Za-8, the value of m, may be derived
with the aid of approximate values of m,, m,,...... We find

St =-006547621,
and m,”® =-000004237
m,"® = 000000069

]

m, "8 = 000000003,

whenee m,"* = 006543310
giving m, =-1875105, as before,

In like manner, if both ends of the bar be clamped or free,

N e’ m’
R U )| (o) R ),

whenee 3 = &e, where of course the summation is exclu-

n' 1235

sive of the zero value of m.

176. The frequencies of the serics of tones are proportional to
m’.  The interval between any tone and the gravest of the series
may conveniently be expressed in octaves and fractions of an
octave. This is effected by dividing the diffcrence of the logarithms
of m® by the logarithm of 2. The results are as follows:

1'4G29 26478
24358 41332
31590 51036
37382, &c. 58288, &e.

where the first column relates to the tones of a rod both whose
ends are clamped, or free; and the second column to the case of a
rod clamped at one end but free at the other, Thus from the
second column we find that the first overtone is 2:G478 octaves
higher than the gravest tone. The fractional part may be reduced
to mean semitones by multiplication by 12, The interval is then
two octaves+ 77736 mean semitones. It will be scen that the
rise of pitch is much more rapid than in the case of strings,

If arod be clamped at one end and free at the other, the pitch
of the gravest tone is 2 (log 47300 — log 1'8751) +log 2 or 2:GGYS
octaves lower than if bLoth ends were clamped, or both free,

R. 15
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177. In order to examine more closely the curve in which the
rod vibrates, we will transform the expression for w into a form
more convenient for numecrical caleulation, taking first the case
when both ends are free, Since m =4 (2 + 1) 7w~ (—1)'B,
cosm=sinB, sinm=cosimw xcosB; and thercfore, m being a
root of cosm ceshm =1, coshm = cosec B.

Also
sinh®*m = coshi* m — 1 = tan®m = cot* B,

or, since cot B is positive,

sinhm = cot B.

Thus
sinm —sinhm 1 —cosiwsinB
cos m — coshm cos B

__(cos 3B~ cosimsindB)°
(cos B — cosi sin 13B) (cos § B + cos 9o sin L)

_cosEB cosim —sin} B
"~ cos § 83 cos 1 + sin },3

We may therefore take, omitting the constant multiplicr,

= (cos 43 cos tr + sin § B) {sin 7_";’ + sinh 7’2"“’}

. mau
~ (cos 4 B cos 7w —sin § 3 cos =7 4 cosh ™ }

i/
=2 cos i sm{ ne +( }

mx na

+sin§Bet —cosamcoslBe ' i, ~(1).

If we further throw out the factor /2, and put [ =1, we
may take
u=F +F,+F,
where
I = cos vm sin {ma — }m +§(=1)'B)
log = mxloge+logsin3B~log./2 t.....(2),
log + F,= — ma log ¢ +log cos § B — log \/2

from which 2 may be calculated for different values of 7 and a.
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At the centre of the bar, # =4, and F,, F, arc numerically
cqual invirtue of " =cot 3 8. When 1 is even, thescterms cancel,
For F,, we have I, = (= 1)'sin § tmr, which is equal to zero when
¢ is even, and to + 1 when 4 is odd. When ¢ is even, therefore,
the sum of the three terms vanishes, and there is accordingly a
node in the middle.

When =0, « reduces to — 2 (—1)'sin {} 7 — § (= 1)'8}, which
(since B is always small) shews that for no value of ¢ is there a
node at the end, It a long bar of stecl (held, for example, at the
centre) be gently tapped with a hammer while varying poiuts of
its length are damped with the fingers, an unusual deadness in
the sound will be noticed, as the end is closely approached.

178. 'We will now take some particular cases.
Vibration with two nodes. 1 =1,

If ©=1, the vibration is the gravest of which the rod is capable,

Our formulwe heeome
Fy=—sin {2 (270" + 1°0" 40" 94) — 43° ~ 30’ 2047}

log Fy= 2054231 2 + 37952391

log I, =— 2:054231 2 4 1-8494G81,
from which is caleulated the following table, giving the values of
w for @ equal to 00, 03, ‘10, &c.

The values of w:u('5) for the intermediate values of z (in the
last column) were found by interpolation formulaee. If o, p, g7, 8, ¢
be six consccutive terms, that intermediate between ¢ and r is

Z__j,7'+7f,’_'1513j;§) +%{.’ [y+r—={pP+8)]—(p+s) +o+t}.
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]
|
@ r r ol % 2 (D)

] 8

| T
000 | + 7133900 4+ 0062408 + 7070798 |+ 14266401 + 1-645210
02| L. o 1454176

‘050 | -5202548| -0079059' 55815721 10053179 1-263134
075 1:072162
‘100 -3157243| 0100153 4406005 ‘7663401 8837528
125 6969004
‘150 | + 0846166 | 0126874 | -3478031 4451071 5133028
‘175 3341625

200 [ --1512020| 0160726 -2745503 [+ 1394209 |+ -1607819

225 -~ 0054711
250 | 3786027 -0203609| 2167256 |- ‘1415162 1631982
275 +3109982
300 | -5849255 | -0257034| 1710798 3880523 4475066
325 . 5714137
3560 | -7586838| -0326753| 1350477 -pD09608 ‘6R15032
375 7766629
400 [ -8902038! -0413934| 1066045 7422059 8659210
425 0184491
450 | -9721635| -0524376| -0841519 8355740 0635940
475 0908730

500 —-1'000000;+'0064285 0664282 | ~ '8671433|—1'00000‘)0

!

Since the vibration curve is symmetrical with respect to the
middle of the rod, it is unnccessary to continue the table beyond
=5, The curve itself is shewn in fig. 28,

Tig. 28.

T

~

S

To find the position of the node, we have by iuterpolation

1607819
1669580 ©

w="200 4 025 = 22418

)
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which is the fraction of the whole length by which the node is
distant from the ncarer end.

Vibratron with three nodes. =2,
T, =sin { (450°—2'40"-27) & ~ 45° + 1’ 20"135)
logF,= 38410604z + 44388816
log (- F) = — 3410604 = + 18494850,

z w:~u(0) z % —u(0)
000 ~1-:0000 950 + D847
025 8040 375 ‘6374
050 6079 300 6620
075 4147 325 6560
100 2974 350 6245
-125 ~ 0487 375 5652
150 + 1175 400 4830
175 9672 425 3805
200 3072 450 2627
-225 5037 475 ‘1340

500 0000

In this table, as in the preceding, the values of % were calcu-
lated directly for & =000, 050, '100 &c., and interpolated for the
intermediate values, TFor the position of the node the table gives
by ordinary interpolation x='132. Calculating from the above
formule, we find

u (1321) =~ 000076,

v ('1322) =+ 000881,
whence x = 132108, agreeing with the result obtained by Strehlke.
The place of maximum excursion may be found from the derived
function. We get

W/ (:3083) = + 0086077, ' (3081) = — 0002227,
whence u' (:308373) =0,
Hence 1 is a maximum, when 2=-308373; it then attains
the value 6636, which, it should he observed, is much less than the
excursion at the end.
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The curve is shewn in fig, 29,

Fig. 24,

Vibration with _four nodes. ¢ =3.

It = —sin { (630" + 6792) & — 43" ~ 840},
log FF,= 47753320 +: 0741527,
log F, = — 47753322 + 18404850,

From this « (0) =141424, (1) =1-00579. The positions of

the nodes are readily found by triul and error.  Thus

u (:3538) =—"000037 % (:3359) =+ ‘001047,
whenee  ('855803) =0. The value of @ for the node near the end !
is "0944, (Seebeck).

The position of the loop is best found from the derived
function, It appears that ' =0, when @='2200, and then
w=—"9349. Therc is also a loop at the centre, where lowever
the excursion is not so great as at the two vthers,

Fig. 90,

N
— S /”\\

We saw that at the centre of the bar F, and F, are numerically
equal, In the neighbourhood of the wmiddle, I, is cvidently very
small, if ¢ be moderately great, and thus the uluatlon for the nodes
IC(lllCLS approximately to

=

me T, B
4t (=1) o= tnm
n being an integer.  If we transform the origin to the centre of

the wd and replace am by its approximate value § (24+1) 7, we
find

r 2~
{ 2041

)
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shewing that ncar the middle of the bar the nodes are uniformly
spaced, the interval between consecutive nodes being 20+ (2¢ + 1),
This theorctical result has been verified by the measurcments of
Strehlke and Lissajous,

For methods of approximation applicable to the nodes near
the ends, when 7 is greater than 3, the reader is referred to the
memoir by Secbeck already mentioned § 160, and to Donkin’s
Acoustics (. 194).

179. The calculations are very similar for the case of a bar
clamped at one end and free at the other. If wa F, and
I'= 1+ I+ I, we have in general

Ir =cos (me+ L+ 4(—1)4},

-1) 1 _
I,= (1) sindu ¢y Il =—- 008 ba ™,
2

NEW J2oT

If =1, we obtain for the ealeulation of the gravest vibration-
curve

I, = cos {1:}(—) ma’ 4 45° = 8° -’L3"0665} )
log (= F) = muxloge+1:0300909.
log (= F) = — ma log e + 18444383,

These give on calculation

F (0) =000000, F(6)= T43452,
F(2) = 102074, F( 8)=1169632,
F (4) = 370625, F (1:0) = 1612224,

from which fig. 31 was constructed.

Fig. 31,

morerpnen L

&_‘E‘L‘C‘T:_‘:?:A‘_‘_
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The distances of the nodes from the free end in the case of a
rod clamped at the other end are given by Secbeck and by Donkin,

2" tone *2201.
S"ione 1321, #0990,
M tone 0044, 8358, G439,

1-3222 40820 90007 4/ -3 4{7—]()'9.‘).‘)3 4/-70175

A0=2 =20 4 =240 T hg g T T

" tone
“The last row in this table must be understood as meaning

that 4]_

j may be taken as the distance of the j* node from the
free end, except for the first three and the last two nodes.”
When both ends are free, the distances of the nodes from the
nearer end are
1* tone ‘2242,

2 tone ‘1321 -3,

3" tone ‘0944 ‘9558,
i tone _]: 3222 .4“9820 90007 -1:}' -8
T R2 4+ ¥ 4yl

The points of intlection for a free-free rod (corresponding to
the nodes of a clamped-clumped rod) are also given by Secbeck j—

«th point,

15t point,

2nd point,

18t tone ...... No inflection point,

o2nd tone,,,,.. 5000

3rd tone ...... 3593

O 1L B T T S
4i+2 {2+ 2 4149

Except in the case of the extreme nodes (which have no cor-
responding inflection-point), the nodes and infleetion-points always
oceur in close proximity.

180. The case whereone end of a rod is free and the other sup-
ported doces not need an independent investigation, as it may be
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referred to that of arod with both ends free wibrating 7n an even mode,
that is, with a node in the middle. For at the central node
y and y" vanish, which are precisely the conditions for a supported
end.  In like manner the vibrations of a clamped-supported rod
are the same as those of onc-half of a rod both whose ends are
clamped, vibrating with a central node.

181, The lust of the six combinations of terminal conditions
occurs when both ends are supported.  Referring to (1) § 170, we
sce that the conditions at =0, give 4 =0, I =0 so that

u=(C+ D)sina’ + (¢ —D)sinh .
Since « and «” vanish when 2'=m, ¢'—= D =0, and sinm = 0.

Henee the solution is

2 arled

.
y=sin -y cos—p, - b o v (1),

where 2 is an integer.  An arbitrary constant multiplicr may of
course be prefixed, and a constant may be udded to ¢.

It appears that the normal curves arc the same as in the case
of a string stretched between two fixed points, but the sequence of
tones is altogether different, the frequency varying as the square
of 7. The nodes and iuflection-points coincide, and the loops
(which are also the points of maximum curvature) biscet the dis-
tances between the nodes.

182. The theory of a vibrating rod may be applied to illustrate
the general principle that the natural periods of a system fulfil the
maximum-minimum condition, and that the greatest of the natural
periods exceeds any that can be obtained by a variation of
type. Suppose that the vibration curve of a clamped-free rod is
that in which the rod would dispose itsclf if deflected by a force
applicd at its free extremity. The equation of the curve may be
taken to be

y=—3l+a,

4
which satisfies g—'{ = 0 throughout, and makes y and 3 vanish at
£

0, and " at I Thus, if the configuration of the rod at time ¢ be
y= (=3l + ) cospt..ooounnns eveenens (1),
the potential cnergy is by (1) § 161, 6 ¢4x° wl® cos® pt, while the
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C . 33 o 140 £%*
kinetic energy iy ro PO U sin®pe; and  thus pf = o

Now p, (the true value of p for the gravest tone) is equal to

"ll’ X (LST51)7,

so that
poip= (1-8751)'-'«/11;0 = 08550,

shewing that the real pitch of the gravest tone is rather (but
comparatively little) lower than that caleulated from the hypotheti-
cal type. It is to be observed that the hypothetical type in
question violates the terminal condition #"" = 0. Thiscircumstance,
however, does not interfere with the application of the principle,
for the assumed type may be any which would be admissible as an
Initial configuration ; but it tends to prevent a very close agree-
ment of periods,

We may expeet a better approximation, if we found our caleu-
lation on the curve in which the rod would be deflected by a force
acting at some little distance from the free end, between which
aud the point of action of the force (x=c) the rod would be
straight, and therefore without potential energy.  Thus

potential energy = 6 gi’wd® cos? .,

The kinctic energy can be readily found by integration from
the value of 7.

EFrom 0 to ¢ Y =32’ + 2"
and from ¢ to [ ¥y =¢ (¢ — 3u),
as may be seen from the consideration that yand ¥ must not
suddenly change at w=c. The result is

kinetic encrgy = pw p? sin® pt [;3 4Lt (=) (P + 3[")] )

whonee

1_ 1 [ . ‘
praTr [70 ¢! +3 (t—c)(+ 3[)} ............... (2).

The maximum value of 1+ p? will occnr when the point of
application of the force is in the ucighbourhood of the node of the
sccond normal component vibration. It we take ¢ =41/ wc obtain
@ result which is too high in the musical scale by the interval
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expressed by the ratio 1 :-9977, and is accordingly extremecly near
the truth, This example may give an idea how nearly the period
of a vibrating systemn may be caleulated by simple means without
the solution of diffierential or transcendental cquatious.

The type of vibration just considered woukl be that actually
assumed by a bar which is itself devoid of inertia, but carries a
load 3 at its free end, provided that the rotatory inertia of A could
be neglected.  We should have, in fact,

V =6yl cos® pt, 1"=2MUp* sin’ pt,
Sqrtw
so that = }11[55"— e voen (B)e
Even if the inertin of the bar be not altogether negligible in
comparison with M, we may still take the same type as the basis of
an approximate caleulation :

V= 6gctwl’ cos® pt
v = (210 + i ol ) st
whence

1 P 33
1‘)2 = 3?1% (ﬂ[—{- 11:6 pwl) Crerereraereanteiies (1‘),

that is, 3 is to be increased by about one quarter of the mass of
the rod,  Sinee this result is acenrate when A is infinite, and does
not differ much from the trath, even when M =0, it may be re-
garded as generally applicable as an approximation.  The error
will always be on the side of estimating the pitch too high.

183.  But the neglect of the rotatory inertia of A could not
be justified under the ordinary conditions of experiment. It is as
casy to imagine, though not to construct, a case in which the inertia
of translation should be negligible in comparison with the inertia of
rotation, as the opposite extreme which has just been considered.
If both kinds of inertia in the mass M be included, even though
that of the bar be neglected altogether, the system possesses two
distinet and independent periods of vibration,

d

g at x=1{ Then the

Let z and 6 denote the values of 3 and 7
i

cquation of the curve of the bar is

Bz—10 , 19—-2z
= * &7 A JAl £y
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and

Ve 21ff‘3 (3% — 3210 4 L6 oo, ()
while for the kinetic encrgy

P=3ME 4 LU i (2),

if ' be the radius of gyration of M about an axis perpendicular to
the planc of vibration,

The equations of motion are therefore

2
i 4R (6 - 3) -

Mg+ 2162 (312 4 226) = 0

l‘l
whence, if z and 8 vary as cos pt, we find
29k’ 3k 3ic" ‘)/c"
I ‘lt’cl_ {1 + [ /Jl b aiaar el ofiiee Sool JNPIPURRURN (‘1‘),

corresponding to the two periods, which are always different.

If we negleet the rotatory incrtia by putting &' =0, we fall
back on our previous result
a 3qxw
=

The other value of p* is then infinite.

If «' : 1 be merely small, so that its higher powers may be neg-

lected,
2= 4‘(1/|C © 0 "
P =T (1 +3 l"'> ’
.!_EQIC(D 1_9[{3 .................. (0)'
- .AI[:’ ( ‘L t" )

If on the other hand & be very great, so that rotation is pre-
vented,
2 12qKw )

i 1 r RUUPREES (6),

the latter of which is very small, It appears that when rotation
is prevented, the pitel is an octave higher than if there were no
rotatory inertia at all. These conclusions might also be derived
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dircctly from the differential equations; for if &' =, =10, and
then
12¢k'w

Mz =202 2= 05

but if "= 0, 9-;) z, by the second of equations (8), and in

207
that case
Bi
Mz+= 7ew z=0,
P

184. If any addition to a bar be made at the end, the period
of vibration is prolonged. If the end in question be free, suppose
first that the piece added 1s without inertia. Since there would be
no alteration in cither the potential or kinetic energies, the pitch
would be unchanged ; but in proportion as the additional part ac-
quires inertia, the pitch falls (§ 88).

In the same way a small continuation of a bar beyond a
clamped end would be without cffect, as it would acquire no
motion. No change will ¢nsue if the new end be also clamped;
but as the first clamping is relaxed, the piteh falls, in consequence
of the diminution in the potential energy of a given deformation.

The case of a “supported’ end is not quite so simple.  Let the
original end of the rod be ., and let the added picce which is at
first supposed to have no inertia, be A8, Initially the end 4 is
fixed, or held, if we like so to regard it, by a spring of infinite stiff-
ness.  Suppose that this spring, which has no inertia, is gradually
relaxed. During this process the motion of the new end B
diminishes, and at a certain point of relaxation, 3 comes to rest.
During this process the pitch falls. B, being now at rest, may be
supposed to become fixed, and the abolition of the spring at A
entails another fall of pitcly, to be further increased as 4B acquires
inertia,

185. The case of a rod which is not quite uniform may be
treated by the gencral mcthod of § 90, We have in the notation
there adopted

c —fl? (dll)dv &c —-[SB((I?[)([

a,= f pwatdz, de, = f Spwu dz,.

.~
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whenee, I, being the uncorrected value of p,

2. 2 -
f o (d-l-:") du f Spwu
s parlyy i _

pl=Dr, ’
Tu \? —
| f B, ((d‘::) da f' oo, 'de J

[ SBw’ *da [ Spwu *d.
=14 e 4 (.
B, fulde /-onf w’de

For example, if the rod be clamped at 0 and free at ¢,

2 Bt {1 4

L e

[l o8 w"d.e Wi
. - de— 5 | Ze—utde L,
'y B3, lu} J

o pwu

The same formula applics to a doubly free bar,

hmol4

The cffect of a small load & is thus given by

Bt (. wdl .
Z)g= ¢ —: 'fl - 2"'[,'} ..................... (2),
pwul ( "
where .’ denotes the mass of the whole bar, If the load be at
the end, its cffect is the same as a lengthening of the bar in the
ratio M* : M'+dJ). (Compare § 167.)

186, The same principle may be applied to estimate the
correction due to the rotatory inertia of a uniform rod.  We have
only to find what addition to make to the kinetic energy, supposing
that the bar vibrates according to the same law as would obtain,
were there no rotatory inertia,

Let us take, for example, the case of a bar clamped at 0 and
free at I, and assume that the vibration is of the type,
¥ = ucospt,

where  is onc of the functions investigated in § 179. The kinetic
energy of the rotation is

(YN go = PO [
%[pw/c ((l;r: dt) de = o Sin ])tfou du

2 2
_pwelnyp? o, 1
=g st Qu + m),,

by (2) § 165.
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To this must be added
¥

w . : wl ’
/’2 2" sin® pt I wdx, or P - pisin® pt g
Jo

8

50 that the kinctic energy is inercased in the ratio
o ’ ’n
me® [ u’”®

1: 1'+—2— 2—+7n~-.; .

l % !

The altered frequency bears to that ealeulated without allow-
ance for rotatory inertia a ratio which is the square root of the
reciprocal of the preceding,  Thus

o ]
me* [ u u
i P=1=4 " (2, ) v (1D,
I A 0 w'g (1)
By use of the relations cosh m = — sce m, sinh m=cos ir. tanm,

’ .
we may express « ¢ w when @ =1{ in the form

o' — sin m cosa

@ cosim4cosm 1 —cosimsing
if we substitute for m from
m=4 2i-1)nr—-(-1) «
In the casc of the gravest tone, a=-3043, or, in degrees and
niinutes, a=17° 26, whence

%_73418, 2™ 4. = 94789,
1
U i un
Thus
];;1>=1-2-3241';_,.. i (2),

which gives the correction for rotatory inertia in the case of the
gravest tone.
When the order of the toune is moderate, a is very small,
and then .
W' iu=1 scnsibly,

m) me’

and p:P=1- (1 +3) e (3),

shewing that the correction increases in importance with the
order of the component.

In all ordinary bars # : I is very small, and the term depending
on its square may be neglected without sensible crror,
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187. When the rigidity and density of o bar are variable
from point to point along it, the normal functions cannot in
general be expressed analytically, but their nature may be investi-
gated by the methods of Sturm and Liouville explained in § 142,

If, as in § 162, B denote the variable flexural rigidity at any
point of the bar, and pw dic the mass of the clement, whose length
is dr, we find as the general differential equation

2 2 2
¢ (1: ‘l-’/) o0 T =0 (1)

ot d.i? A

the cffects of rotatory inertia being omitted.  If we assume that
=4

y @ cos v, we obtain as the equation to determine the form of the
normal functions

d? f/"'t/‘ 2

At <]f¢—/;b”) =VP0Y i (2),
in which »* is limited by the terminal conditions to be one of an
infinite series of definite quantitics % »7 v2 ...

Let us suppose, for example, that the bar is clamped at both

. / . :
ends, so that the terminal values of y and :Zi! vanish,  The first

normal function, for which »* has its lowest value »% has no
internal root, so that the vibration-curve lies entircly on one side
of the cquilibrium-position. The second normal function has one
internal root, the third function has two internal roots, and,
gencrally, the + function has » — 1 internal roots,

Any two different normal functions are conjugate, that is to
say, their product will vanish when multiplicd by pwdc, and
integrated over the length of the bar,

Let us examine the number of roots of a function f(z) of
the form

S@)=¢, u (r)+¢,,, Uy @+ o+ 1, (&)riinn o (8),

compounded of a finite number of normal functions, of which the
function of lowest order is w,(x) and that of highest order is
u, (x).  If the number of internal roots of £(x) be g, so that therc
are p+ 4 roots in all, the derived function £’ (2) cannot have less
than p + 1 internal roots besides two roots at the extremities, and
the sccoud derived function cannot have less than m+ 2 roots
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No roots can be lost when the latter function is multiplied by B,
and another double differentiation with respect to a will leave at
least p internal roots. Hence by (2) and (3) we conclude that

Vmg n u m (.'23) + Vmu2 ¢m+l umﬂ (.Z}) + e + ",.2 n u " (‘E)' . (4‘)

has at least as many roots as f(x). Since (4) is a function of the
same form as f(z), the same argument may be repeated, and a
series of functions obtained, every member of which has at least
as many roots as f(x) has. When the operation by which (4) was
derived from (3) has heen repeated sufficiently often, a function is
arrived at whose form differs as little as we please from that of the
component normal function of highest order u, (x); and we con-
clude that f(x) cannot have more than 2—1 internal roots. In
like manner we may prove that f () cannot have less than m — 1
internal roots.

The application of this theorem to demonstrate the possibility
of expanding an arbitrary function in an infinite serics of normal
functions would proceed exactly as in § 142,

188. When the bar, whose lateral vibrations are to be considered,
is subject to longitudinal tension, the potential energy of any con-
figuration is composed of two parts, the first depending on the
stiffness by which the bending is directly opposed, and the second
on the reaction against the extension, which is a necessary accom-
paniment of the bending, when the ends arc nodes. The sccond
part is similar to the potential encrgy of a deflected string; the
first is of the same naturc as that with which we have been
occupied hitherto in this Chapter, though it is not entirely inde-
pendent of the permancnt tension.

Consider the extension of a filament of the bar of section duw,
whose distance from the axis projected on the plane of vibration
is ». Since the sections, which were normal to the axis originally,
remain normal during the bending, the length of the filament
bears to the corresponding element of the axis the ratio R+17: R,
R being the radius of curvature. Now the axis itself is extended
in the ratio q:q¢+ 7, reckoning from the unstretched state, if
To denote the whole tension to which the bar is subjected.

Hence the actual tension on the filament is {T+7‘,(_T—i- q)}(lm.

R. 16
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from which we find for the moment of the couple acting across the

section
m

ly m + n
[{r+ ] wea }1, do=15"1 0,

and for the whole potential encrgy due to stitfness

R l'l 2
1(g+ 1) K-wf ((‘,x’/) Aerrrveennn, N (),

an expression differing from that previously used (§ 162) by the
substitution of g+ 1 forq.

Since ¢ is the tension required to streteh a bar of unit area to
twice its natural length, it is evident that in most practical eases
I'would be negligible in comparison with .

The expression (1) denotes the work that would be gained
during the straightening of the bar, if the length of cach element
of the axis were preserved constant during the process. But
when a stretched bar or string is allowed to pass from a displaced
to the natural position, the length of the axis is deercased. The

a

. di\? . .
amount of the deereasc is %f<('l"!> d.e,and the corresponding gain
@

g
1 I’(of (;—/{) d.e.

12\ 2 - ] 2
V=1(+7) s f (:1:/) do+ 3 To f Cz"l) dz. o (2),

of work 1s

Thus

Wy

The variation of the first part due to a hypothetical displace-
ment is given in § 162, Tor the sccond part, we have

3 (Z'ﬁ) ao= &y dx:{:Z s,,}— 8y i oo (9),

In all the cases that we have to consider, 8y vanishes at the
limits. The general differential equation is accordingly
' Ly, dy

dly ,,d%
L de TP aede

g+ T) G L gpete =0,

oy, if weput g+ 7T'=0p, 1'=dp,
(Y d‘.'_/_M) /Ly
" (b dot~ derdft) T AT dg? 0 vveeer(4):
For a more detailed investigation of this cquation the reader is

referred to the writings of Clebsch! and Donkin.
Y Pheorie der Elasticitiit fester Korper,  Leipzig, 1862,



189.] PERMANENT TENSION. 243

189, If the ends of the rod, or wire, be clamyped, :%{ =0, and

the terminal conditions are satisfied, If the nature of the support
be such that, while the extremity is constrained to be a node, there
. . & . .
1s no couple acting on the bar, i / must vanish, that is to say, the
£
end must be straight.  This supposition is usually taken to repre-
sent the ease of a string stretched over bridges, as in many musical
instruments; but it is evident that the part beyond the bridge
must partake of the vibration, and that therefore its length cannot
be altogether a matter of indifference.
If in the general differential cquation we take y proportional
to cos af, we get
1 2 2
ol 52 &y &y
i <b2 - { + NQ([ 1) - (02( J —ny=0....0 (1),

duo * I

which is evidently satisfied by

N
Y=L cosnb.iii . (2),

l
if = be suitably determined. The same solution also makes
, Y
y and ¥ vanish at the extremitics. By substitution we obtain
for n,

. T PO
METET TR pae s - (3),

which determines the frequency.

If we suppose the wire infinitely thin, 2°="7%*+ [ the same
as was found in Chapter vi., by starting from the supposition of
perfect flexibility,  If we treat & : 1 as a very small quantity, the
approximate value of o is

o o7k (U l
n= el =T
t 2¢* ( : )

For a wire of circular section of radius », & = 12 and if we

replace b and « Dy their values in terms of ¢, 7, and p,

‘ 22 5

e (o Twt f g)

n=-a- Al e S (4
St s e *)

which gives the corrcetion for rigidity'. Since the expression
within brackets involves 7, it appears that the harmonic relation
of the component tones is disturbed by the stiffness.

a
-

} Donkin's Adeousties, Art. 184,
16—2
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190. The investigation of the correction for stiffness when the
ends of the wire are clamped is not so simple, in consequence of
the change of type which occurs near the ends. In order to pass
from the case of the preceding scction to that now under con-
sideration an additional constraint must be introduced, with the
effeet of still further raising the pitch. The following is, in the
main, the investigation of Seebeck and Donkin,

If the rotatory inertia be neglected, the differential equation
becomes

4 a? 2 n’ 1
<D zbup—ba,ca)y=0 """"""""" (1),
where .D stands for é;lb' In the equation
o nt
Dt~ PR D= 3ps=0,

one of the values of J* must be positive, and the other negative.
We may therefore take

D — ’-‘?bg D' — b‘ =D =) (D48 v (2),

and for the complete integral of (1)
y = A cosh az + B sinh ax
4+ CcosBx+DsinBr .oooiiriiinininnnn. (3),

where « and B are functions of n determined by (2).

The solution must now be made to satisfy the four boundary
conditions, which, as there are only three disposable ratios, lead
to an equation connecting a, B8, & This may be put into the form

sinh al sin 81 223

T coshal cos gl Tars g = 0 v (4):

The value of %, , determined by (2),is 2% , so that
sinhal sin Al 2nbr -

1—coshal cosBl" &

From (2) we find also that

2 ) O 3
“""Q;f{\/l*"‘w ]}

2 2.2 2
&= saly/ 14475 -1}
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Thus far our equations are rigorous, or rather as rigorous as
the differential equation on which they are founded; but we shall
now introduce the supposition that the vibration considered is but
slightly affected by the existence of rigidity. This being the case,
the approximate expression for y is

. VT 1T
y:smT cos ( / at>,
and thercfore

T 1 -
=7, =T e (7).
nearly.

The introduction of these values into the second of equations
'JK'.! ] ’c‘-'
(G) proves that #* - or gip 188 small quantity under the cir-
a
cumstances contemplated, and therefore that «'f* is a large quantity.
Since cosh al, sinhal are both large, cquation (5) reduces to

2nbx_

o

tan Bl =

3

or, on substitution of the approximate value for 8 derived from
(6), R
n nbx
tan — =2,

a @

The approximate value of %l is . If we take Z:Ll =17 + 0, we get

tan (v + 9)=ta119=9=27.12_:f___257rg%’
so0 that :
='7_££Z C)_’_C) ,
n=1- (1+“al ......................... (8)

According to this equation the component tones are all raised in
pitch by the same small interval, and therefore the harmonic rela-
tion is not disturbed by the rigidity. It would probably be other-
wise if terms involving «* : I were retained ; it does not therefore
follow that the harmonic relation is better preserved in spite of
rigidity when the ends are clamped than when they are free, but
only that there is no additional disturbance in the former case,
though the absolute alteration of pitch is much greater, It should
be remarked that b :a or y/(g+ 1) : ¥T, is a large quantity,
and that, if our result is to be correct, x : { must be small enough
to bear multiplication by b : @ and yct remain small.
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The theoretical result embodied in (8) has been compared with
experiment by Seebeck, who found a satisfactory agreement, The
constant of stiffhess was deduced from observations of the rapidity
of the vibrations of a small picce of the wire, when one end was

clamped iin o viee,

191 It hias been shewn in this chapter that the theory of bars,
even when simplified to the utmost by the omission of unimportant
(uantities, iy decidedly more complicated than that of perfeetly
flexible strings.  The rcason of the extreme simplicity of the
vibrations of strings is to be found in the fact that waves of the
harmonic type are propagated with a velocity: independent of the
wave length, so that an arbitrary wave is allowed to travel without
decomposition.  But when we pass from strings to bars, the con-

2, 4

stant in the differential cquation, via ((th’{-lr €0 :5i{=0, is no
longer expressible as a velocity, and thercfore the velocity of
transmission of a train of harmonic waves cannot depend on the
differential equation alone, but must vary with the wave length,
Iudeed, if it be admitted that the train of harmonic waves can
be propagated at all, this consideration is sufficient by itsclf to
prove that the velocity st vary inversely as the wave length,
The same thing may be scen from the solution applicable to
. o . 2
waves propagated in one direction, viz. ¥ = cos . (Vt—a),
which satisfies the differential equation if

 Qarud

Let us suppose that there are two trains of waves of equal
amplitudes, but of different wave lengths, travelling in the same
direction,  Thus

¢ v 7 a€
= ; 9 —_— ] ; 9 2
9 = CO0S ..77'( ) } cos 2m ( i 3 ,)

=2 cos W{t G —;T1,> - (51; - ;,)}cosw{ l(;l_ + :) —1(% + 71,)1(2)

If 7 =7, A" = A be small, we have a train of waves, whose ampli-
tude slowly varies from one point to another between the values
0 and 2, forming a series of groups separated from one another by
regions comparatively free from disturbance. In the case of a
string or of a columu of air, X varies as 7,and then the groups move
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forward with the same veloeity as the component trains, and there
is no change of type. It is otherwise when, as in the case of a bar
vibrating transversely, the velocity of propagation is a function
of the wave length. The position at time ¢ ot the middle of the
group which was initially at the origin is given by

1 1 11
(o) =2 (5 -x) =

which shews that the veloeity of the group is
1 1y /1 1 1\ /1
G2 () =3 () =2 ()
If we suppose that the velocity V of a train of waves varies as
A" we find
1 Vv
d<7> ) d( x)

Q)

Inn the present case n=~ 1, and accordingly the velocity of the
groups is twice that of the component waves',

=—=DTV i (A

192, On account of the dependence of the velocity of propaga-
tion on the wave length, the condition of an infinite bar at any
time subsequent to an initial disturbanee confined to a limited
portion, will have none of the simplicity which characterises the
corresponding problem for a string; but nevertheless Fourier’s
investigation of this question may properly find a place here.

It is required to determine a function of @ and ¢, so as to
satisfy

&'y + d'y
de* T det
and make initially y = ¢ (+), y=+r (@).

A solution of (1) is

Y =cosg’t cosq(L—a)....... e e (2),

where ¢ and « are constants, froin which we conclude that

+n +0n
y =[ dx I'(x) f dy cos 47t cos q (@~ =)
- -

1 In the corresponding problem for waves on the surface of deep water, the
velocity of propagation varies diveetly as the square root of the wave length, so
that n=3. "Tho velocity of a group of such waves is therefore one half’ of that of
the component trains,
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is also a solution, where F'(«) is an arbitrary function of a. If
now we put ¢t = 0,

+0 4
7, =f dx F(a) [ dycosg (x—a),

which shews that 7' (a) must be taken to be ‘37% ¢ (a), for then by

Fourier’s double integral theorem y,=¢ (z). Morcover, y=0;
lience

+»

y= 21;7[ da ¢(x) f dgeos ¢®t cosq (L ~a) ......... (3)

satisfies the differential equation and makes initially,
y=¢ (), y=0

By Stokes' thcorem (§ 93), or independently, we may now
supply the remaining part of the solution, which has to satis(y the
ditferential equation while it makes initially y =0, j = (); it is

1 [* ARG R
7 = é;r/_wclm[r(a)f_m dy -(jzsm 7t cosg(x~a)......... 4).

The final result is obtained by adding the right-hand members
of (3) and (4).

In (3) the integration with respect to ¢ may be cffected by
means of the formula

+0 T . T z?
/ ) dy cos ¢°t cos qz = «/—{ sin <Z + 4&) ............... (5),

which may be proved as follows.  If in the well-known integral
formula

Yo L2 /7
f 8 Cde=L",
- [

we put x40 for a, we get

N -
j+ e-a" (2% + 2bx) de= \_/_'”'ea’b".
Now suppose that o*=7=¢'", where 1 =4"=1, and retain
only the real part of the equation, Thus

f cos (a? + 2b) dec = Jr sin (lf + '_’D ,

”“
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whence

+o ~
f cosa® cos 2be dx = Jwrsin (b" +g) ,

from which (5) follows Ly a simple change of variable. Thus
cquation (3) may be written

oo

‘7/=§T/17~z:2{ dap (a) sm{ +(_a:___a_)f},



CIHAPTER IX.
VIBRATIONS OF MEMBRANES.

193, Tur theorctical membrane is a perfectly flexible and in-
finitely thin lamina of solid matter, of uniform material and thick-
ness, which is stretehed in all directions by a tension so great as to
remain sensibly unaltered during the vibrations and displacements
contemplated.  If an imaginary line be drawn across the mem-
brane in any direction, the mutual action between the two portions
separated by an element of the line is proportional to the length of
the element and perpendicular to its divection.  If the force in
question be 7' ds, 7', may be ealled the tension of the membrane;
it Is & quantity of one dimension in mass and — 2 in time,

The principal problem in connection with this subjeet is the
investigation of the transverse vibrations of membrines of different
shapes, whose boundaries are fixed, Other questions indeed may
be proposed, but they are of comparatively little interest and,
moreover, the methods proper for solving them will be suffi-
ciently illustrated in other parts of this work, We may thereforoe
proceed at once to the consideration of & membrane stretehed over
the arca included within a fixed, closed, plane boundary,

194, Taking the plane of the boundary as that of ay, let w
denote the small displacement therefrom of any point I of the
membrane,  Round 72 take a small area S, and consider the forces
acting upon it parallel to 2. The resolved part of the tension is

, [dw
7, [0 as

where ds denotes an clement of the boundury of S and dn an
clement of the normal to the curve drawn outwards, This ig
balanced by the reaction against acceleration measured by pS'y,

expressed by
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p being a symbol of one dimension in mass and — 2 in length
denoting the supcerficial density.  Now by Green’s theorem, if
. & &

d.c* + dy*’

dw
dn '
and thus the equation of motion is
o T (d’w (Z”zt))
= P
s dy

ls = f vwdS=vgw. S ultimately,

de ™~ p
The condition to be satisfied at the boundary is of course w = 0.
The differential equation may also be investigated from the

expression for the potential energy, which is found by multiplying

the teusion by the superficial stretching,  The altered arca is

(f T ondwNt rdwy?
jj\/l + ((/w> + ((/1/) dedys

V=31, f H (‘{l[‘j’)g + (‘j’y”)} Qody e (2),

from which 8V is casily found by an integration by parts,

and thus

If we write 7'+ p=¢ then ¢ is of the nature of a velocity, and
the differential equation is
d'w _ 4 ((Z’z_u (l'zw)
dt =0 \dst dy*

195. We shall now suppose that the bouundary of the mem-
brane is the rectangle formed by the coordinate axes and the lines
@=a, y=>0. For every point within the arca (3) § 194 is satisfied,
and for every point on thie boundary w =0,

A particular integral is evidently

mmwe . NwyY

W=8In —-—= 811 ~ 7 COS Pt vvvirriiiienins 1
0 00 /an 7'1,2
where Pr=cnt Ki wF g ) 2),
(A

and m and nare integers ; and from this the genceral solution may be
derived. Thus

M=n  N=B . mme 1)77']/
== s\ \‘ v N .y nwag ., .
w=2x & sin - sin — (el cospt + B, sin pt}...oveen (3).
L]
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That this result is really general may be proved a posteriors,
by shewing that it may be adapted to express arbitrary initial

circumstances.
Whatever function of the co-ordinates 1 may be, it can be ex-
pressed for all values of @ between the limits 0 and by the serics

. . T - . 2mra
Y sin "7 4} s — 4 ...,
! « 3 « !

where the coefficients 17, Y, &c. are independent of -,  Again
whatever function of Yy any one of the coefficients Y may be, it can
be expanded between 0 and & in the serics

C, sin Fbl/-f- C, sin gzll+ verens,
where O &c. arc constants, From this we conclude that any
function of z and y can be expressed within the limits of the rect-

angle by the double scries

M2 = mwy Y

"4, sin” sir
m=l ms1 a b’
and therefore that the expression for w in (3) can be adapted to

arbitrary initial values of w and w. In fact

& [orb . ommz . nmy
A= — W, SN —— gin —
mn ab 0/0 0 @ A d(l'(l‘lj,

_ A rere. L omme nmwy
B = iy f . / o Posin o sin =y dx dy,

e ($),

The character of the normal functions of a given rectangle,

. MTE . nwy
S ——— §in —¥ |
a b

as depending on m and », is easily understood. If m and n be both
unity, w retains the same sign over the whole of the rectangle,
vanishing at the edge only; but in any other case there are
nodal lines running parallel to the axes of coordinates. The
number of the nodal lines parallel to # s n—1, their equations
being

24 (n—1)b

y=-, T, LV

n n
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In the same way the equations of the nodal lines parallel to y

are
a 2a (m—-1)a

m' m’ m !

v
being m —1 in number. The nodal system divides the rectangle
into mn equal parts, in each of which the numerical value of w is

repeated.

106, The expression for w in terms of the normal functions
is
. mmT . Ny
sin sin =Y (1),

=353
W= ¢nm § « joocee

where ¢,, &c. are the normal coordinates. We proceed to form
the expression for Vin terms of ¢,,. We have

((@y = {22¢ M o8 TTE sin 7Y }2
mn ¢ a b ’

aQ

dw
dw 2 2 n . mme ,n,,ry}')
((Iy) =m {"’E(Pmn B s "d" COS‘-'b ,

In integrating these expressions over the area of the rectangle
the products of the normal coordinates disappear, and we find

T dw\* | (dw\’
7= 1 gl - .
V=3 Jj{(dw) + (dy) }d.v(ly
T, abn® m
=g Sp 3% (d, + -b,_,> B evrereirie s ),
the summation being extended to all integral values of m and n.

The expression for the kinetic cnergy is proved in the same
way to be

R (3),
from which we deduce as the normal cquation of motion
" m: 4
d)ﬂm + C‘sz ("? + Z2>¢mu = (71);) (pnm """""" (4')‘
In this equation ‘
afb . -
@ =”Z-7m-7zw ,,,,,,,,,,,, 5

w=] ], sin —— sin - dxdy (5),

if Zdxdy denote the transverse force acting on the element dc dy.




FRE AR S RS o Xt 2 3

AL L

ERUSEIN NN

e A

254 VIBRATIONS OF MEMBRANES, [196.

Let us suppose that the initial condition is one of rest under
the operation of a constant force Z such ag may be supposed to
arise from gascous pressure. At the time = 0, the impressed
force iy removed, and the membrane left to itself  Initially the
equation of equilibrium is

Q

. /M
097’.- (&T + b'l) (¢mu)0

whenee (¢,.), is to be found, The position of the system at time ¢

1s then given by
2,0
m'ow
P = (H,,,), COS <\/a"- + .cvrl) v (D),

in conjunction with (1).

4

= « /’P q)mu

In order to express P, we have mercly to substitute for 7 its
value in (5), or in this case simply to remove Z from under the
mtegral sign,  Thus

arh .
CoMmr
o =Z/ sin’ sin Y g dy,
0J 0o @ b

)

" mnTet (1= cos mr) (1 - cos n).

We conclude that P, vanishes, unless 2 and 2 are otk odd, and
that then

4al ,

B L
20 nart

man

Accordingly, m and n being both odd,

167 cos e
bun= D e (8),
pomnp

o 4 o /MmE 2t
where 'r=(f”7r'( .+ ) ..... 0
7 ot s (9).

This is an example of (S , § 101,
I S

If the membrane, previously at rest in its position of equili-

brium, be set in motion by a blow applicd at the point « B, the
solution is

nmwx . n

4
¢nm =(7'/']_) s 7_‘"“ sm - 1)@./"/;("(1']‘1‘ (’!/. Sin j)t ‘e ..(]0).
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197, The frequency of the natural vibrations is found by
ascribing different integral values to m and » in the expression

g
p _¢ m n
")7;—2)‘ ‘uu"'f'b.j..................... (1)

For a given mode of vibration the pitch falls when cither
side of the rectangle is increased. In the case of the gravest
mode, when m=1, n =1, additions to the shorter side are the
more cffective; and when the form is very clongated, additions
to the longer side are almost without effect.

When @ and ¥ are incommensurable, no two pairs of valies
of m and a can give the same frequency, and each fundamental
maode of vibration has ils own characteristic period.  Buat when
a® and 0* are commensurable, two or more fundamental modes
may have the sume periodic time, and may then coexist in any
proportions, while the motion still retains its simple harmonice
character.  In such cases the specifieation of the period does
not completely determine the type. The full consideration  of
the problem now presenting itself requires the aid of the theory
of numbers; ut it will be sufficient for the purposes of this
work to consider a few of the simpler cases, which arise when
the membrance is square.  The reader will find fuller information
in Riemann’s lectures on partial differential equations,

If a=0,

»])7.:0./-;" T2 P
o Qw\/m+n.....................(2).

The lowest tone is found by putting m and n equal to unity,
which gives only one fundamental mode :—

. mx L
w=sin - Csin —--'lcospt..................(3).
( «

Next suppose that one of the numbers m, n is equal to 2, and
the other to unity. In this way two distinet types of vibration
are obtained, wlrose periods are the same.  If the two vibrations
be synchronous in phase, the whole motion is expressed by

9 : 9
. &TE . T, .oTe ST
w=1Csin="" sin 77 4 Dsin " sin 7 ) cos pt...(4) ;
« « @ a §

so that, although every part vibrates synchronously with a
harmonic motion, the type of vibration is to some extent arbitrary,
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Four particular cases may be especially noted. First, if D=0,
. 2 . . 0 -
w = Csin Z’B sin Z;—:{ COS Pl werenvnniins o (),

which indicates a vibration with one node along the line z=14a.
Similarly if (=0, we have a node parallel to the other pair of
edges. Next, however, suppose that ¢! and D are finite and
equal. Then w is proportional to
)
sin 272 sin T/ + sin 7% sin =74 ,
a « @ b
which may be put into the form
Ty

. mx . m TL
2 sin - - sin T COS§ - +cos——) .
@ a @ a

This expression vanishes, when
T .y
sin — =0, or sn V-0
@ a

or again, when
cos 7 + cos ~2 =0,
« a
The first two equations give the edges, which were originally
assumed to be nodal ; while the third gives y + == a, representing
one diagonal of the square.
In the fourth case, when ('=— D, we obtain for the nodal
lines, the edges of the square together with the diagonal y=a.
The figures represent the four cases.

Tig. 82,
D=0, C=0, C-~D=0, C+D=0.

For other relative values of € and 2 the interior nodal line
is enrved, but is always analytically expressed by

il Y
Ccos a + D cos P 0 e, (6),

and may be easily constructed with the help of a table of logarith-
mic cosines.



197.] CASES OF EQUAL PERIODS. 257

The next case in order of pitch occurs when m=2, n=2,

The values of m and n being cqual, no alteration is caused by
their interchange, while no other pair of values gives the same
flequwcy of vibration. The only type to be considered is

accordingly
. 2mx . 27
W= sin — §in ——-—cospt
a
whose nodes, determined by the equation

. T ki
sin 7= gin 7Y cos 2 cos / =0,
a a a

are (in addition to the edges) the straight lincs

x=1%a y=4a.

Fig. 88.

The next case which we shall consider is obtained by ascribing
to m, n the values 3, 1, and 1, 3 successively. We have

= {Osinid— sin 79 +Ds1n 2 sin §—‘/} cos pt.

The nodes are given by
sin 72 sin Z‘?-/{C’<4cos’7r ) +D (&cos’ Y 1}:0,
a a a

or, if we reject the first two factors, which correspond to the edges,

0(4 cos? T2 1) +D (4 cost ™Y — 1) =0, @)
If C=0,wehave y=}a, y=3%a
If D=0, z=}a, z=%a.
If C=-D, cos%f:icos%z—/,
whence, y=x, y=a-w,

which represent the two diagonals.

R. 17
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Lastly, if (‘= 2, the equation of the node is

a i U 1
cos? % 4 cos’ Y = 1,
“ «
g 27,
or 1 4 co8 —= 4 cos = Y20 (8),
@ «
Tig. 34.
=0, D=0, C+ D=0 C—-D=0.
................. ‘\‘ ,‘// (A\
] P )
('/’

In case (4) when z=3a, y=1e, orfa; and similarly when
y=3a, «=%q¢, or{a Thusone halfof cach of the lines joining
the middle points of opposite cdges is intercepted by the curve,

Tt should be noticed that in whatever ratio to onc another
* and D may be taken, the nodal curve always passes through
the four points of intersection of the nodal lines of the first two
cases, (=0, D=0. If the vibrations of thesc cascs be com-
pounded with corresponding phases, it is evident that in the
shaded compartments of Fig. (35) the directions of displacement

Fig. 85,

are the same, and that therefore no part of the nodal curve
is to be found there; whatever the ratio of amplitudes, the
curve must be drawn through the unshaded portions. When
on the other hand the phases are opposed, the nodal curve will
pass exclusively through the shaded portions.

When m=3, n=38, the nodes are the straight lincs parallel
to the edges shewn in Fig. (36).

Fig. 86.
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The last case which we shall consider is obtained by putting
m=3, n=2 orm=2 n=3,

The nodal system is

3mrz e . 3m
Csin == .sm + Dsm gin Y = 0,
“ a a

or, if the factors correspondmg to the edges be rejected,
C (4 cos’? z;—m - 1) Cos Zr‘?j—i-Dcos Zr_lt (4 cos® 7[@ - 1) =0...00 (9),

If C or D vanish, we fall back on the nodal systems of the
component vibratious, consisting of straight lines parallel to the
edges. If C'= D, our cquation may be written

(cos ~= + €08 -J) (4 cos "= cos ﬂ - ) =0...... (10),
a a

of which the first factor represents the dx'wonal ¥+ x=a, and
the second a hyperbolic curve.
If C=—D, we obtain the same figure relatively to the other

diagonal’,

198, The pitch of the natural modes of a square membrane,
which is nearly, but not quite uniform, may be investigated by
the gencral method of § 90.

We will suppose in the first place that m and n arc equal.
In this case, when the pitch of a uniform membrane is given,
the mode of its vibration is completely determined. If we now
conceive a variation of density to ensue, the natural type of
vibration is in general modified, but the period may be ealculated
approximately without allowance for the change of type.

We have

= iff(p°+8/’)¢u.,, sin -g_ sy g'n_; /4, dy

—%(ﬁmm {Po4 [8 “”1 e T 27)2 /(l"cd }

of which the second term is the increment of 7' due to 8p. Hence
1f w ot cos pt, and P denote the value of p previously to variation,

we have

af 8[) g2 T mary
2. S 2
Y Imm =1 (I [ [ 0 p o »1 p d f]J ...... (1),

U Lamd, Lecons sur I'élasticité, p. 129,
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9 n%rrl?

where Pot=" 4 :; m’
(

For example, if there be a small load M attached to the middle of

the square,

2. .
, and =T +p,

P’ t P t=1~ 2,];: sin' m'g ereireeneenene (2),
in which sin* §msr vanishes, if m be even, and is equal to unity, if
m be odd. In the former case the centre is on the nodal line of
the unloaded membrane, and thus the addition of the load pro-
duces no result.

When, however, m and » are unequal, the problem, though re-
maining subject to the same general principles, presents a pecu-
liarity different from anything we have hitherto met with. The
natural type for the unloaded membrane corresponding to a speci-
fied period is now to some extent arbitrary; but the introduction
of the load will in gencral remove the indeterminate element. In
attempting to calculate the period on the assumption of the undis-
turbed type, the question will arise how the selection of the undis-
turbed type is to be made, sccing that there are an indefinite
number, which in the uniform condition of the membranc give
identical periods. The answer is that those types must be chosen
which differ infinitely little from the actual types assumed under
the operation of the load, and such a type will be known by the
criterion of its making the period calculated from it a maximum
or minimum.

As a simple example, let us suppose that a small load M is
attached to the membrane at a point lying on the line = 4a, and
that we wish to know what periods are to be substituted for the
two equal periods of the unloaded membrane, found by making

m=1,n=2 or m=2,n=1.
It is clear that the normal types to be chosen, are those whose
nodes are represented in the first two cases of Fig. (32). In the
first case the increase in the period due to the load is zero, which
is the least that it can be; and in the second case the increase
is the greatest possible, If B be the ordinate of M, the kinetic
energy is altered in the ratio

and thus
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while p'=Pj =L/
The ratio characteristic of the interval between the two natural
tones of the loaded membrane is thus approximately

273 ).

1 +g¥[ sin® T
a’p a

If 8 = }a, ncither period is affected by the load.

As another example, the case, where the values of m and =
are 3 and 1, cousidered in § 197, may be referred to. With a load
in the middle, the two normal types to be sclected are those
corresponding to the last two cases of Fig. (3%), in the former
of which the load has no effect on the period.

The problem of determining the vibration of a square mem-
brane which carries a relatively heavy load is more difficult, and
we shall not attempt its solution. But it may be worth while to
recall to memory the fact that the actual period is greater than
any that can be calculated from a hypothetical type, which differs
from the actual one,

199. The preceding theory of square membranes includes a
good deal more than was at first intended. Whenever in a vibrat-
ing systom certain parts remain at rest, they may be supposed to
be absolutely fixed, and we thus obtain solutions of other questions
than those originally proposed. For example, in the present case,
wherever a diagonal of the square is nodal, we obtain a solution
applicable to a membranc whose fixed boundary is an isosceles
right-angled triangle. Morcover, any mode of vibration possible to
the triangle corresponds to some natural mode of the square, as
may be scen by supposing two triangles put together, the vibra-
tions being equal and opposite at points which are the images of
each other in the common hypothenuse. Under these circum-
stances it is evident that the hypothenuse would remain at rest
without constraint, and thercfore the vibration in question is in-
cluded among those of which a complete square is capable.

The frequency of the gravest tone of the triangle is found by
putting m =1, n=2 in the formula
) C J .
5—22; =y JITF 0 1),

"/

. C
and is therefore equal to - 7,
2a
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The next tone occurs, when m =3, n=1. In this case

P ),

Q2 2
Iig, 87.

as might also be seen by noticing that the triangle divides itself
into two, Fig. (87), whosc sides arc less than those of the whole
triangle in the ratio /2 : 1

For the theory of the vibrations of a membrane whose bound-
ary is in the form of an equilateral triangle, the reader is referred
to Lamd’s ‘Legons sur T'élasticité. It is proved that the frequency
of the gravest tone is ¢+ h, where L is the height of the triangle,
which is the same as the frequency of the gravest tone of a squarc
whose diagonal is A.

200, When the fixed boundary of the membrane is circular,
the first step towards a solution of the problem is the expression
of the general differential equation in polar co-ordinates. This
may be effected analytically; but it is simpler to form the polar
cquation de novo by considering the forces which act on the polar
clement of arca » df dr, As in § 194 the force of restitution acting
on a small arca of the membrana is

dw _ dw dw
-1, [%2as {(lr(l vd6) dr+ d9( lad)lw}
(Z’w 1dw 1dW
——1’ rd@dr { rdr'l';g'ayj},

and thus, if T + p = ¢ as before, the equation of motion is

dw dw  ldw  1dw
aF=e {(z, Gt d@*} -------------- (L.

The subsidiary condition to be sntisﬁed at the boundary is that
w=10, when »=a. .

In order to investigate the normal component vibrations we
have now to assume that w is a harmonic function of the time.
Thus, if w e cos (pt—e), and for the sake of brevity we write
p + ¢ = k, the differential equation appears in the form
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dFw 1dw 1 dw
P PR

in which « is the reciprocal of a linear quantity.

+fw=0.0.iiin (2,

Now whatever may be the nature of w as a function of » and 6,
it can be expanded in Fourier’s series

w=w,+w, cos (0 +a)+w,cos2(0+a)+.......3)

in which w,, w,, &c. are functions of », but not of 6. The result
of substituting from (3) in (2) may be written

w1 dw . n“")
;l_l jlatag 1} - oS —_
E{dr‘ e +(r¢ 53 )W, e 6 + a,) =0,
the summation ecxtending to all integral values of 2. If we
multiply this equation by cosn (6 + a,), and integrate with respect
to @ between the limits 0 and 27, we see that each term must
vanish separately, and we thus obtain to dctermine w, as a

function of »
2

d'w, 1 dw n
—(l—;'.—; + ;‘ .(-ll'!! + (rc’—?)w” = 0................(4),
in which it is a matter of indifference whether the factor
cosn (8 +a,) be supposed to be included in 1w, or not,

The solution of (4) involves two distinct functions of 7,
cach multiplied by an arbitrary constant. But one of these -
functions becomes infinite when » vanishes, and the corresponding
particular solution must be excluded as not satisfying the pre-
seribed conditions at the origin of co-ordinates. This point may
be illustrated by a reference to the simpler equation derived from
(4) by making & and n vanish, when the solution in question
reduces to w =logr, which, however, does not at the origin

satisty ¢w =0, as may be scen from the value of f -‘(lﬁds, inte-

grated round a small circle with the origin for centre. 1In like
manner the complete integral of (4) is too general for our
present purpose, since it covers the casc in which the centre of
the membrane is subjected to an external force,

The other function of #, which satisfies (4), is the Bessel's
fanction of the »* order, denoted by J, («r), and may be expressed
in several ways, The ascending scries (obtained immediately
from the differential equation) is
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n zl z‘
Ju(2)= 2"1‘(;+1){ Telenr et i Tk

2° 3

T2 d. 6. ot g ot } e ()
from which the following relations hetween functions of consceu-
tive orders may rcadily be deduced :

A T O S (©),
o (z)-— A0 N X SO (),
R (&) = oy (2) + Ty (D e (8).

When 7 is an integer, J, (z) may be expressed by the definite
integral
J, (2) = —1/ cos (zsinw —nw)dw.........ceuns (9,
TJo

which is Bessel's original form. From this expression it is evident
that J, and its differcntial coefficients with respect to 2z are always
legs than unity.

The ascending series (5), though infinite, is convergent for all
values of n and z; but, wlien 2 is great, the convergence does not
begin for a long time, and then the series becomes useless as a basis
for numerical calculation, In such cases another series proceeding
by d(,sccndmrr powers of z may be substituted with advantage.
This scries is

o 1% — 45,2 (8% — 4n?
J. () =\/_z_ {1 _{ 14n2) ((;3:)“ kn?) + } cos (z - E—n,—g)
P —4n® (17— 40%) (3°— 40%) (5°~ 40%) }
JW/ {1 8z 1.2.3.(82)° Foeen
. T
X sin (z—z——ng) ..... e, Civeerbe e v (105

it terminates, if 2n be equal to an odd integer, but otherwise, it
runs on to infinity, and becomes ultimately divergent. Nevertheless
when z is great, the convergent part may be employed in calcula-
tion; for it can be proved that the sum of any number of terms
d1ffcrs from the true value of the function by less than the last
term included.  We shall have occasion later, in connection with
another problem, to consider the derivation of this descending series.

As Besscl's functiohs are of considerable importance in theoreti-
cal acoustics, I have thought it advisable to give a table for the
functions o, and |, extracted from Lommel's' work, and due

! Lommel, Studien iiber die Bessel'schen Punctionen, Loipzig, 1868,
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originally to Hansen, The functions J, and J, are connccted by

the relation J =—dJ,

z | J,GR) | SR | J, (= J() | # Jy(2) | J,(®)
1:0000 | 0:0000 ‘, 4 33205 | -2311 9-0 | -0003 | -2453
9075 | 0499 | 4 w961 | 9566 1 91 | 1142 | 2324
9900 | 0995 i 4 9693 | 2791 9-2 | -1367 | -2174
9776 1483 || 4 9404 | +2985 || 93| ‘1577 | -2004
9604 | +1960 | 4 2097 | 83147l 94| -1768 | -1816
9385 | 2423 || b 1776 1 3276 | 95| -1930 | -1613
9120 | -2867 1443 | -3371 96 | -2000 | -1395
8819 | 3290 1103 | 34324 97 -2218 | -1166
‘8463 | 3688 0758 | 3460 ]} 98| -2323 | -0928
8075 | -4060 0412 | 34531 99| -2403 | 0684
q6h9 | 4401 0068 | 3414 |} 100 | -2459 | 0435
7196 | -4709 0270 | -8343 || 10.1 | 2490 |+ 0184
G711 | <4983 0599 | 3241 || 102 | -2496 | ~-0066
6201 | -Hh230 0917 | 8110 || 103 | -2477 | -0313
BG69 | 541D 1920 | -2951 || 10:4 | 2434 | -0555
5118 | HHT79 1506 | 2767 || 105 | -2366 | 0789
4554 | 5699 1578 | 2559 | 106 | 2276 | -1012
3980 | 5778 | Q017 | +2329 . 92164 | -1224
3400 | 5815 9938 | 2081 2032 | 1422

‘1881 | ‘1604
‘1712 | 1768

2433 | 1816
2601 | 1538
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6
1666 H683 || 6 9740 | 12560 ‘1628 | 1913
1104 | 5560 || 6 9851 | 0953 || 11:2 | 1330 | -2039
0555 H399 || 6 9931 | 0652 | 113 | ‘1121 2143
+°0025 5202 4 6 9981 | -0349 || 114 | -0002 | -2225
—0484 1 4971 | T 3001 |--0047 || 115 | 0677 2284
0968 | 4708 || 7 9901 {4+-0252 || 116 | -0446 | -2320
1424 4416 || 7 9951 | -0543 || 117 |--0213 | -2333
*1850 4097 || 7 9882 | -0826 || 11-8 |+°0020 | -2323
2243 3754 | 7 9786 | 1096 || 119 | -0250 | -2290
2601 3391 || 7 9663 | 1352 || 12:0 | 0477 2234
2921 3009 || 7 9516 | <1592 | 121 0697 2167
3202 2613 || 7 9346 | -1813 | 12:2 | ‘0908 | -2060
3443 2207 | T 9154 | 2014 || 123 | ‘1108 | ‘1943
3643 1792 0 T 1044 | 2192 | 124 | 1296 1807
3801 1374 || 8 1717 | 2346 || 125 | ‘1469 ‘1655
3018 0055 || 8 1475 | 2476 || 12:6 | 1626 1487
3902 0538 || 8 1929 | +3580 || 127 | 1766 | 1307
4026 {+ 0128 || 8 0960 | 2657 || 12-8 1887 ‘1114
4018 |~ 0272 | 8 0692 | 2708 || 129 | 1988 | ‘0912
3072 ‘0660 || 8 0419 | 2731 || 130 | 2069 0703
3887 1033 || 86 |+-0146 | 2728 || 13-1 2129 0489
3766 1386 !l 87 |--0125 | 2697 || 132 | 2167 | -0271
3610 1719 || 8 0392 | 2641 || 13:3 | 2183 |- 0052
3423 2028 || 8 0633 | 2559 || 13-4 | 2177 |+ 0166
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201. TIn accordance with the notation for Bessel's functions
the expression for a normal component vibration may therefore be
written

w=DJ (kr) cosn(f+a) cos (pt+e)...cen..(1);

and the boundary condition requires that
N O L U ) §

an cquation whose roots give the admissible values of &, and
thercfore of p.

The complete expression for w is obtained by combining the
particular solutions embodied in (1) with all admissible values of
« and », and is nccessarily gencral enough to cover any initial
circumstances that may be imagined. We conclude that any
function of » and  may be cexpanded within the limits of the
circle r=g¢ in the scrics

w=3%J, (k) {¢ cosnd +Yrsinub)..............(3).

For every integral value of n there are a series of values of «,
given by (2); and for cach of these the constants ¢ and Jr are
arbitrary.

The determination of the constants is effected in the usual
way. Since the energy of the motion is equal to

1 f o f :"'u')"r dOdr......... e, (),

and when expressed by means of the normal co-ordinates can only
involve their squares, it follows that the product of any two of the
terms in (3) vanishes, when integrated over the arca of the circle.
Thus, if we multiply (8) Ly J, (#7) cos 26, and integrate, we
find

f ! f Jw J, (k) cosnf rdr df
oJo
=¢ f _/ [/, (&7)]? cos* n8 rdrdb

~d 'rrf: [, (1) T e ren oo (5),

by which ¢ is determined. The corresponding formula for ¢ is
obtained by writing sinnf for cosnf. A method of cvaluating
the integral on the right will be given presently. Since ¢ and
cach contain two terms, one varying as cospt and the other as
sin pt, it is now evident how the solution may be adapted so as to
agrec with arbitrary initial values of w and 1.
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902. Let us now cxaminc more particularly the character of
the fundamental vibrations, If m=0, w is a function of » only,
that is to say,the motion is symmetrical with respect to the centre
of the membrane. The nodes, if any, are the concentric circles,

whose equation is
() =0..cooiniiiins PRV 1.

When n has an integral value different from zero, w is a func-
tion of 8 as well as of 7, and the cquation of the nodal system

takes the form
Ju (K?') cosn (0 - a) e ) (2).

The nodal system is thus divisible into two parts, the first con-
sisting of the concentric circles represented by

S, (k) =0 (3),
and the second of the diameters
- 9 ™
6=a+ (2m+1) TR IIHRIEI 4),

where m is an integer. These diameters are » in number, and
are ranged uniformly round the centre; in other respects their
position is arbitrary. The radii of the circular nodes will be in-
vestigated further on.

203, The important integral formula
a
f . o (k) I, () rdr=0 .cooeeeen T (0,
where « and «' are different roots of
J, (ka)=0..... Ceerereenerienee e o(2), .

may be verified analytically by means of the differential cquations
satisfied by J, (xr), J, (€'7); but it is both simpler and more
instructive to begin with the more gencral problem, where the
boundary of the membrane is not restricted to be circular,

The variational equation of motion is

3V+p fibb‘wdxdy:O ...................... (3)

=y, | j{(‘fl—;‘-’)’ + (‘%’)} Qo rmreerrrenronne ),

where

5
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and therefore

dw ddw dw ddw .
V=T, /f{d}% -t dy ‘djf} dedy. o, (3).

In these equations w refers to the actual motion, and Sw to a hypo-
thetical displacement consistent with the conditions to which the
system is subjected. Let us now suppose that the system is exc-
cuting one of its normal component vibrations, so that w = u, and

G4 p=0.cvurininnn.... e (6),
while &w is proportional to another normal function .

Since x=p ¢, we get from (8)

dudv  du dv -
fc'ffuv(l.cdy =/f{[& e dy Ely} dedy............. (7).

The integral on the right is symmetrical with respect to u and v,
and thus

(x”—x’)/fuvdxd]/=0 ------ vervenis e (8),

where £ bears the same relation to v that «* Lears to u,

Accordingly, if the normal vibrations represented by % and v
have different periods,

ffm Ledy=0 rvreroorreo. o).

In obtaining this result, we have made no assumption as to the
boundary conditions beyond what is implicd in the absence of re-
actions against acccleration, which, if they existed, would appear
in the fundamental cquation (3).

If in (8) we suppose &' =&, the equation is satisfied identically,
and we cannot infer the value of / wdzdy. In order to evaluate
this intogral we must follow a rather different course,

If w and v be functions satisfying within a certain contour the

equations v'u +x*u =0, v +«" =0, we have

(- /c’)ffu vdr Jy=ff(v Vi —uvy)dedy

='[ (v :5;: -y Z”;) A5 v, (10),
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by Green’s theorem, Let us now suppose that v is derived from
u by slightly varying «, so that

v=u+§;8x, k' =K+ Ok;

substituting in (10), we find

. _ [(dudu d’u )
2/4-'[_/‘“ dz dy —f(d/cil_;l—u c-i_n—(lx) dS.coiiiinennnian (11);

or, if u vanish on the boundary, .
9% f f o dy = d" ‘l“ ..................... (12).

For the application to a circular arca of radius 7, we have

w=cosn@ J, («r) }
v =cosnb J, («'7)

and thus from (10) on substitution of polar co-ordinates and integra-
tion with respect to 6,

(" = &%) j.f (k1) J, (k') rdr

=rd, (m‘)(—i; L (k7)) = (m) d J (k) covsnnnirnn(14).
Accordingly, if
2 ;) s T () =2 T, ) ¢ T (er)
d?‘ n R d7‘ 1) g ] ’
and « and & be different,

f :J L) T () rdr=0 .oiniieiiiin (15),

an equation first proved by Fourier for the case when
J, (er)=d, («r)=0.
Again from (12)

2« ] rJ'”’ (kr)rdr =1 d 4 &7
0

‘Gdr " drd
=Tt = (774 =T,
Kr
dashes denoting differentiation with respect to . Now

2
el (1 - —’.,‘—,)J=o,
KT Kkr
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270 VIBRATIONS OF MEMBRANES, [203.
and thus
T 2
2[02 ) 1de =17 3 ) .5 (1= 20Tt ... (16).
0

This result ig general; but if, as in the

application to membrancs
with fixed boundarics,

']u <K") = O’
then 2 f TR ) rdr =0T ) o .
0

20+, We may use the result

Just arrived at to simplify the
expressions for 7'and V, From

w=3Z{p,.J, (k1) cos nf + Vo, (k,,7) sin n)............ (1),
we find .
T=}pra’SsJ (o) (2 D (2),
V=1 pra 220,00, (6,0) (2 44 (3
whence is derived the normal equation of motion
B + b, = ~7;&;§:,I}(";;;Z)- .................. ),

and a similar cquation for Yn  The value of ®,, is to be found
from the consideration that P,,86,, denotes the work done by the

impressed forces during a hypothetical displacement 8¢,..; so that
if Z e the impresscd foree, reckoned per unit of area,

D, = f Zd, (k1) cosnfrdrdb......... | (5).

These expressions and cquations do not

apply to the case n =0
when ¢ and 4 are amalgamated. We th

H

en have
T = % p'lT(l2 J;)’g ("moa’) Sﬂmo9 } .............. (6)
If: %P"ragpmog‘l;g (Krnon) ¢m’)a ,
. 2¢
b= —— B .
¢m0 +2)m0 no p'n"a“ Jolz("moa’) (7)

As an example, et us suppose that the initial velocitics are Zer0
and the initia] configuration th

constant pressure Z; thug

¥

at assumed under the influence of a

D=7 27 / an, (x,,7) rdr.
< U
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Now by the differential equation,

() = = (1) () + . ()],

and thus

f Gy e == S (6) ®);
' D = 2ra 7
so that o = — —— 2 J ().
mo

Substitutine this in (7), we sce that the initial value of ¢, is

—47
Guodeo= =i 1 e

My,

Tor values of n other than zero, & and the initial value of ¢
vanish,  The state of the system at time ¢ is expressed by

<l>n|0 = (¢mo)f-=0 . COS ])mut """"""""""" (10)’
w=2 J (Ve (11),

the summation extending to all the admissible values of «,

"

As an example of forced vibrations, we may suppose that Z still
constant with respect to space, varies as a harmonic function of the
time. This may be taken to represent roughly the circumstances
of a small membrane sct in vibration by a train of aerial waves,
If Z = cos gt, we find, nearly as before,

Jolor) .
5 T e
Kmo (q —.pm()) JO (Kmoa')
The forced vibration is of course independent of 8. It will be scen
that, while none of the symmetrical normal components are missing,
their relative importance may vary greatly, especially if there be a
ncar approach in value between ¢ and onc of the serics of quanti.
tics p o If the approach be very close, the cffeet of dissipative
forces must be included.

w = e cos qt 2
pa

905. The pitches of the various simple tones and the radii of
the nodal circles depend on the roots of the equation

J, (ka)=J, () = 0.
If these (exclusive of zero) taken in order of magnitude be

called 2", 2, 2...... 2 , then the admissible values of p

n ?
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272 VIBRATIONS OF MEMBRANES. [204.
are to be found by multiplying the quantities 2 by ¢+a. The
particular solution may then be written

a

w=2J, (z"‘" 7;) {4, cosnb + B " sin nb) cos { cvz""’t - e"“’} ..... , (1),
@

The lowest tone of the group » corresponds to z,"; and since in

. r .
this case J, (z"“’ (—) does not vanish for any value of » less than a,

there is no interior nodal circle. If we puts=2, J, will vanish,

when
{1

1"
7
g -=2",

(13}
that is, when =a ",

n
which is the radius of the one interior nodal circle. Similarly
if we take the root 2", we obtain a vibration with s—1 nodal
circles (exclusive of the boundary) whose radii are
&) (s-1)
z
a—";;,, a-z“'!'m, ...... a—;T)'.

All the roots of the cquation J, (ka) =0 are real. TFor, if
possible, let ka =X +tx be a root ; then «’'a =\ — 7u is also a root,
and thus by (14) § 203,

4:13)»,ufaJ" (er) J, (k') #dr =0,
0

Now J, («k7), J, (¢'7) arc conjugate complex quantities, whose
product is necessarily positive ; so that the above equation requires
that either A or x vanish. That A cannot vanish appears from
the consideration that if xa were a pure imaginary, cach term of
the ascending series for J, would be positive, and therefore the
sum of the serics incapable of vanishing. We conclude that
#=0, or that «is real’. The same result might be arrived at
from the consideration that only circular functions of the time
can enter into the analytical cxpression for a normal component
vibration.

The equation J, (2) = 0 has no equal roots (except zero). From
equations (7) and (8) § 200 we get

AT R
z

ney

! Riemaun, p. 260,
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whenco we see that if J,, J," vanished for the same value of 2, J,,
would also vanish for that value. But in virtue of (8) § 200
this would require that «ll the functions J, vanish for the value

of z in guestion’,

206. The actual values of 2, may be found by interpolation
from Hansen’s tables so far as these extend ; or formule may be
caleulated from the deseending series by the method of suceessive
approximation, expressing the roots directly.  For the important
case of the symmetrical vibrations (» = 0), the values of 2, may be
found from the following, given by Stokes*:

2, _ 5= 254 ‘050661 '()530-&13 + _'_.‘?(_3_2_(_)_515 (1),
T 4s — 1 (45 — 1) * (ds—1)

For n =1, the formula is

gy 1DIOSD 010D 2ushs
T ds+1 " (ks + 1) (ds 127 NS

The latter serics is convergent enough, even for the first root,
corresponding to s =1. The series (1) will suffice for values of s
greater than wnity; but the first root must be ealeulated
independently,  The accompanying table (A) is taken from
Stokes' paper, with a slight difference of notation,

It will be seen either from the formuliv, or the table, that the
difference of successive roots of high order is approximately o,
This is true for all values of n, as is evident from the descending

series (10) § 200,

M. Bourget has given in his memoir very claborate tables of
the frequencies of the different simple tones and of the radii of
the nodal circles. Table B includes the values of 2z, which satisfy

J, (@), forn=0,1,...5 s=1,2, ... 9.

1 Bourget, “*Mdémoire sur le monvement vibratoire des membranes cireulaires,”
Ann, de Uécole normale, t. 111., 1866, In one passage M, Bonrget implies that ho
hag proved that no two Bessel’s functions of integral order can have the samo root,
but I cannot find that he has done s0, The theorem, Liowaver, is probally true;
in the ense of functions, whose orders differ by 1 or 2, it may be easily proved from
the formulie of § 200,

¥ Camb, Phil. Lrans. Vol, 1x, * On the numerical ealeulati»n of a class of defi-

nite integrals and infinile series,”
R. 18
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TABLE A.
g | ZtorJ()=0.| DIt | ZforJ ()=0. Difl
™
Brd "'," 0107
; e 9916 12107 10133
2 175671 2:233%0
- 0975 o 1:0053
3 270406 i 39383
. DY8N 10028
4 STo8 9993 42111 10017
b 47527 o 52428 o
o 9995 - 1:0011
6 57522 - 62439
- - 9947 1:0009
: 7oty 4997 72448 10006
8 TTH16 9908 82454 L0005
) 7ol 8069 92459 1004
10 97513 o 102463 -
o 9909 1:0003
11 107512 9999 11:21G6 10003
12 117511 12:2469

When n is considerable the calculation of the earlier roots

becomes troublesome.

For very high values of n, 2" :n approxi-

mates to a ratio of equality, as may be seen from the consideration
that the piteh of the gravest tone of a very acute scetor must tend
to coincide with that of a long parallel strip, whose width is equal
to the greatest width of the sector,

.
i ]
j oooslaor-xswwu'mé

2404
H:5320
865
11792
14931
18071
21-212
24-353
27494

TApLE B.

n=1

3832

7016
10:173
13:323
16-470
19616
22-760
25903
29:047

=9 n=23 n=4 n=>0
0135 6379 7-h80 8780
8417 9760 11-064 12:339
11:620 13017 14-373 15700
14796 16-224 17-G16 18082
17:960 19410 20-827 232220
91117 22-583 24018 | 25431
24270 95749 27-300 | 28628
27421 23-909 30-371 31:813
30571 32:050 | 33512 34083
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2,600
878,638

The figures represent the more important normal modes of
vibration, and the numbers affixed give the frequeney referred to
18—2
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the gravest as unity, together with the radii of the circular nodes
expressed as fractions of the radius of the membrane.  In the case
of six nodal diameters the frequency stated is the result of a rough
calculation by mysclf.

The tones corresponding to the various fundamental modes of
the circular membranc do not belong to a harmonic scale, but
there are one or two approximately harmonic relations which may
be worth notice. Thus

4 x 1'594 = 2125 = 2:136 nearly,
5 x 1594 = 2:657 = 2:653 nearly,
2 x 1'594 = 3188 = 3'156 nearly;

go that the four gravest modes with nodal diameters only would
give a consonant chord.

The area of the membrane is divided into segments by the
nodal system in such a manner that the sign of the vibration
changes whenever a node is erossed.  In those modes of vibration
which have nodal diameters there is evidently no displacement of
the centre of 1nertia of the membrane, In the case of symmetri-
cal vibrations the displacement of the centre of incrtia is propor-
tional to

[%7, ey rtr = [*

S0 S0

" K 1 ' K . g '
{Jo () + ], (m)} rdr = = S (e

an expression which does not vanish for any of the admissible
values of «, sinee J; (2) and J, (z) cannot vanish simultancously.
In all the symmetrical modes there is therefore a displacement of
the centre of inertia of the membrane,

207. Hitherto we have supposed the cireular arca of the
membrane to be complete, and the circumference only to be
fixed; but it is evident that our theory virtually includes the
solution of other problems, fur example—some cases of a mem-
brane bounded by two concentric circles. The complete theory
for a membrane in the form of a ring requires the second Bessel's
function,

The problem of the membrane in the form of a semi-circle
may be regarded as already solved, since any mode of vibration
of which the semi-circle is capable mnst be applicable to the
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complete circle also. In order to see this, it is only necessary
to attribute to any point in the complementary semi-circle the
opposite motion to that which obtains at its optical image in
the bounding diameter. 'T'his line will then require no constraint
to keep it nodal, Similar considerations apply to any sector
whose angle is an aliquot part of two right angles.

When the opening of the sector is arbitrary, the problem
may be solved in terms of Bessel's functions of fractional order.
If the fixed radii are 8= 0, 8 = 3, the particular solution is

7wl

w= P, () sin2 cos (pt—e) iviinnnn (1),
o B

where v is an integer.  We sce that if B be an aliquot part of
vr -+ B is integral, and the solution is included among those already
used for the complete circle.

An interesting ease is when 8= 27, which corresponds to the
problem of & complete circle, off which the radius 8 =0 is con-
strained to be nodal.

g, 88.

——

\

We have
w=PJ,, (k) sin 08 cos (pt - ¢).

When » is even, this gives, as might be expected, modes of
vibration possible without the coustraint; but, when v is odd,
new modes make their appearance. In fact, in the latter case
the descending series for J terminates, so that the solution is
expressible in finite terms.  Thus, when p=1,

Sm,m‘sin%@ cos (pt—€) ooviiinnin(2).
Jer

The values of « are given by

w=rP

sinke =0, or ka=mm.
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Thus the ecireular nodes divide the fixed radius into equal
parts, and the series of tones form a harmonic seale,  In the
case of the gravest mode, the whole of the membrane is at any
moment defleeted on the same side of its cquilibrium position,
It is remarkuble that the application of the coustraint to the
radius @ = 0 makes the problemn casier than betore,

If we take v=3, the solution is
1 /sin xr \
w=1’————(—— ------- —cosm-)sm:’!ﬁ cos (pl=¢€)eveiinao(3).
Jer\ : (pt—e) ®)

I'ig, 89,

In this case the nodal radii are

o0 4
6=2r, 9=4

o
and the possible tones are given by the equation

L O N ) )

To calculate the roots of tan 2 = = we may assume
z=m4+3r-y=X—y,

where # is a positive quantity, which is small when z is larae,
o

Substituting this, we find cot y = X — g,

whence

RNl 7o 1y
e e T
This cquation is to be solved by successive approximation.
It will readily be found that

146

y= X4 2y By 140y
3 15 105 :




207.] EFFECT OF SMALL LOAD. 279

s0 that the roots of tan @ =g are given by

13 M6 v,

2
— ) \d — 7—l —— 7—3 — A i,
g=X-X"—5 15 105

where X=(m+1%)m

In the first quadrant there is no root after zero since tanx > w,
and in the sceond quadrant there is none beeause the signs of
» and tanz are opposite.  The first root after zero is thus in
the third quadrant, corresponding to m = 1. Iiven in this case
the serics converges sufliciently to give the value of the root
with considerable accuracy, while for higher values of m it is
all that could be desired.  The actual values of @ @ o are 14303,
24500, $4709, 44747, 54818, G484, &e.

908, The effect on the periods of a slight inequality in the
density of the cireular membrane may he investiganted by the
general method § 90, of which several examples have already
Leen given. It will be sufficient here to consider the case of a
small load I attached to the membrane at a point whose radius
veetor 18 77,

We will take first the symmetrical types (n=0), which may
still be supposcd to apply notwithstanding the presence of M The
kinctic energy 7'is (G) § 204 aJtered from

1.]5 P'n-a’a J‘o’2 (I‘moa) (ﬁmoa tO _‘% Pwag ‘]'0,2 (Kmoa) (l;mog + “1. ﬂ[ ‘ﬁmoq J02 (Kmorl)!

and therefore
2

o /
1) 2, I) —_ 'A[_ ']_:)_(L('_nnr )
mo *t mo T

pra® of )" (%,,1)

where P, 2 denotes the value of p,,.', when there is no load,

The unsymmetrical normal types are not fully determinate for
the unloaded membrane; but for the present purpose they must
be taken so as to make the resulting periods a maximum or
minimum, that is to say, so that the effect of the load is the
greatest aud least possible. Now, since a load can necver raise
the pitch, it is clear that the intluence of the load is the least
possible, viz, zero, when the type is such that a nodal diameter (it
is indifferent which) passes through the point at which the load is
attached. The unloaded membrane must be snpposed to have two
coincident periods, of which one s unaltered by the addition of the
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load. The other type is to be chosen, so that the alteration of
period is as great as possible, which will evidently be the case
when the radius veetor ¢ biscets the angle between two adjacent
nodal diameters.  Thus, if »” correspond to 6 = 0, we are to take

W=, J, (x,.1)cosnf;
so that (2) § 204

',l, = i pwag ¢5"‘"2 (]"’2 (K"I’Ia) + % 11[4;""” ']"’ (K”UI‘,J).
The altered p,,? is therefore given by

o) 2 v
pm“’ ;Pm"’=1 __“.‘.].[ J"..A(.’.‘!."zl(%mm””_"_””(g)'

pma* J.* (k

mh

Of course, if ' be such that the load lics on one of the nodal
circles, ncither period is affected.

For example, let A be at the centre of the membrane, J, (0)
vanishes, except when n=0; and J,(0)=1. It is only the
symmetrical vibrations whose pitch is influenced by a central load,
aud for them by (1)

eopoaq__ M
])mo M Pmo - 1 Jo'a (Rfm;a) pwa,-------u.. .......‘(3),
By (6) § 200 J) (2) =~ J,(2),

so that the application of the formula requires only a knowledge of
the values of J (z), when J, (2) vanishes, § 200. For the gravest
mode the value of J' (x,.a) is 51903, When Kmo® 1S consider-
able,

Iy (kgt) = 2+ Tk

approximately ; so that for the higher components the influence of
the load in altering the pitch increases.

The influence of a small irregularity in disturbing the nodal
system may be calculated from the formule of § 90. The most
obvivus effect is the breaking up of nodal diameters into curves
of hyperbolic form due to the introduction of subsidiary sym-
metrical vibrations, In many cases the disturbance is favoured
by close agrecment between some of the natural periods,

209.  We will next investigate how the natural vibrations of
a uniform membrane are affected by a slight departure from the
exact circular form,

1 The suecceeding values are approximately -341, 271, 232, 206, -187, &eo.
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Whatever may be the nature of the boundary, 10 satisfies the
equation

Lw 1dw 1 dw
— = — ey =0 vvreninnienneas 1),
dr + r dr +7*" de¢* +xtw=0 (1)

where « is a constant to be determined. By Fourier’s theorem w
may be expanded in the series

w=w,+w cos (§ +a)+w,cos2(@+0a,)+.....
+w,cosn (B+a,)+ ... ,

where w,, w,, &e. are functions of » only. Substituting in (1), we
sec that w, must satisfy

2 b
dw,  1dw, IR
& o dr 7?

> w,=0,
of which the solution is
w, ot J, (k1) ;

for, as in § 200, the other function of » cannot appear.

The general expression for w may thus be written
w=A,J, (kr) +J, (rr) (4, cos 6 + B, sin )
+ oo+, (kr) (A, cosnf + B, sinnd) + .ooiiueen (2).

For all points on the boundary w is to vaunish.

In the ease of a nearly circular membrane the radius vector is
nearly constant. We may take r=a+ 8, &r being a small
function of . Hence the boundary condition is

0=d,[J,(ka) + £brJ) (k)] + ......
+ [, (ka) + «brd, (ka)] [4, cosnb + B,sinnb]

which is to hold good for all values of 6.

Let us consider first those modes of vibration which are nearly
symmetrical, for which thereforc approximately

w=A,J, (k).

All the remaining cocfficients are small relatively to 4, since
the type of vibration can only differ a little from what it would
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be, were the boundary an exact circle. Hence if the squares of
the small quantities be amitted, (3) Locowes

A, [, (ka) 4+ &8 J) (k)] + J, (xa) [, cos 6 + B, sin 6]
+ oo, (k) [, cosnd + B, sinnf] + ... =0......(+).

If we integrate this equation with respect to @ between the
limits 0 and 27, we obtain

2w J, (k) + J, (ka) fOJ k8rdf@ =0,

J a+x/2”8 s 0 (3)
or K Yot =00, 5

° 1] 2 !
which shews that the piteh of the vibration is approximately the
same as if the radius vector had uniformly its mean valie.

This result allows us to form a rough estimate of the pitch of
any membrane whose boundary is not extravagantly clongated,
If ¢ denote the area, so that po is the mass of the whole mem-
brane, the frequency of the gravest tone is approximately

27 X 2404 x VZL cervineenreanrnnnn (6).

In order to investigate the altered type of vibration, we may
multiply (4) by cosn6, or sinn, and then integrate as before,
Thus

n 3
A, 7 (xa) [ w81 cosnf 6 +m4,,(kc) =0 |
0

(D),
A, (ea) [ kBr sin b dB + B, J, (k) = 0 f
J

0

which determine the ratios 4, : 4, and Bood,

If Or=8ry+ 8r 4+ . 4+ 81+ ...
be Fourier's expansion, the final expression for w may be written,

w:d =J, (kr)
, J, (k7)) dr, J, (kr) 8r, X
land KJu (K(l) {_J;(K(l:) e R -—‘—I’;(;u—)" + ... }......(6).

When the vilration is not approximately symmetrical, the
question hecomes more complicated.  The normal modes for the
truly circular membrane are to some extent indeterminate, but the
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irregnlarity in the boundary will, in general, remove the indcter-
minateness.  The position of the nodal diameters must be taken,
so that the resulting periods may have maximum or minimum
values.  Let us, however, suppose that the approximate type is

w=A,J, (kr)cosvf....... A ¢

and afterwards investignte how the initial line must be taken in
order that this form may hold goad.

All the remaining coefficients being treated as small in compa-
rison with 4,, we get from (4)

A, J, (ka) + ... + AJJ, (ka) + & brd, (ka)] cos v0
+ I3, J, (ka) sin v +......
+ J, (ka) [A, cosnf + B cosnf]+...=0...... (10).

Multiplying by cos v8 and integrating,

2
wd, (ka) + xd, (K(l)/ Sr cos?vOdl = 0,
0
or

m

J, [/ca + Ic/% Sr cos® v (lﬁ] =0,
0

which shews that the cffective radius of the membrane is

a-%-_/-:’rSrcos.2 vl {f—f R ¢ 5§ )

The ratios of A, and B, to A, may be found as before by in-
tegrating equation (10) after multiplication by cos n, sin nf.

But the point of greatest interest is the pitch.  The initial line
is to be so taken as to make the expression (11) a maximum or
minimum. If we refer to a line fixed in space by putting 8 —a
instead of 6, we have to consider the dependence on a of the
quantity

o
8rcos’v (60 —a) db,
0
which may also be written

ar R34 ,
cos® v f &r cos® v8dO + 2 cos va sin vzf 8r cos v0 sin vldll
0 0

2
+ sin? vzf Srsin®vlddd .........ooil . (12),
0
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and is of the form

A cos®va + 2B cosvasinva + Csin?pz,

A, B, C being independent of a. There are accordingly two
admissible positions for the nodal diameters, one of which makes
the period & maximum, and the other a minimum. The diameters
of one set biscct the angles between the diameters of the other
sCt.

There are, however, cases where the normal modes remain inde-
terminate, which happens when the expression (12) is independent
of @ This is the case when 3r is constant, or when 8¢ is propor-
tional to cos »f. For example, if 8 were proportional to cos 26,
or in other words the boundary were slightly elliptical, the nodal
system corresponding to n=2 (that consisting of a pair of per-
pendicular diameters) would be arbitrary in position, at least to
this order of approximation. But the single diameter, correspond-
ing to n=1, must coincide with one of the principal axes of
the cllipse, and the periods will be different for the two axes.

210. We have seen that the gravest tone of a membrane,
whose boundary is approximately circular, is nearly the same as
that of a mechanically similar membrane in the form of a circle of
the same mean radius or area, If the area of a membrane be
given, there must evidently be some form of boundary for which
the pitch (of the principal tone) is the gravest possible, and this
form can be no other than the circle, In the casc of approximate
circularity an analytical demonstration may be given, of which the
following is an outline.

The gencral value of w being
w=d,J{kr) +... +J, («r) (4, cosnb + Bsinnb) + ...... (1),

in which for the present purpose the cocflicients 4, B,,... are small
relatively to 4, we find from the coudition that w vanishes
when 7= a4+ or,

A, J, (ka) + kA J) (ka) 8r + A T (ka). (81) + ...,
+ & [{J, (,a)+ wJ,’ (ka) 87 + ... }{ 4 cos nf + B, sin nf)]=0...(2).

Hence, if
8r=1.c050+pB,sin 0+ ...+ a,cosn0+ B, sinnb + ...... (3),
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we obtain on integration with respect to € from 0 to 2,

[Ty

2,74 5 """ . (1,54 8,)

n=<

43 . (o, d, +B,BYJ =0 evvrvrannns (4),

n= n 1}

from which we sce, as before, that if the squares of the small
quantities be neglected, J, (ka) =0, or that to this order of ap-
proximation the mean radius is also the effective radius, In
order to obtain a closer approximation we first determine A1 A4,
and B, : A, by multiplying (2) by cos 26, sinnf, and then in-
tegrating between the limits 0 and 27 Thus

.A J =— K1 'Ao'Tol Bnt,"=-K,B” AO'IO’ ...... veo (5).

Substituting these values in (4), we get

J;(m)=,wz’: I:(a +B,.*){ Iy 7}] ...... (6).

1l

Since J satisfies the fundamental equation
JII ] J, J _ -
[ +I—C(—L o+ °-—O""""""""'-------(I),

and in the present case J,=0 approximately, we may replace

J,’ by ~;¢}ﬁ"°l' Equation (6) then becomes

Tt =3 S G4 B r S )

Lot us now suppose that a + da is the equivalent radius of the
membrane, so that

J, [k (a+da)] =, (ka) + J, (ka) kda=0
Then by (8) we find

. di=—}eS [( I+8] ){ ] }] ereee (9)

2ra

Again, if a + du’ be the radius of the truly circular membrane
of equal area,

v ] \ 2 ki .
dd =, N @B v (10);

| YRS i idntaits timiten-)
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so that

-

1«
dd —da=5-X
2 n=1

s v ]

The question is now as to the sign of the right-hand member.

If n=1, and z be written for x¢,
1+ 4 2)

J, (%)
yanishes approximately by (7), since in general J) = —. 7, and
in the present case o, (z) =0 nearly.  Thus da' — da =0, as should
evidently be the case, since the term in question represents mercly
a displacement of the civcle without an alteration in the form of
the boundary,  When =2, (8) § 200,

9
J2= z 'jl - Jo,

from which and (7) we find that, when Jy= 0,

J! -4
T e (12),

2
whence

) 1, , -a/?
i - da= (s, +/33)(§ 1) e (13),
which is positive, since 2= 2404,
We have still to prove that

142 j"' (=)
» ()
is positive for integral values of n greater than 2, when z = 2404,
For this purpose we may avail ourselves of a theorem given in
Riemanw's LDarticlle Differentialyleichungen, to the cffect that
neither o, nor /. has a root (other than zero) less than 2. The
differential equation for J, may be put into the form

T, (z) a2 N
Log it @ =) L @=03
while initially J, and J (:Ls well as EZ(l(f»i:_) are positive. Accord-

.

‘s begins by incrcasing and does not cease to do so

ingly -
8V log =

before z=n, from which it is clear that within the range z=0 to
(=]
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z=n, neither J, nor J can vanish, And since J, and J,' are
Heth posilive st 7 = n, i follows that, when n s an integer greater
than 2404, da’ — du is positive, We conclude that, unless o, B,
oy ... all vanish, do” is greater than de, which shews that in the
cuse of any membranc of approximately cireular outline, the circle
of equal arca exceeds the cirele of equal pitceh,

We have seen that a good estimate of the pitch of an approxi-
mately circular membrane may be obtained from its area alone,
but by means of cquation (9) a still closer approximation may be
cffected.  We will apply this method to the case of an cllipse,
whose semi-axis major is 22 and ceeentricity e

The polar equation of the boundary is
r=R{1-c— 7 ¢ +..... 4 Fctcos 20 4.} onnn (14);
so that in the notation of this scetion
a=R1-~}d—Fe), o,=icL
Accordingly by (9)

e
da= T}
or by (12), since #l =2z = 2404,

2779
de ==

‘R ! (2) _1__}
3 R'{m Ty

[P

Thus the radius of the circle of equal pitch is

| 1, 9779¢
s duenft-1e-270)

in which the term containing ¢* should be correct.

The result may also be expressed in terms of ¢ and the area o.

We have
5
L= \/ 1+ - G +§28>

a+ da:«/—(l —§(’)Zo ‘) N ¢ TR

from which we see how small is the influcuee of a moderate eccen-
tricity, when the area is given,

and thus
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911. When the fixed boundary of a membrane is neither straight
nor circalar, she preblomn of defermiving its vilrations presents
difficulties which in general could not be overcome without the
introduction of functions not hitherto discussed or tabulated, A
partial exception must be made in favour of an clliptic boundary ;
but for the purposes of this treatise the importance of the problem
is scarcely sufficient to warrant the introduction of complicated
analysis.  The reader is therefore referred to the original investi-
gation of M. Mathicu®. Tt will be saflicient to mention here that
the nodal system is composed of the confocal ellipses and hyper-
bolas.

Soluble cases may be invented by means of the general
solution

w=Ad,J,(kr)+ ...+ (A, cosnd + B,sinnb) J, (kr) +......
For example we might take
w=dJ, (kr) =N J, (xr) cos 0,

and attaching different values to A, trace the various forms of
boundary to which the solution will then apply.

Useful information may sometimes be obtained from the
theorem of § 88, which allows us to prove that any contraction of
the fixed boundary of a vibrating membrane must cause an cleva-
tion of pitch, because the new state of things may be conceived to
differ from the old merely by the introduction of an additional
constraint,  Springs, without inertia, are supposed to urge the
line of the proposed boundary towards its equilibrium position,
and gradually to beeome stiffer. At cuch step the vibrations
become more rapid, until they approach a limit, corresponding to
infinite stifiness of the springs and absolute fixity of their points
of application. It is not neeessary that the part cut off should
have the sane density as the rest, or even any density at all.

For instance, the pitch of a regular polygon is intermediate
between those of the inseribed and civewinseribed circles.  Closer
limits would however be obtained by substituting for the circum-
scribed circle that of equal area according to the result of § 210.
In the case of the hexagon, the ratio of the radius of the circle of
equal arca to that of the circle inscribed is 1050, so that the mean

! TLiouville, TRGR,
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of the two limits cannot differ from the truth by so much as 2% per
cent. I the sume way we might conclude that the sector of
circle of G0° is a graver form than the equilateral triangle obtained
by substituting the chord for the arc of the circle,

The following table giving the relative frequency in certain
caleulable cases for the gravest tone of membranes under similar
mechanical conditions and of equal area (s), shews the effect of a
greater or less departure from the circular form.

Circle......... e e 2404 . /7 = 4261,

Square....., PP v V2.m = 4443,

Quadrant of a circle............ e {)'1230. N = 4551,

Scctor of a circle 60%....ur. e, e 63794/ 7 = 4616,
13

Rectangle 3 X 2.cuvevervininniinniennnnnnss ~6—.7r=4'624«.

Equilateral triangle.......... vrviveonnene 2./ tan 307 = 4774,

Semicircle....ieiveiiininiiiiiininiinnn., 38324/ 2 = 4808,

Rectangle 2x 1........... vevenes veevaerieaoes \/ 5
. : X 5 =4967.
Right-angled isosceles triangle......, } ™ 2 967
10
Rectangle 8 x 1......vvvvvan.ne.. ™ 3=5'736.

For instance, if a squarc and a circle have the same areca, the
former is the more acute in the ratio 4443 ; 4-261.

For the circle the absolute frequency is

27 x 2404 c«/g_-, where ¢=+/T, + +/p.

In the ease of similar forms the frequency is inversely as the
linear dimension.

212. The theory of the free vibrations of a membrane was
first successfully considered by Poisson'. His theory in the
case of the rectangle left little to be desired, but bis treatment

L Aém, de UAcadémie, t, vur, 1829,
R. 19
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of the circular membrane was restricted to the symmetrical
vibrations, Kirehboffs solution of the simlar, out tavele ware
difficult, problem of the circular plate was publishied in 1850, and
Clebsch's Theory of Blasticity (1862) gives the general theory of the
cireular membrane including the effects of stiffness and of rotatory
incertia. It will thercfore be seen that there was not much left
to be done in 1866 ; nevertheless the memoir of Bourget already
referred to contains a uscful discussion of the problem accom-
panied by very complete pumerical results, the whole of which
however were not new,

913, In his experimental investigations M. Bourget made use
of various materials, of which paper proved to be as good as any.
The paper is immerscd in water, and after removal of the superfluous
moisture by blotting paper is placed upon a frame of wood whose
edges have been previously coated with glue. The contraction of the
paper in drying produces the necessary tension, but many failures
may be met with before a satisfactory result is obtained.  Even
a well stretched membrane requires considerable precautions in
use, heing liable to great variations in pitch in consequence of the
varying moisture of the atmosphere. The vibrations are excited
by organ-pipes, of which it is necessary to have a series proceeding
by small intervals of pitch, and they are made evident to the eye
by means of a little sand scattered on the membrane, If the
vibration be sufficiently vigorous, the sand accumulates on the
nodal lines, whose form is thus defined with more or less precision.
Any inequality in the tension shews itself by the circles becoming
clliptic,

The principal results of experiment are the following :—

A circular membranc cannot vibrate in unison with every sound.
It can only place itself in unison with sounds more acute than
that heard when the membrane is gently tapped.

As theory indicates, these possible sounds are separated by less
and less intervals, the higher they become.

The nodal lines are only formed distinetly in response to
certain definite sounds. A little above or below confusion cnsucs,
and when the piteh of the pipe is decidedly altered, the membrane
remains unmoved.  There is not, as Savart supposed, & continuous
transition from one system of nodal lines to another.
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The nodal lines are circles or diameters or combinations of
cirelos and Jamaters, as theory reruives, Howaver, whea the
number of diameters exceeds two, the sund tends to heap itself
. confusedly towards the middle of the membrane, and the nodes

are not well defined.

The same general laws were verified by MM, Bernard and
Bourget in the case of square membranes®; and these authors con-
sider that the results of theory are decisively established in oppo-
sition to the views of Savart, who held that a membrane was
capable of responding to any sound, no matter what its pitch
might be. But I must here remark that the distinction between
forced and free vibrations does not scem to have been sufficiently
borne in mind. When a membrane is set in motion by aerial
waves having their origin in an organ-pipe, the vibration is
properly speaking forced. Theory asserts, not that the membrane
is only capable of vibrating with certain defined frequencies, but
that it is only capable of so vibrating freely. When however the
period of the force is not approximately equal to one of the
natural periods, the resulting vibration may be insensible,

In Savart’s experiments the sound of the pipe was two or three
octaves higher than the gravest tone of the membrane, and was
accordingly never far from unison with one of the series of over
tones, MM. Bourget and Bernard made the experiment under
more favourable conditions, When they sounded a pipe somewhat
lower in pitch than the gravest tone of the membrane, the sand
remained at rest, but was thrown into vehement vibration as unison
was approached. So soon as the pipe was decidedly higher than the
membrane, the cand returned again to rest. A modification of the
experiment was made by first tuning a pipe about a third higher
than the membranc when in its natural condition. The membrane
was then heated until its tension had increased sufficiently to
bring the pitch above that of the pipe. During the process of
cooling the pitch gradually fell, and the point of coincidence
manifested itself by the violent motion of the sard, which at the
beginniug and end of the experiment was sensibly at rest.

M. Bourget found a good agreement between theory and obser-

vation with respeet to the radii of the circular nodes, though the
test was not very precise, in consequence of the sensible width of

Vodnn. de Chim, vx. 449—470, 1860,
19—2
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the bands of sand; but the rclative pitch of the various simple
tones deviated considerably from the theoretical estimates. The
committee of the French Academy appointed to report on
M. Bourget's memoir suggest as the explanation the want of
perfect fixity of the boundary. It should also be remembered that
the thecory proceeds on the supposition of perfect flexibility—a
condition of things mot at all closely approached by an ordinary
membrane stretched with a comparatively small force. But
perhaps the most important disturbing cause is the resistance of
the air, which acts with much greater force on a membrane than
on a string or bar in conscquence of the large surface exposed.
The gravest mode of vibration, during which the displacement is
at all points in the same dircetion, might be affected very
differently from the higher modes, which would not require so
great a transference of air from onc side to the other,




CHAPTER X.

VIBRATIONS OF PLATES.

214. I~ order to form according to Green’s method the equa-
tions of equilibrium and motion for a thin solid plate of uniform
isotropic material and constant thickness, we require the expression
for the potential energy of bending. It is easy to sce that for each
unit of area the potential energy V is a positive homogeneous
symmetrical quadratic function of the two principal curvatures.
Thus, if p,, p, be the principal radii of curvature, the expression
for V will be

1 1 2u
A <"‘T+_+ ——) 1600000 1rretsrsrIsr e 1)
PP iy @

where 4 and p arc constants, of which 4 must be positive, and
p must be numerically less than unity., Moreover if the material
be of such a character that it undergoes no lateral contraction
when a bar is pulled out, the constant x4 must vanish, This
amount of information is almost all that is required for our
purpose, and we may therefore content ourselves with a mere
statement of the relations of the constants in (1) with those by
means of which the elastic properties of bodies are usually de-

fined,

From Thomson and Tait's Natural Philosoply, § 630, 642,
720, it appears that, if b be the thickness, ¢ Young’s modulus,
and w the ratio of lateral contraction to longitudinal elongation
when a bar is pulled out, the expression for V is
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v 1 1 2
Ve=orhi— {'—" —+ — }
YR R PP
Qb” { ]:+l 2 _ _2»_(1"— /.L)} o\
) (l ) (Pl Pa) pp, )T OF

If w be the small displacement perpendicular to the plane
of the plate at the point whouse rectangular coordinates in the

plane of the plate are @, y,

1,1 s, L_dw dﬁL(ilf?P_)’
aTh VY o, dat dyt T \dudy

and thus for a unit of arca, we have

IR U PSR Yo RR (AL iw) 3
V_ 24 (1 - /1.“) [(V 20) 2 (1 /") {(l.l:a d:l/" (d:l:(l—;—l/ (0)»
which quantity has to be integrated over the surface (S) of the
plate.

215, We proceed to find the variation of ¥, but it should be
previously noticed that the second term in V, namely f f s

represents the total curvature of the plate, and is therefore du-
pendent only on the state of things at the edge.

“’=Fm

{Vw V0w — (1— )8 —}3} dS.....(1);

l

so that we have to consider the two variations

ffv w.vow.dS and fS ~—-d;5'

1 Tho following comparison of the notations used by the principal writers may
save trouble to thoso who wish to consult the original menoirs,

Young’s modulus=% (Clebsch)=M (’11101113011):-“--_;—-- {Thomson)

"(*'7': 4 (Thomson) =q (Kirchhoft and Donkin)=2K -, +3 ! (Kuchhofi)

Ratio of lnteral contraction to longitudinal elongation

(l'homson)_ —-2—0 (Kirchloff),

=pu (Clebsch and Donkin)=o (Thomson) = m "

Poisson assumed this ratio to be }, and Werthum +
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Now by Green'’s theorem
ffv’w V6w, dS=ff“\7‘eu .ow.dS

fd?n LOw . ds +fV w da’“_’ dS oo @),

in which ds denotes an clement of the boundary, and ;ﬁ denotes
differentiation with respect to the normal of the boundary drawn

outwards,

The transformation of the sccond part is more difficult. We
have

ds f f {d’w (&o d'w *dw _9 d'w d’Sw}
P.iP: dJ dr* duwdy daxdy
The quantity under the sign of integration may be put into
the form
d (ddwdw ddw d’w d (dow d'w  ddw d’iy)
PG =R o)+ 1 a5 G = y

Now, if I be any function of z and ,
fﬁ—ligd.vdy=flf’sin0ds

ffgd:::d;:;:fﬁ"cosﬂds

where 6 is the angle between = and the normal drawn outwards,
and the integration on the right-hand side extends round the
boundary. Using these, we find

5 f f dS _ [gesin o (B0 Tw _dbw v
PP, dy da*— dz dredy

Bwdw  ddw d'w
+ |dscos @ {7{; aF " dy dul_/}

If we substitute for @_w, B their values in terms @1‘3,
de ' dy dn

o , from the cquations (sce Fig. 40)

ds ’
ddw _ a’Sw o5 0 — fl.&_ sin
dz = dn © ds )
c@_}_ (EBw ) 0+(38w <0
dy — dn’ ds
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Tig. 40,

we obtain

Bj‘f(iS fd (ZSw{ d2 o "‘gil-.‘.;_. 9 sin 8 cos d'w }
PPy l du (l_/

ddw . dw  d'w w .
+fds ds {cos fsin 8 (d.c" - —d_/ ) + (sin®@ — cos 9) J}U} .(3).

The second integral by a partial integration with respect to ‘
s may be put into the form ‘

fSw {cos fsin B(ill pa C-cll—l—‘,)) + (cos® 8 — sin’ §) —;—i{/} ds.

Collecting and rearranging our results, we find

3V"1>(fb wvwswds
Ava W, dw  d*w
/Bz { — ) ds (cosﬁsm()( i ZZ:E‘)

2 gy QW
+ (cos® 8 — sin G)ch[y)}

00 Fw

d"w
+f?l'i' (la vwv wt (1-p) (005 edx dif

+ 2 cos fsin 9 dw J)}:I . (6).

There will now be no difficulty in forming the equations of
motion, If p be the volume density, and ZpbdS the transverse
force acting on the element dS,
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8V—fprb8wdS +ffpbit)8w(lﬁ'= 0 iverennnn D!

is the genoral variational equation, which must be true whatever
function (consistent with the constitution of the system) Sw may
be supposed to be. Hence by the principles of the Caleulus of

Variations
qbﬂ K Z 0 8
'1_?3'*(1‘“?)‘710— +0=0uerreirianen (8),

at every point of the plate.

If the cdges of the plate be free, there is no restriction on the

hypothetical boundary values of 8w and Efz@,?» and thercfore the

cocfficients of these quantities in the expression for 8 Vmust vanish.
The conditions to be satisfied at a free edge are thus

dy'w d . dw  dw 7
T (1-p) ds {cos Gsin 6 (il;f/'j — JI‘)
+ (0032 6 — Sil).2 9) d*w ] = ()
dad J/J } o)
#VQ/IU'{" (1 — #) COS? eé_nlzu + Sing 0 .(_ZQ‘w """ .
' (ch ([!/2
2!
+2cos 0 sin b j_zu =0
dudy )
ddw

If the whole cireumference of the plate be clamped, 8w =0, = 0,

and the satisfaction of the boundary conditions is already sceured.
. Bw . .
If the cdge be ‘supported’?, dw=10, but fﬂll:) is arbitrary. The
second of the cquations (9) must in this case be satisfied by w.
216. The boundary equations may be simplified by getting
rid of the extrinsic element involved in the use of Cartesian co-
ordinates. Taking the axis of a parallel to the normal of the

bounding curve, we see that we may write

dw ., W .o dw dw
cost05 . +sintf, , +2cosfsind | =y
det dy* + dady — dn’
dw  dw
Also 9’(U = —— enas Ceveeteresesirenens 1
v did + do* (L),
! Tho rotatory inertia is here neglected. 7 Compare § 162.

23 Speemmenren '




298 VIBRATIONS OF PLATES, [216.

where o is a fixed axis coinciding with the tangent at the point
2

. . dw . - dw .
under consideration. In general P differs irom ERE To obtain
ag
the relation between them, we may proceed thus, Expand w by
Maclaurin’s theorem in ascending powers of the small quantities

n and o, and substitute for 2 and o their values in terms of s, the
arc of the curve,

Thus in general

dlU a’w (‘l2 W 1 d’w (Z w
— s el Rpbihhd IR Yoo gt
w=1w, + 'n.on+d 0a‘+§ ["o.,n +dn°(l 0na'-i-2 b ,,oa + ...,

2
while on the curve o =8+ cubes, n=- 1}-% +..., where p is the

radius of curvature. Accordingly for points on the curve,
dw & dw d'w

w=w,~4 ,- =4 ~— 8§+ 4 8 +cubes of g

ot an, 5V da, ST Haey !

and therefore

@ = @ - 1 c_lz_v 9) .
ds* " da* pdp T 2
whence from (1)
dw ldw d*w
z 33 -— - . —
V b (l’n’ + P dn‘ + dsﬁ """""""""""""" (3)'

We conclude that the second boundary condition in (9) § 215
may be put into the form

d'w ldw  dw
"C'an“'i"/l«(; an +-IS‘§)=O .................. (4)
In the same way by putting 8= 0, we see that

cos B sin 6 (3—’5‘,’ - %) + (cos® @ — sin’ 6)

d'w

ddy

. : d*w .

is equivalent to Tnde? where it is to be understood that the axes

of n and o are fixed. The first boundary condition now becomes

d _, d/dwy _ <
VYt (=g ds <Ell'ida)_0 e (8),

If we apply these equations to the rectangle whose sides are
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parallel to the coordinate axes, we obtain as the conditions to be
satisficd along the edges parallel to y,

d (d*w . (l’wl _ b
@{;&T\" (2-p) ) =0
................. (©).
w dw _ 0
dat dj;j‘ -

In this case the distinetion between ¢ and s disappears, and p, the
radius of curvature, is infinitely great. The conditions for the
other pair of edges are found by interchanging  and . These
results may be obtained cqually well from (9) § 215 dixectly, with-
out the preliminary transformation.

217. If we suppose Z =, and write

2
E?(qf__;?) =0 e 1),
the general equation becomes
WHETw=0 ..ot e (2),
or, if w e« cos (pt—e),
VW= Waieierviineiiiieeninn (3),
where K= PP Gl (4).

Any two values of w, = and v, corresponding to the same
boundary conditions, are conjugate, that is to say

j f UOAS = 00nreinrieivnririneienen ),

provided that the periods bo different. In order to prove this
from the ordinary differential equation (3), we should have to
retrace the steps by which (3) was obtained. This is the method
adopted by Kirchhoff for the circular disc, but it is much simpler
and more direct to use the variational equation

5V + pb f f B80S =0 e (©),

in which w refrs to the actual motion, and 8w to an arbitrary
displacement consistent with the nature of the system. dVisa
symmetrical function of w and dw, as may be seen from § 215, or
from the general character of V (§ 94.)
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If we now suppose in the first place that w=1u, dw =1, we
have

8V =pbp’ ffuvdS;

and in like manner if we put w = v, 8w =%, which we are equally
entitled to do,

817 = pbp™ f fuvclS,

whence

(»*—p* f fuvdS =0 i (7).

This demonstration is valid whatever may be the form of the
boundary, and whether the edge be clamped, supported, or free, in
whole or in part.

As for the case of membranes in the last Chapter, equation
(7) may be employed to prove that the admissible values of p* are
real; but this is evident from physical considerations.

218, For the application to a circular disc, it is necessary to
express the equations by means of polar coordinates.  Tuking
the centre of the disc as pole, we have for the general equation to
be satisfied at all points of the arca

(v =) w=0........ e 1),
& 1d 1 &
/ 3 8 2 = - - -5 R
where (§ 200) v dr? + 7 dr + ¢ &

To cxpress the boundary condition (§ 216) for a free edgo
(r = a), we have

d oy = d » d »(vl_“u_)“)__ d d (dw) dw _ dw

VY=V ds(dnda T add dr\adf)’ ds* T a*d6*’

p = radius of curvature = a; and thus

dF\ * dr «’

dw (do 1 ‘.’"’?_U>_ 0
drt 'u'<w e Tt det) T

d (d’w 1 (lw) d? (2 ~pdw 3 —_/~°w> =0

dr\dr* " v dr 2

e (2),

After the differentiations are performed, 2 is to be made cqual
to «.
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If w be expanded in Fourier's serics
w=w,+w +...+w, +..,
each term scparatcly must satisfy (2), and thus, since
w, o cos (nf — a),

2 9 _ _
d <(l w, 1 (wa) o (~ pdw, 3—p 'w") _0

dar\dr* " dr @ dr o
L L HO R ).
dr? (a, dr @)=

The superficial differential equation may be written
(V'+4) (V=) w=0,
which becomes for the general term of the Fourier expansion

& 1d » N/&  1d »° |,
(&P* "T’**“)(rh-‘**;zz;"zﬁ"‘)w»—"'

rdr 1
shewing that the complete value of w, will be obtained by adding
together, with arbitrary constants prefixed, the general solutions of

& 1d » .
((jp'i';(jr—,—gtx‘) TR | FOTPOTRS (4).

The equation with the upper sign is the same as that which
obtains in the case of the vibrations of circular membranes, and
as in the last Chapter we conclude that the solution applicable
to the problem in hand is w, o J, (k7), the second function of »
being here inadmissible,

In the same way the solution of the equation with the lower

sioen is w_ = J. (ikr), where 1=,/ —1 as usual.
=] n n 4

The simple vibration is thus
w, = cos nf {ad, (k1) + BJ, (ikr)} +sin n8 [y, (wr) + 8, (ixr)}.

The two boundary equations will determine the admissible
values of # and the values which must bo given to the ratios
a: B and y : & From the form of these equations it is evident

that we must have a: B=r :8,

and thus 1, may be expressed in the form

-

w, =P cos (nf —a) {J, (¥r) + 1 J, (ixr)} cos (Pt —€)veuniieninn (5).
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As in the case of a membrane the nodal system is composed of
the n diameters symmetrieally distributed round the centre, but
otherwise arbitrary, denoted by

cos (M —a) =0 .cooveriiniiiin. (),

together with the concentric circles, whose equation is

I (1) + AT, (1) =0ciiivneninn (7).

919. In order to determine A and » we must introduce the
boundary conditions. When the edge is free, we obtain from
(3) § 218

2w (u—1) (ka J (ka) = J, (ka)} = k'] (ka

—A= 2 (u—1) {iKCLJ,,/(’L:K(L)—J, , (ilc(tj}‘—{- W Tiea) J a

e (= Dirad, (k) = 0, (ea)) = £CT, (0)
(= 1) {irad, (ixa) — n*J, (ixa)| + £°a’J, (ixa)
in which use has been made of the differentinl equations satisfied
by 7, (kr), J,(ikr). In cach of the fractions on the right the deno-
minator may be derived from the numerator by writing ix in place
of x. By climination of A the equation is obtained whose roots give
the admissible values of «.
When = = 0, the result assumes a simple form, viz,

. J,(ika) J, (k) _
2 (1 —p)+ika J (ixa) + ka T )~ | (2).

This, of course, could have been more easil obtained by neglectin
b} y D

n from the beginning,

The calenlation of the lowest root for cach value of n is trouble-
some, and in the absence of appropriate tables must be effected
by means of the ascending serics for the functions J, (k1), J,, (ter).
In the case of the higher roots recourse may be had to the semi-
convergent descending series for the same functions. Kirchhoff

finds
yi + ¢ D
—t T ot
tan (ka ~ Faw) = Sxd (8};“) (JS)N) ............ (3),
A+ +('S;“('L>3+...

8ka
where
A= Y= (1 - /'l'>_l’
B=y(l—~4n") =8,
O =y (1 —42%) (9~ 4n’) + 48 (1 + 4n),
D=—-4}{(1—-4n") (9 - 4n*) (13 - 4"} +8 (9 + 136x* + 80u.%),
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When «a is great,

tan (ke — 3 nm) =0 approx.;
whence
ke=3%m (N+2h) coiiiiiiiin. N )
where 2 is an integer.

It appears by a numerical comparison that L is identical with
the number of circular nodes, and (4) exprosses a law discovered
by Chladni, that the frequencies corresponding to figures with a
given number of nodal diameters are, with the exception of the
lowest, approximately proportional to the squares of consecutive
even or uneven numbers, according as the number of the diameters
is itself even or odd. Within the limits of application of (4), we
gee also that the pitch is approximately unaltered, when any
number is subtracted from A, provided twice that number be
added to 7. - This law, of which traces appear in the following table,
may be cxpressed by saying that towards raising the pitch nodal
circles have twice the effect of nodal diameters. It is probable,
however, that, strictly speaking, no two normal components have
exactly the sume pitch.

L ) n=0 =1
o L2l w o | B | W
1| (s s+ | A+ | b h- c—-
2 | gis' + | b b'+ | o+ " + fis" +
;;] n=3 n=3
i '._au. P, W Cit, P W.
04 C C O d dis- | dis-
1!g gis' + - d’.dis" | dig" +| "' —
! ‘ W o ———

The table, extracted from Kirchhoff’s memoir, gives the pitch
of the more important overtones of a free circular plate, the gravest
being assumed to be ¢!, The three columns under the heads
Ch, P, W refer respectively to the results as observed by Chladni
and as calculated from theory with Poisson’s and Wertheim's
values of u. A plus sign denotes that the actual pitch is a little
higher, aud a minus sign that it is a little lower, than that written.

! Gis corresponds to G# of the English notation, and % to b natural,

U U S VP RO e \L__ —
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The discrepancies between theory and observation are considerable,
but perhaps not greater than may be attributed to irregularity in
the plate.

220. The radii of the nodal circles in the symmetrical case
(n =0) were calculated by Poisson, and compared by him with
results obtained experimentally by Savart. The following numbers
are taken from a paper by Streblke!, who made some carcful mea-
surements, The radius of the disc is taken as unity,

Obsorvation. Caleulation,

One circle ... 067815 068062,

Tuo civelo,. (039183 089151
WO CIXCICs: - 1.84140  0-84200.

J0'25G31 025679,
Three civeles 1059107 059147,
l()'893(50 0-80381.

The caleulated results appear to refer to Poisson's value of g, but
would vary very little if Wertheim’s value were substituted.

The following table gives a comparison of Kirchhoff’s theory
(n not zero) with measurements by Strehlke made on less accurate
discs.
Dadir of Circular Nodes.

1,7 :
Observation. Culculation.

p=1(P). | p=g (W)

n=1, A=1|0781 0783 0781 0783 | 078136 078088
n=2 h=1|079 081 082 0-82194 0829274
n=3, h=1]0838 0842 0-84523 0-84681
_1 h.o | 0488 0402 049774 049715
n=4 ES0-860 0°869 0-87057 087015

221. When the plate is truly symmetrical, whether uniform
or not, theory indicates, and experiment verifies, that the position
of the nodal diameters is arbitrary, or rather dependent only on
the manner in which the plate is supported, By varying the
place of support, any desired diameter may be made nodal. It is
generally otherwise when there is any sensible departure from
cxact symmetry.  The two modes of vibration, which originally,

! Pogg. dnn. xcv. p. 577, 1855,
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in consequence of the cquality of periods could be combined in
any proportion without ceasing to be rimple harmonie, are now
separated and affected with different periods, At the same time
the position of the nodal diameters becomes determinate, or rather
limited to two alternatives. Theone set is derived from the other
by rotation through half the angle included between two adjacent
diameters of the same set. This supposes that the deviation from
uniformity is small ; otherwisc the nodal system will no longer be
composed of approximate circles and diameters at all. The cause
of the deviation may be an irregularity either in the material or in
the thickness or in the form of the boundary. The effect of a small
load at any point may be investigated as in the parallel problem
of the membranc § 208, If the place at which the load is attached
does not lic on a nodal circle, the normal types are made deter-
minate. The diametral system corresponding to one of the types
passes through the place in question, and for this type the period
is unaltered. The period of the other type is increased.

The most general motion of the uniform circular plate is
expressed by the superposition, with arbitrary amplitudes and
phases, of the normal componenis already investigated. The
determination of the amplitude and phase to correspond to
arbitrary initial displacements and velocities is effected precisely
as in the corresponding problem for the membrane by the aid of
the characteristic property of the normal functions proved in § 217,

The two other cases of a circular plate in which the edge
is cither clamped or supported would be easier than the preceding
in their theoretical treatment, but are of less practical interest on
account of the difficulty of experimentally realising the conditions
assumed. The general result that the nodal system is composed
of concentric circles, and diameters symmetrically distributed, is
applicable to all the three cases.

222, We have seen that in general Chladni’s figures as traced
by sand agrce very closcly with the circles and diameters of
theory; but in certain cases deviations occur, which are usually
attributed to irregularities in the plate. It must however be re-
membered that the vibrations excited by a bow are not strictly
speaking free, and that their periods are therefore liable to a
certain modification. It may be that under the action of the bow
two or more normal component vibrations coexist. The whole

i, 20
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motion may be simple harmonic in virtue of the external force,
although the natural periods would be a little different. Such an
explanation is suggested by the regular character of the figures
obtained in certain cases,

Another cause of deviation may perhaps be found in the
manner in which the plates are supportul The requirements of
theory are often difficult to meet in actual experiment. When
this is so, we may have to be content with an imperfect compari-
son; but we must remember that a discrepancy may be the fault
of the experiment as well as of the theory.

223, The first attempt to solve the problem with which we
have just been occupied is duc to Sophie Germain, who succeeded
in obtaining the correct differential cquation, but was led to
erroneous boundary conditions. For a free plate the latter part of
the problem is indeed of considerable difficulty. In Poisson’s
memoir ¢ Sur I'équilibre et le mouvement des corps dlastiques’)
that eminent mathematician gave three equations as necessary to be
satisfied at all points of a free edge, but Kirchhoff has proved that
in general it would be impossible to satisfy them all. It happens,
however, that an exception occurs in the case of the symmctrical
vibrations of a circular plate, when one of the equations is true
identically. Owing to this pcculiarity, Poisson’s theory of the
symmetrical vibrations is correct, notwithstanding the error in his
view as to the boundary conditions. In 1850 the subject was
resumed by Kirchhoff? who first gave the two equations appropriate
to a free edge, and completed the theory of the vibrations of a cir-
cular disc.

924, The correctness of Kirchhoff’s boundary equations has
been disputed by Mathicu®, who, without explaining where he
considers Kirchhoff’s error to lie, has substituted a different set of
cquations, He proves that if » and «’ be two normal functions, so
that w = w cos pt, w =u"cos p't arc possible vibrations, then

(p*— p?) f f w'dady

o g 0T AV
—cfds{u g Vg e I SUTTPLIS (1),

V Mém, de U'dead. d, Se, @ Par, 1829,

t Crelle, 4. xL. p. 51, Ucber das Gleichgewicht und die Bewegung einer elas-
tichen Scheibe,

4 Liouwville, 4. xiv, 1869,
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This follows, if it be admitted that u, «' satisfy respectively

the equations
¢ Yu=p, ' yhu'=p"

Since the left-hand member is zero, the same must be true of
the right-hand member; and this, according to Mathieu, cannot
be the case, unless at all points of the boundary both u and «'
satisfy one of the four following pairs of equations:

du
u=0] vy =0 U =0] =
du J’ dvie .|’ . dy'e
an =" an =0 V=0 dn —

The second pair would seem the most likely fora free edge, but
it is found to lead to an impossibility. Since the first and third
pairs are obviously inadmissible, Mathieu concludes that the fourth
pair of equations must be those which really express the condition
of a frec edge. In his belief in this result he is not shaken by the
fact that the corresponding conditions for the free end of a bar

would be

the first of which is contradicted by the roughest observation of
the vibration of a large tuning fork.

The fact is that although any of the four pairs of equations
would secure the evancscence of the boundary integral in (1), it
does not follow conversely that the integral can be made to vanish
in no other way; and such a conclusion is negatived by Kirchhoff’s
investigation, There are besides innumerable other cases in
which the integral in question would vanish, all that is really
necessary being that the boundary appliances should be either at

rest, or devoid of inertia.

925. The vibrations of a rectangular plate, whose edge is
supported, may be casily investigated theoretically, the normal
functions being identical with those applicable to a membranc of
the same shape, whose boundary is fixed. If we agsume

. mwx . M
= §in —— SN --77‘! COSPleiveiiarnnnn. (1),
)

a
202
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we sce that at all points of the boundary,

d*w d*w
w=0 =0 Gp=0
which secure the fulfilment of the nccessary conditions (§ 213),
The value of p, found by substitution in ¢* v'w = pw,

- o2 2
is p=cn <7—2._,~ + gg) ................ erienene (2),

shewing that the analogy to the membrane does not extend to the
sequence of tones.

Tt is not necessary to repeat hiere the discussion of the primary
and derived nodal systems given in Chapter 1x. It is enough to
observe that if two of the fundamental modes (1) have the same
period in the case of the membrane, they must also have the same
period in the case of the plate. The derived nodal systems are
accordingly identical in the two cascs.

The generality of the value of w obtained by compounding
with arbitrary amplitudes and phases all possible particular solu-
tions of the form (1) requires no fresh discussion.

Unless the contrary assertion had been made, it would have
scemed unnccessary to say that the modes of a supported plate
have nothing to do with the ordinary Chladni’s fignres, which
belong to a plate whose edges arc free.

The realization of the conditions for a supported edge is
scarcely attainable in practice. Appliances are required capable
of holding the boundary of the plate at rest, and of such a nature
that they give rise to no couples about tangential axes. We may
conceive the plate to be held in its place by friction against the
walls of a cylinder circumseribed closcly round it.

936, The problem of a rectangular plate, whose cdges are
frec, is onc of great difficulty, and has for the most part resisted
attack. If we suppose that the displacement w is independent
of y, the general differential equation becomes identical with that
with which we were concerned in Chapter viir, If we take the
solution corresponding to the case of a bar whose ends are free,
and therefore satisfying

*w P

‘= =),
et ’ da?
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when =0 and when 2=¢«, we obtain a value of w which satisfies
the general differential equation, as well as the pair of boundary
equations

d (dw . dPw )
du {;z:;-z +E-w ';'zy'} =0 o
dw  dw T

dot TH gy =0
which are applicable to the edges parallel to y; but the sccond
boundary condition for the other pair of edges, namely

*w w )
paln g 2
(ly'"'+#d‘c" O e (2),

will be violated, unless w=0. This shews that, except in the
case rescrved, it is not possible for a free rectangular plate to
vibrate after the manner of a bar; unless indeed as an approxima-
tion, when the length parallel to one pair of edges is so great
that the conditions to be satisfied at the scecond pair of edges
may be left out of account.

Although the constant w (which expresses the ratio of lateral
contraction to longitudinal extension when a bar is drawn out)
is positive for every known substance, in the case of a few sub-
stances—cork, for example—it is comparatively very small. There
is, so far as we know, nothing absurd in the idea of a substance
for which p vanishes. The investigation of the problem under
this condition is therefore not devoid of interest, though the results
will not be strictly applicable to ordinary glass or metal plates,
for which the value of u is about 4!

If w,, u,, &c. denote the normal functions for a free bar inves-
tigated in Chapter vir, corresponding to 2, 3, ...... nodes, the
vibrations of a rectangular plate will be expressed by

_ fr @ &
W= U, o) W= =) &e.,

or w =, (Z) , w=u, (%), &e.

} In order to make a plate of material, for which x is not zero, vibrate in the
mauner of a bar, it would be nceessary to apply constraining couples to the edges
parallel to the plang of bending to prevent the assumption of a contrary curvature.
The effect of theso couples wonld be to raise the pitch, and therefore the calen-
lation founded on the type propor to u=0 would give & result somowhat higher in
pitch than the truth,
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In each of these primitive modes the nodal system is composed
of straight lines parallel to onc or other of the cdges of the
rectangle.  'When b = q, the rectangle becomes a square, and the

vibrations
— . (% —, (Y
w=1u, a y W=, a ,

having necessarily the same period, may be combined in any pro-
portion, while the whole motion still remains simple harmonie,
Whatever the proportion may be, the resulting nodal curve will of
necessity pass through the points determined by

u, (@) =0, u, (31 ) =0,
a a

Now lct us consider more. particularly the casc of n=1.
The nodal system of the primitive mode, w=1u, (2), consists

of a pair of straight lines parallel to y, whose distance from the
nearest cdge is '2242a. The points in which these lines are met

by the corresponding pair for w = u, (Z), are those through which

the nodal curve of the compound vibration must in all cases pass.
It is cvident that they are symmetrically disposed on the diagonals
of the square. If the two primitive vibrations be taken equal,
but in opposite phases (or, algebraically, with equal and opposite

amplitudes), we have
w=1u, ('2) —u, :Q ....................... (3),

from which it is evident that w vanishes when z =y, that is along
the diagonal which passes through the origin, That  will also
vanish along the other diagonal follows from the symmetry of
the functions, and we conclude that the nodal system of (3) com-

Fig, 41,

prises both the diagonals (I'ig. 41). This is a well-known mode of
vibration of a square plate.
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A scccnd notable case is when the amplitudes arc equal and
their phases the sawme, so that

w =1, (g) +u, (‘j{) .......................... 4.

The most convenient method of constructing graphically
the curves, for which w=const., is that employed by Maxwell
in similar cases. The two systems of curves (in this instance

straight lines) represented by u, (g) = const, U, (%) = const,, arc

first laid down, the valucs of the constants forming an arith-
metical progression with the same common difference in the two
cases. In this way a network is obtained which the required
curves cross diagonally. The execution of the proposed plan
requires an inversion of the table given in Chapter viir, § 178,
expressing the march of the function w, of which the result is as
follows :—

%, z:a u, x:a
+1-00 5000 | — 2D *1871
75 3680 50 ‘1518
-50 3106 ‘75 ‘1179

25 2647 1-00 -0846
00 2242 1-25 0517
-1-60 0190 :

The system of lines represented by the above values of z (com-
pleted symmetrically on the further side of the central line) and
the corresponding system for y are laid down in the figure (42).
From these the curves of equal displacement are deduced. At the
centre of the square we have w a maximum and equal to 2 on the
scale adopted, The first curve proceeding outwards is the locus of
points at which w=1. The next is the nodal line, separating the
regions of opposite displacement. The remaining curves taken in
order give the displacements —1,—2,~38. The numerically great-
est negative displacement occurs at the corners of the square,
where it amounts to 2 x 1645 = 3-290.!

1 On tho nodal lines of a square plate. Phil. Afay. August, 1873,
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The nodal curve thus constructed agrees pretty closely with the
observations of Strehlke?, IHis results, which refer to three care-
fully worked plates of glass, are embodied in the following polar

cquations:
40143 0171 00127
r="40143 + 0172} cos 4¢ + "00127 » cos 8¢,
4019 ‘0168 0013
Fig, 42,
Y >
/ ,/ -
K . / /
\, ’ i
. ) /
\\ Y ," ‘l
|7 ' !
PN '~. |
\ \
‘\\ \ '
Pid > N
:"' \\\ \\‘ \‘\\
’ \\\
a \ \\\
% 1 ] —~

the centre of the square being pole. From these we obtain for the
radius vector parallel to the sides of the square (¢=0) 41980,
‘41981, 4200, while the calculated result is 4154, The radius
vector measured along a diagonal is "3856, ‘3855, *3864, and by

calculation ‘3900,

V Pogg. Ann, Yol exwye p. 819,
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By crossing the network in the other direction we obtain the
locus of points for which

A 1
’ll'l (&) — U, ('é)

is constant, which are the curves of constant displacement for that
mode in which the diagonals are nodal. The piteh of the vibration
is (according to theory) the sume in both cases.

Fig, 48.

The primitive modes represented by w =1, (5) or w=1u, (‘Z)

may be combined in like manner. Fig. 43 shews the nodal curve

for the vibration '
- [F Y 5
w=1, (u) +u, (a,> ...................... (3).

The form of the curve is the same relatively to the other diagonal,
if the sign of the ambiguity he altered.
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227. The method of superposition does not depend for its
application on any particular form of normal function, Whatever
the form may be, the mode of vibration, which when p= 0
passes into that just discussed, must have the same period,
whether the approximately straight nodal lines are parallel to
z or to y If the two synchronous vibrations be superposed,
the resultant has still the same period, and the general course
of its nodal system may be traced by means of the considera-
tion that no point of the plate can be nodal at which the
primitive vibrations have the same sign. To determine exactly
the line of compensation, a complete knowledge of the primitive
normal functions, and not mercly of the points at which they
vanish, would in general be necessary. Doctor Young and the
brothers Weber appear to have had the idea of superposition as
capable of giving rise to new varieties of vibration, but it is to Sir
Charles Wheatstone' that we owe the first systematic application of
it to the explanation of Chladni’s figures, The results actually ob-
tained by Wheatstone are however only very roughly applicable to
a plate, in cousequence of the form of normal function implicitly
sssumed. In place of Fig. 42 (itsclf, be it remembered, only an
approximation) Wheatstone finds for the node of the compound
vibration the inscribed square shewn in Fig. 44.

Fig. 44,

l/’\
/ .
-

N, /

This form is rcally applicable, not to a plate vibrating in virtue
of rigidity, but to a stretched membrane, so supported that every
point of the circumference is free to move along lines perpendi-
cular to the plane of the membrane. The boundary condition

) . . dw -
applicable under these circumstances is e 0; and it is casy
to shew that the normal functions which involve only one co-

. L T C e
ordinate are w = cos (m ?L-), or w = cos (m —5/), the origin being

at a corner of the square. Thus the vibration

2
W = C0S =  cos 2T e (1)
@ @

1 Phil, Trans. 1833,
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has its nodes determined by

co8

3

TE+Y) o TE=Y g
« (42

whence a4+ y=4%a or #a, or z~—y==*3a, cquations which
represent the inscribed square,

1 27a 2y

the nodal system is composed of the two diagonals, This result,
which depends only on the symmetry of the normal functious, is
strictly applicable to a square plate,

When m =3,

shewn in Fig. 45, If the other sign be taken, we obtain a similar
figure with reference to the other diagonal.

When m = 4,
4 4
W= 08 T 4008~ e (4,

« a
Tig. 46,

AN

L
X

A
giving the nodal ltues
¢ 3 v Ta «“ 3¢ n e
aty=q, 4> 4 g YT gty (Fig. 46).
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With the other sign
iz siﬂ/ Cerrarisrnresranesany (

we obtain

sty=5, 0%, w-y=0 +g Fig )

Pig. 47.

representing a system composed of the diagonals, together with the
inscribed square.

These forms, which are strictly applicable to the membrane,
resemble the figures obtained by means of sand on a square plate
more closely than might have been expected.  The sequence of
tones is however quite different. From § 176 we sce that, if u were
zero, the interval between the form (43) derived from three
primitive nodes, and (41) or (42) derived from two, would be
1-4629 octave ; and the interval between (41)or (42) and (46) or (47)
would be 24358 octaves. Whatever may be the value of p the
forms (+1) and (42) should have exactly the same pitch, and the
same should be true of (46) and (47). With respeet to the first-
mentioned pair this result is not in agreement with Chladni’s
observations, who found a difference of more than a whole tone,
(42) giving the higher piteh. If however (42) be left out of
account, the comparison is more satisfactory. According to theory

(p=0), if (41) gave d, (43) should give ' —, and (4G), (47)
should give ¢’ +. Chladni found for (43) g'#-}-, and for (46),
(47) g”# and g”# + respectively.

228, The gravest mode of a square plate has yet to be consi-
dered. The nodes in this case are the two lines drawn through the
middle points of opposite sides. That there must be such a mode
will be shewn presently from considerations of symmetry, but
neither the form of the normal function, nor the pitch, has yet
been determined, even for the particular case of p=0. A rough
caleulation however may be founded on an assumed type of
vibration.
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1f we take the nodal lines for axes, the forin w =z satisfies
v'w =0, as well as the boundary conditions proper for a free edge
at all points of the perimeter cxcept the actual corners, This is
in fact the form which the plate would assume if held at rest by
four forces numerically equal, acting at the corners perpendicu-
larly to the plane of the plate, those at the ends of one diagonal
being in one dircetion, and thosc at the ends of the other diagonal
in the opposite direction.  From this it follows that e =y cos pt
would be a possible mode of vibration, if the mass of the plate
were concentrated equally in the four corners. By (3) § 214, we

sce that
a 2

, @
[ = .1».2(-’(1 ) COSP P vvriieiiniiinenienins (1),

inasmuch a8

dw_dw_o A0
det ~ dy* 7 dedy cos Pt

For the kinetic energy, if p be the volume density, and M the
additional mass at each corner,

Yy i, +ia f+ia 2 1/4‘
T=Lp*sin’pt pblyPdedy + tMu

~laJ ~ia
{3 4
= 1" sin’pt {41’(’5”3-5 +5 M} ..................... @),
Hence ]
1_p(l+p)a ary
=P (14—36ﬂ1, .................. (3),

where 3’ denotes the mass of the plate without the loads. This
result tends to become accurate when 2 is relatively great; other-
wise by § 89 it is scnsibly less than the truth. But even when
M =0, the error is probably not very great. In this case we
should have ”

2 24¢

P A 4),

P=oi pe *)
giving a pitch which is somewhat too high. The gravest mode
next after this is when the diagonals are nodes, of which the pitch,

if u =0, would be given by

w_ qb (47:300)¢
P= put 12

........................... (5),

(see § 174).
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We may conclude that if the material of the plate were such
that p=0, the interval between the two gravest tones would
bo somewhat greater than that expressed by the ratio 1318
Chladni makes the interval a fifth,

999, That there must oxist modes of vibration in which
{he two shortest diameters arc nodes may be inferred from such
considerations as the following, In Fig (48) suppose that a1l

is a plate of which the edges O, GO are supported, and the
cdges G0, CH free. This plate, since it tends to a definite
position of equilibrium, must be capable of vibrating in certain
fundamental modes. Fixing our attention on one of these, let us
conceive a Jdistribution of w over the three remaining quadrants,
such that in any two that adjoin, the values of w arc cqual and
opposite at points which are the images of each other in the line
of scparation. If the whole plate vibrate according to the law
thus determined, no constraint will be required in order to keep
the lines GE, 'l fixed, and therefore the whole plate may be
regarded as free. The same argument may be used to prove that
modes exist in which the diagonals are nodes, or in which both the
diagonals and the diameters just considered are together nodal.
The principle of symmetry may also be applied to other forms
of plate. We might thus infer the possibility of nodal diameters
in a circle, or of nodal principal axes in an cllipse. When the

Fig. 50. Fig. 51.

boundary is a regular hexagon, it is casy to sec that Figs. (49),
(50), (1) represent possible forms.
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It is interesting to trace the continuity of Chladni’s figures, as
the form of the plate is gradually altered. In the circle, for
example, when there are two perpendicular nodal diameters, it is a
matter of indifference as respects the piteh and the type of vibra-
tion, in what position they be tuken. As the circle develops into
a square by throwing out corners, the position of these diamneters
becomes definite. In the two alternatives the pitch of the vibra-
tion is different, for the projecting corners have not the same cffi-
ciency in the two cases. The vibration of a square plate shewn in
Fig, (42) corvesponds to that of a circle when there is one circular
node. The correspondence of the graver modes of a hexagon or
an cllipse with those of a circle may be traced in like manner,

230. For plates of uniform: material and thickness and of
invariable shape, the period of the vibration in any fundamental
mode varics as the square of the lincar dimension, provided of
course that the boundary conditions are the same in all the cases
compared, When the edges are clamped, we may go further
and assert that the removal of any external portion is attended
by a rise of pitch, whether the material and the thickness be uni-
form, or not.

Let AB be a part of a clamped cedge (it is of no consequence
whether the remainder of the boundary be clamped, or not), and

Fig. 52,

let the picce ACBD be removed, the new edge ADB being also
clamped, The pitch of any fundamental vibration is sharper
than before the change. This is cvident, since the altered
vibrations might be obtained from the original system by the
introduction of a constraint clamping the cdge 4DB. The cffect
of the constraint is to raise the pitch of cvery component, and
the portion AC D being plane and at rest throughout the motion,
way be removed. In order to follow the sequence of changes
with greater security from crror, it is best to supposc the line
of clamping to advance by stages between the two positions
ACB, ADB.  For examyple, the pitch of a uniform clamped plate
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in the form of a regular hexagon is lower than for the inscribed
circle and higher than for the circumseribed circle.

When a plate is free, 1t is not true that an addition to
the cdge always increases the period. In proof of this it may
be sufficient to notice a particular case,

A is a narrow thin plate, itself without inertia but carrying
loads at 4, B, C. It is clear that the addition to the breadth

Fig. 58,

indicated by the dotted line would augment the stiffness of the
bar, and therefore lessen the period of vibration. The same
consideration shews that for a uniform free plate of given area
there is mo lower limit of pitch; for by a sufficient elongation
the period of the gravest component may be made to exceed
any assignable quantity, When the edges are clamped, the
forin of gravest pitch is doubtless the circle,

If all the dimensions of a plate, including the thickness, be
altered in the same proportion, the period is proportional to the
linear dimension, as in cvery casec of a solid body vibrating in
virtue of its own elasticity.

The period also varies inversely as the square root of Young's
modulus, if u be constant, and directly as the square root of the
mass of unit of volume of the substance,

231. Experimenting with square plates of thin wood whose
grain ran parallel to one pair of sides, Wheatstone® found that
the pitch of the vibrations was different according as the ap-
proximately straight nodal lines were parallel or perpendicular
to the fibre of the wood. This cffect depends on a variation
in the flexural rigidity in the two dircctions. The two sets of
vibrations having different periods cannot be combined in the
usual manner, and consequently it is not possible to make such
a plate of wood vibrate with nodal diagonals, The incquality
of periods may however be obviated by altering the ratio of the
sides, and then the ordinary mode of superposition giving nodal
diagonals is again possible. This was verified by Wheatstone.

V' Phil. Trans. 1833,
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A further application of the principle of superposition is due
to Konig', In order that two modes of vibration may combine,
it is only necessary that the periods agree. Now it is evident
that the sides of a rectangular plate may be taken in such a
ratio, that (for instance) the vibration with two nodes parallel
to one pair of sides may agree in pitch with the vibration having
three nodes parallel to the other pair of sides. In such a case
new nodal figures arise by composition of the two primary modes
of vibration.

232. When the plate whose vibrations are to be considered
is naturally curved, the difficulties of the question are generally
much increased. But there is one case in which the complication
duc to curvature is more than compensated by the absence of
a free edge; and this case happens to be of considerable interest,
as being the hest representative of a bell which at present admits
of analytical treatment,

A long cylindrical shell of circular section and uniform thick-
ness is evidently capable of vibrations of a flexural character
in which the axis remains at rest and the surface cylindrical,
while the motion of every part is perpendicular to the generating
lines. The problem may thus be treated as one of two dimensions
only, and depends upon the consideration of the potential and
kinetic energies of the various deformations of which the section
is capable. The same analysis also applies to the corresponding
vibrations of a ring, formed by the revolution of a small closed
area about an external axis.

The cylinder, or ring, is susceptible of two classes of vibrations
depending respectively on extensibility and flexural rigidity, and
analogous to the longitudinal and lateral vibrations of straight
bars, When, however, the cylinder is thin, the forces resisting
bending become small in comparison with those by which ex-
tension is opposed; and, as in the case of straight bars, the
vibrations depending on bending are graver and more important
than those which have their origin in longitudinal rigidity.
In the limiting case of an infinitely thin shell (or ring), the
flexural vibrations become independent of any extension of the
circumference as a whole, and may be caleulated on the sup-
position that each part of the circumference retains its natural
length throughout the motion,

1 Popg, Aan. 1864, exxit. p. 238,
R. 21
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But although the vibrations about to be considered are
analogous to the transverse vibrations of straight bars in respect
of depending on the resistance to flexure, we must not fall into
the common mistake of supposing that they are exclusivcly
normal. It is indeed casy to sce that a motion of a cylinder or
ring in which each particle is displaced in the direction of the
radius would be incompatible with the condition of no extension.
Tn order to satisfy this condition it i3 necessary to ascribe to
cach part of the circumference a tangential as well as a normal
motion, whose relative magnitudes must satisfy a certain differ-
ential equation, Our first step will be the investigation of this
cquation,

238, The original radius of the circle being @, let the equi-
librium position of any clement of the circumference be defined
by the vectorial angle 8. During the motion let the polar co-ordi-
nates of the clement become

v=qa+06r, $p=0+280.

If ds represent the arc of the deformed curve corresponding to adf,
we have

(ds)? = (adf)’ = (dr)* +* (d0 + dB6)*;

whenee we find, by neglecting the squares of the small quantities
or, 80,

S d86
T =0 s e, (1),

as the required relation,

In whatever manner the original circle may be deformed at
time ¢, & may be cxpanded by Fourier's theorem in the series

Sr=a{d, cos@+ DB sinf+ A4,c0820 + B sin20+ ...
+A cosnf+ DB, sinnf+..}..cooeiinnn. (2),

and the corresponding tangential displacement required by the
condition of no extension will be

80 =—A,sin @+ B cosf+... -——%‘sinn6+%‘cosn9— e e (3),

the constant that might be added to 86 being omitted.
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If cadfd denote the mass of the clement add, the kinetic
energy 7" of the whole motion will be

R (dB | (dBY?
= loma’ {2(11'5 +BY +£’ A2 +BH+...

1\ , . . ;
+ (1+ ?—{,) (A4, + B + } ....... sossnes (4),
the products of the co-ordinates 4, B, disappearing in the
integration.

We have now to caleulate the form of the potential energy V.
Let p be the radius of curvature of any clement ds, then for the

2
corresponding clement of V' we may take 4Bds (8 %) , Where Bis a

constant depending on the material and on the thickness, Thus

ory 1\?2 .
V=1Ba fo (a /;> Q0 vvrreorenerieenrenees (3).
Now
. d*u
- a‘"'?) ’
and ¢
1

1 .
u=-=-{1-dcos¢p—DBsing-..}

7

for in the small terms the distinction between ¢ and 6 may be
neglected.

Hence
1 14, ;
35 =az {(@*~1) (d, cosng + B, sinng)},
and
_B 4.4
V= - [ (3 (" ~1) (4, cosnd + B, sinnb)}|*dd
o
B qurg1,ne
=7 g 2@ =1 (A4 B )

in which the summation extends to all positive integral values
of n,
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The term for which # =1 contributes nothing to the potential
energy, as it corresponds to a displacement of the circle as a whole,
without deformation,

We sce that when the configuration of the system is defined as
above by the co-ordinates 4,, B3, &ec, the expressions for 7'and V
involve only squares; in other words, these arc the normal co-
ordinates, whose independent harmonic wvariation expresses the
vibration of the system,

If we consider only the terms involving cosnf, sinnf, we have
by taking the origin of 8 suitably,

&r=ad,cosnf, 80=- :/:L” sinnd...... e (T,

while the equation dcfining the dependence of A, upon the
time is

1y B, 2
od’ (1 + 7,;,“) A, + o (n'=1)4,=0.............. (8),

from which we conclude that, if 4, varies as cos (pt — ),

B -1
W= 1  —— e
DS S T e (9).

This result was given by Hoppe for a ring in a memoir pub-
lished in Crelle, Bd. G3, 1871. His method, though more complete
than the preceding, is less simple, in consequence of his not re-
cognising explicitly that the motion contemplated corresponds to
complete inextensibility of the circumference,

According to Chladni the frequencies of the tones of a ring
are as
35T 0

If we refer each tonce to the gravest of the series, we find for
the ratios characteristic of the iutervals
2778, 5445, 9, 13-44, &e.

The corresponding numbers obtained from the above theoretical
formule, by making n successively equal to 2, 3, 4, &e, are

2:828, 5423, 8771, 1287, &e,

agreeing pretty nearly with those found experimentally.
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934, When n=1, the frequency is zcro, as might have been
anticipated. The principal mode of vibration corresponds to n =2,
and has four nodes, distant from each other by 90°. These so-
called nodes are not, however, places of absolute rest, for the
tangential motion is there a maximum. In fact the tungential
vibration at these points is half the maximum normal motion.
In general for the ™ term the maximum tangential motion is

1 . .
- of thie maximum normal motion, and occurs at the nodes of

the latter,

When a bell-shaped body is sounded by a blow, the point of
application of the blow is o place of maximum normal motion
of the resulting vibrations, and the same is true when the
vibrations are excited by a violin-bow, as generally in lecture-
room cxperiments, Bells of glass, such as finger-glasses, aro
however morc easily thrown into regular vibration by friction with
the wetted finger carried round the circumference. The pitch of
the resulting sound is the same as of that clicited by a tap with
the soft part of the finger; but inasmuch as the tangential motion
of a vibrating bell has been very generally ignored, the production
of sound in this manner has been felt as a difficulty., It is now
scarccly necessary to point out that the effect of the friction is in
the first instance to excite tangential motion, and that the point
of application of the friction is the place where the tangential
motion is grcatest, and thercfore where the normal motion
vanishes,

235. The existence of tangential vabration in the easc of a bell
was verified in the following manner. A so-called air-pump re-
ceiver was sccurcly fastened to a table, open end uppermost, and sct
into vibration with the moistened finger. A small chip in the rim,
reflecting the light of a candle, gave a bright spot whose motion
could be observed with a Coddington lens suitably fixed. As the
finger was carried round, the line of vibration was scen to re-
volve with an angular velocity double that of the finger; and
the amount of excursion (indicated by the length of the line of
light), though variable, was finite in cvery position, There was,
however, some difficulty in observing the correspondence between
the momentary direction of vibration and the situation of the point
of cxcitement. To effect this satisfactorily it was found nccessary
to apply the friction in the neighbourhood of one point. It then
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became evident that the spot moved tangentially when the bell was
excited at points distant therefrom 0, 90, 180, or 270 degrees ; and
normally when the friction was applied at the intermediate points
corresponding to 45, 133, 225 and 815 degrees. Care is sometimes
required in order to make the bell vibrate in its gravest mode
without sensible admixture of overtones,

If there be a small load at any point of the circumference,
a slight augmentation of period ensues, which is different accord-
ing as the loaded point coincides with a node of the normal or
of the tangential motion, being greater in the latter case than
in the former. The sound produced depends thercfore on the
place of excitation; in general both tones are heard, and by
interference give rise to-beats, whose frequency is equal to the
difference between the frequencies of the two tones. This phe-
nomenon may often be observed in the case of large bells,
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